Sound modes and the two-stream instability in relativistic superfluids

Size: px
Start display at page:

Download "Sound modes and the two-stream instability in relativistic superfluids"

Transcription

1 Madrid, January 17, 21 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1 Vienna, Austria Sound modes and the two-stream instability in relativistic superfluids M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, PRD 87, 651 (213) M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, arxiv: [hep-ph] A. Schmitt, arxiv: [hep-ph] two-fluid picture of a superfluid role reversal in first and second sound two-stream instability

2 Madrid, January 17, 21 2 Superfluid hydrodynamics: relevance for compact stars r-mode instability pulsar glitches precession asteroseismology superfluid turbulence (?) Cas A, Chandra X-Ray Observatory Superfluidity in dense matter Nuclear matter Quark matter neutrons (T c 1 kev) color-flavor locked phase (T c 1 MeV) hyperons color-spin locked phase (T c 1 kev)

3 Madrid, January 17, 21 3 Two-fluid picture of a superfluid (liquid helium) London, Tisza (1938); Landau (191) relativistic: Khalatnikov, Lebedev (1982); Carter (1989) superfluid component : condensate, carries no entropy normal component : excitations (Goldstone mode), carries entropy ε p phonon roton p Hydrodynamic eqs. two sound modes 1st sound in-phase oscillation (primarily) density wave 2nd sound out-of-phase oscillation (primarily) entropy wave

4 Madrid, January 17, 21 First and second sound in non-relativistic systems liquid helium K.R. Atkins et al. (1953) ultracold fermionic gas (exp.) L.A. Sidorenkov et al., Nature 98, 78 (213) weakly interacting Bose gas H.Hu, et al., New Journ.Phys. 12, 3 (21) unitary Fermi gas E. Taylor et al., PRA 8, 5361 (29)

5 Madrid, January 17, 21 5 Goals How does the two-fluid picture arise from a microscopic field theory? M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, PRD 87, 651 (213) Compute sound modes in a relativistic superfluid (and in the presence of a superflow) M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, arxiv: [hep-ph] A. Schmitt, arxiv: [hep-ph]

6 Madrid, January 17, 21 6 Lagrangian and superfluid velocity starting point: complex scalar field L = ( ϕ) 2 m 2 ϕ 2 λ ϕ Bose condensate ϕ = ρ e iψ spontaneously breaks U(1) zero temperature: single-fluid system Field theory current j µ ( ψ) 2 stress-energy tensor T µν Hydrodynamics λ µ ψ nv µ g µν L + ( ψ)2 λ µ ψ ν ψ (ɛ + P )v µ v ν g µν P superfluid velocity v µ = µ ψ µ µ = ψ

7 Madrid, January 17, 21 7 Relativistic two-fluid formalism (page 1/2) write stress-energy tensor as T µν = g µν Ψ + j µ ν ψ + s µ Θ ν generalized pressure Ψ: Ψ = P in superfluid and normal-fluid rest frames, Ψ depends on momenta µ ψ, Θ µ Ψ = Ψ[( ψ) 2, Θ 2, ψ Θ] generalized energy density Λ Ψ + j ψ + s Θ Λ is Legendre transform of Ψ, Λ depends on currents j µ, s µ Λ = Λ[j 2, s 2, j s]

8 Madrid, January 17, 21 8 Relativistic two-fluid formalism (page 2/2) j µ = s µ = Ψ ( µ ψ) = B µ ψ + A Θ µ Ψ Θ µ = A µ ψ + C Θ µ B = 2 Ψ ( ψ), 2 A = Ψ ( ψ Θ) C = 2 Ψ Θ 2 entrainment coefficient compute A, B, C from microscopic physics,, Μ 2 Λ all temperatures 1 6 Μ 2 Λ 3 Entrainment coefficient 2PI T 3 T (very) small temperatures

9 Madrid, January 17, 21 9 Microscopic calculation for arbitrary T (page 1/2) effective action density in the 2PI formalism (CJT) Γ[ρ, S] = U(ρ) 1 2 Tr ln S Tr[S 1 (ρ)s 1] V 2[ρ, S] V 2 [ρ, S]: two-loop two-particle irreducible (2PI) diagrams use Hartree approximation impose Goldstone theorem by hand solve self-consistency equations for condensate ρ and M, δm

10 Madrid, January 17, 21 1 Microscopic calculation for arbitrary T (page 2/2) microscopic calculation done in normal-fluid rest frame identify effective action density with generalized pressure Γ[µ, T, ψ] = Ψ restrict to weak coupling no dependence on renormalization scale consider uniform superflow v neglect dissipation thermodynamics with (µ, T, v) compute entrainment coefficient, sound velocities etc.

11 Madrid, January 17, Results I: critical velocity v instability at v = v c negative energies in Goldstone dispersion ɛ k (v) < Εk Μ.2.1 T T.5 T c v T T c v generalization to Landau s original argument ɛ k k v < v uniform superfluid non superfluid dashed line: without backreaction of condensate shaded region: dissipation, turbulence? c similar phase diagram for holographic superfluid I. Amado, D. Arean, A. Jimenez-Alba, K. Landsteiner, L. Melgar and I. S. Landea, arxiv: [hep-th]

12 Madrid, January 17, Results II: sound speeds and mixing angle ultra-relativistic (towards) non-relativistic sound speed u Α 1 mixing angle Α Π Π Α 1 pure Μ wave Α 2 pure T wave Π Π Α 2 Π Π α = arctan δt δµ role reversal in first and second sound!

13 Madrid, January 17, Sound speeds and mixing angle with superflow ultra-relativistic (towards) non-relativistic superflow coupling u..3 parallel anti parallel Α 1 Α 1 Π Π Α Α 2 Α 2 Π Π Π Π

14 Madrid, January 17, Sound speeds and mixing angle with superflow ultra-relativistic (towards) non-relativistic superflow coupling u Α 1 Α 1 Π Π Α Α 2 Α 2 Π Π Π Π

15 Madrid, January 17, Sound speeds and mixing angle with superflow ultra-relativistic (towards) non-relativistic superflow coupling u Α 1 Α 1 Π Π Α Α 2 Α 2 Π Π Π Π

16 Madrid, January 17, Sound speeds and mixing angle with superflow ultra-relativistic (towards) non-relativistic superflow coupling u Α 1 Α 1 Π Π Α Α 2 Α 2 Π Π Π Π

17 Madrid, January 17, 21 1 Results III: two-stream instability compute sound speed close to Landau s critical velocity v uniform superfluid non superfluid c.8 T.T c Θ Π.5 T.T c Θ Π Re u.6. Im u complex sound speeds one mode damped, one mode explodes plasma physics: O. Buneman, Phys.Rev. 115, 53 (1959); D.T. Farley, PRL 1, 279 (1963) general two-fluid system: L. Samuelsson, C. S. Lopez-Monsalvo, N. Andersson, G. L. Comer, Gen. Rel. Grav. 2, 13 (21) relevance for superfluids: N. Andersson, G. L. Comer, R. Prix, MNRAS 35, 11 (2)

18 Madrid, January 17, All directions v v.5v c T v.967v c T (superflow pointing to the right)

19 Madrid, January 17, Instability window in phase diagram u 1 v uniform superfluid v vc T uniform superfluid Im u c tiny window for weak coupling λ =.5 (varying λ shows that the window grows with λ) region with u > 1: problem in the formalism? (Hartree? enforced Goldstone theorem?) very small T : qualitatively different angular structure of instability

20 Madrid, January 17, Summary a superfluid is a two-fluid system, and this can be derived from microscopic physics the two sound modes in a (weakly coupled, relativistic) superfluid can reverse their roles (in terms of density and entropy waves) at large relative velocities of the two fluids, there is a dynamical instability ( two-stream instability )

21 Madrid, January 17, Outlook start from fermionic theory D. Müller, A. Schmitt, work in progress behavior beyond critical velocity sound modes (role reversal): predictions for He or ultracold gases? apply to compact stars neutron superfluid & ion lattice: N. Chamel, D. Page and S. Reddy, PRC 87, 3583 (213) two-stream instability: instability more prominent at strong coupling? holographic approach: C.P.Herzog and A.Yarom, PRD 8, 162 (29); I.Amado, D.Arean, A.Jimenez-Alba, K.Landsteiner, L.Melgar, I.S.Landea, arxiv: [hep-th] time evolution of instability I. Hawke, G. L. Comer and N. Andersson, Class. Quant. Grav. 3, 157 (213) relevance for compact stars, e.g., pulsar glitches N. Andersson, G. L. Comer, R. Prix, MNRAS 35, 11 (2)

Hydrodynamics of the superfluid CFL phase and r-mode instabilities

Hydrodynamics of the superfluid CFL phase and r-mode instabilities Hydrodynamics of the superfluid CFL phase and r-mode instabilities Cristina Manuel Instituto de Ciencias del Espacio (IEEC-CSIC) Barcelona Hirschegg 2009 Outline Introduction Superfluid hydrodynamics Hydrodynamics

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity Debarati Chatterjee Recap: Hydrodynamics of nearly perfect fluids Hydrodynamics: correlation functions at low

More information

(Color-)magnetic flux tubes in dense matter

(Color-)magnetic flux tubes in dense matter Seattle, Apr 17, 2018 1 Andreas Schmitt Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom (Color-)magnetic flux tubes in dense matter A. Haber,

More information

Transport in the Outer Core of Neutron Stars

Transport in the Outer Core of Neutron Stars Stephan Stetina Institute for Theoretical Physics Vienna UT Transport in the Outer Core of Neutron Stars SEWM 018, Barcelona Ermal Rrapaj (University of Guelph), Sanjay Reddy (INT Seattle) [S. Stetina,

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Generalized equation of state for cold superfluid neutron stars. Abstract

Generalized equation of state for cold superfluid neutron stars. Abstract Generalized equation of state for cold superfluid neutron stars N. Chamel, 1 J. M. Pearson, 2 and S. Goriely 1 1 Institut d Astronomie et d Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels,

More information

Physics 127a: Class Notes

Physics 127a: Class Notes Physics 127a: Class Notes Lecture 15: Statistical Mechanics of Superfluidity Elementary excitations/quasiparticles In general, it is hard to list the energy eigenstates, needed to calculate the statistical

More information

Superfluidity. Krzysztof Myśliwy. October 30, Theoretical Physics Proseminar

Superfluidity. Krzysztof Myśliwy. October 30, Theoretical Physics Proseminar Superfluidity Krzysztof Myśliwy Theoretical Physics Proseminar October 30, 2017 Outline The λ transition Phenomenology of He-II Landau theory- a semi-phenomenological approach Feynman s explanation- from

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Inverse magnetic catalysis in dense (holographic) matter

Inverse magnetic catalysis in dense (holographic) matter BNL, June 27, 2012 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria Inverse magnetic catalysis in dense (holographic) matter F. Preis, A. Rebhan, A. Schmitt,

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Neutron vs. Quark Stars. Igor Shovkovy

Neutron vs. Quark Stars. Igor Shovkovy Neutron vs. Quark Stars Igor Shovkovy Neutron stars Radius: R 10 km Mass: 1.25M M 2M Period: 1.6 ms P 12 s? Surface magnetic field: 10 8 G B 10 14 G Core temperature: 10 kev T 10 MeV April 21, 2009 Arizona

More information

Superfluidity and Condensation

Superfluidity and Condensation Christian Veit 4th of June, 2013 2 / 29 The discovery of superfluidity Early 1930 s: Peculiar things happen in 4 He below the λ-temperature T λ = 2.17 K 1938: Kapitza, Allen & Misener measure resistance

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

arxiv:gr-qc/ v1 29 Nov 2002

arxiv:gr-qc/ v1 29 Nov 2002 Stationary structure of relativistic superfluid neutron stars arxiv:gr-qc/0211105v1 29 Nov 2002 R. Prix 1, J. Novak 2 and G.L. Comer 3 1 University of Southampton, UK 2 Observatoire de Paris-Meudon, France

More information

Second sound and the superfluid fraction in a resonantly interacting Fermi gas

Second sound and the superfluid fraction in a resonantly interacting Fermi gas Second sound and the superfluid fraction in a resonantly interacting Fermi gas Meng Khoon Tey Tsinghua University China Workshop on Probing and Understanding Exotic Superconductors and Superfluids Trieste,

More information

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle,

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle, Non Fermi liquid effects in dense matter Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle, 27.5.2004 1 Introduction Possible phases at high density...... all involve condensed

More information

Black-hole & white-hole horizons for capillary-gravity waves in superfluids

Black-hole & white-hole horizons for capillary-gravity waves in superfluids Black-hole & white-hole horizons for capillary-gravity waves in superfluids G. Volovik Helsinki University of Technology & Landau Institute Cosmology COSLAB Particle Particle physics Condensed matter Warwick

More information

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model FAIRNESS 2013, 15-21 September 1 Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model A Meistrenko 1, C Wesp 1, H van Hees 1,2 and C Greiner 1 1 Institut für Theoretische

More information

Nambu-Goldstone Fermion Mode in Quark-Gluon Plasma and Bose-Fermi Cold Atom System

Nambu-Goldstone Fermion Mode in Quark-Gluon Plasma and Bose-Fermi Cold Atom System Nambu-Goldstone Fermion Mode in Quark-Gluon Plasma and Bose-Fermi Cold Atom System Daisuke Satow (ECT*,!)! Collaborators: Jean-Paul Blaizot (Saclay CEA, ") Yoshimasa Hidaka (RIKEN, #) Supersymmetry (SUSY)

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

Dense matter equation of state and rotating neutron stars

Dense matter equation of state and rotating neutron stars Dense matter equation of state and rotating neutron stars ANG LI (李昂) with R.-X. Xu & H. Gao (Beijing) W. Zuo & J.-M. Dong (Lanzhou) B. Zhang (UNLV) J.-B. Wang (Urumqi) N.-B. Zhang & B. Qi (Weihai) T.

More information

Superfluidity and Superconductivity

Superfluidity and Superconductivity Superfluidity and Superconductivity These are related phenomena of flow without resistance, but in very different systems Superfluidity: flow of helium IV atoms in a liquid Superconductivity: flow of electron

More information

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957 Unexpected aspects of large amplitude nuclear collective motion Aurel Bulgac University of Washington Collaborators: Sukjin YOON (UW) Kenneth J. ROCHE (ORNL) Yongle YU (now at Wuhan Institute of Physics

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Lecture 4: Superfluidity

Lecture 4: Superfluidity Lecture 4: Superfluidity Previous lecture: Elementary excitations above condensate are phonons in the low energy limit. This lecture Rotation of superfluid helium. Hess-Fairbank effect and persistent currents

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

Topics in Relativistic Astrophysics

Topics in Relativistic Astrophysics Topics in Relativistic Astrophysics John Friedman ICTP/SAIFR Advanced School in General Relativity Parker Center for Gravitation, Cosmology, and Astrophysics Part I: General relativistic perfect fluids

More information

The Turbulent Universe

The Turbulent Universe The Turbulent Universe WMAP Science Team J. Berges ALICE/CERN Universität Heidelberg JILA/NIST Festkolloquium der Karl Franzens Universität Graz FWF Doktoratskolleg Hadrons in Vacuum, Nuclei and Stars

More information

Superfluid Density of Neutrons in the Inner Crust of Neutron Stars:

Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: PACIFIC 2018 (Feb. 14, 2018) Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models GW & C. J. Pethick, PRL 119, 062701 (2017). Gentaro Watanabe (Zhejiang

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Thomas Schaefer North Carolina State University Fluids: Gases, Liquids, Plasmas,... Hydrodynamics: Long-wavelength, low-frequency dynamics

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

Superconducting phases of quark matter

Superconducting phases of quark matter Superconducting phases of quark matter Igor A. Shovkovy Frankfurt Institute for Advanced Studies Johann W. Goethe-Universität Max-von-Laue-Str. 1 60438 Frankfurt am Main, Germany Outline I. Introduction

More information

Quantum gases in the unitary limit and...

Quantum gases in the unitary limit and... Quantum gases in the unitary limit and... Andre LeClair Cornell university Benasque July 2 2010 Outline The unitary limit of quantum gases S-matrix based approach to thermodynamics Application to the unitary

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

Intersections of nuclear physics and cold atom physics

Intersections of nuclear physics and cold atom physics Intersections of nuclear physics and cold atom physics Thomas Schaefer North Carolina State University Unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ B > 0 Unitarity

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

Landau Bogolubov Energy Spectrum of Superconductors

Landau Bogolubov Energy Spectrum of Superconductors Landau Bogolubov Energy Spectrum of Superconductors L.N. Tsintsadze 1 and N.L. Tsintsadze 1,2 1. Department of Plasma Physics, E. Andronikashvili Institute of Physics, Tbilisi 0128, Georgia 2. Faculty

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Confined chirally symmetric dense matter

Confined chirally symmetric dense matter Confined chirally symmetric dense matter L. Ya. Glozman, V. Sazonov, R. Wagenbrunn Institut für Physik, FB Theoretische Physik, Universität Graz 28 June 2013 L. Ya. Glozman, V. Sazonov, R. Wagenbrunn (Institut

More information

Quantum limited spin transport in ultracold atomic gases

Quantum limited spin transport in ultracold atomic gases Quantum limited spin transport in ultracold atomic gases Searching for the perfect SPIN fluid... Tilman Enss (Uni Heidelberg) Rudolf Haussmann (Uni Konstanz) Wilhelm Zwerger (TU München) Technical University

More information

The Nuclear Equation of State

The Nuclear Equation of State The Nuclear Equation of State Abhishek Mukherjee University of Illinois at Urbana-Champaign Work done with : Vijay Pandharipande, Gordon Baym, Geoff Ravenhall, Jaime Morales and Bob Wiringa National Nuclear

More information

Emergent Horizons in the Laboratory

Emergent Horizons in the Laboratory Emergent Horizons in the Laboratory Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Emergent Horizons in the Laboratory p.1/26 Event Horizon Collapsing matter Singularity Light cones, light

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

arxiv: v3 [hep-ph] 22 Sep 2017

arxiv: v3 [hep-ph] 22 Sep 2017 Towards laboratory detection of topological vortices in superfluid phases of QCD Arpan Das 1,2, Shreyansh S. Dave 1,2, Somnath De 1,2, and Ajit M. Srivastava 1,2 1 Institute of Physics, Bhubaneswar 7515,

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

The maximum mass of neutron star. Ritam Mallick, Institute of Physics

The maximum mass of neutron star. Ritam Mallick, Institute of Physics The maximum mass of neutron star Ritam Mallick, Institute of Physics Introduction The study of phase transition of matter at extreme condition (temperature/density) is important to understand the nature

More information

Introduction to Dense Matter. C. J. Pethick (U. of Copenhagen and NORDITA)

Introduction to Dense Matter. C. J. Pethick (U. of Copenhagen and NORDITA) Introduction to Dense Matter C. J. Pethick (U. of Copenhagen and NORDITA) Astro-Solids, Dense Matter, and Gravitational Waves INT, Seattle, April 16, 2018 Bottom lines Exciting time for neutron star studies:

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

The critical point in QCD

The critical point in QCD The critical point in QCD Thomas Scha fer North Carolina State University The phase diagram of QCD L = q f (id/ m f )q f 1 4g 2 Ga µνg a µν 2000: Dawn of the collider era at RHIC Au + Au @200 AGeV What

More information

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill Thermodynamics of the polarized unitary Fermi gas from complex Langevin Joaquín E. Drut University of North Carolina at Chapel Hill INT, July 2018 Acknowledgements Organizers Group at UNC-CH (esp. Andrew

More information

Holographic QCD in Dense Medium and Nuclear Symmetry Energy

Holographic QCD in Dense Medium and Nuclear Symmetry Energy Holographic QCD in Dense Medium and Nuclear Symmetry Energy Sang-Jin Sin (Hanyang Univ. ) 2011.5.25@cquest QCD is one of greatest puzzles 20 century left for 21 century physicists. Due to the lack of understanding

More information

Quantum Properties of Two-dimensional Helium Systems

Quantum Properties of Two-dimensional Helium Systems Quantum Properties of Two-dimensional Helium Systems Hiroshi Fukuyama Department of Physics, Univ. of Tokyo 1. Quantum Gases and Liquids 2. Bose-Einstein Condensation 3. Superfluidity of Liquid 4 He 4.

More information

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe) Deconfined quark-gluon plasmas made in ultrarelativistic heavy ion collisions T ~ 10 2 MeV ~ 10 12 K (temperature of early universe at ~1µ sec) Bose-condensed and BCS fermion superfluid states T ~ nano

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

Gravitational Wave emission mechanisms in accreting systems. Brynmor Haskell INAF-Milano 26/11/2009

Gravitational Wave emission mechanisms in accreting systems. Brynmor Haskell INAF-Milano 26/11/2009 Gravitational Wave emission mechanisms in accreting systems INAF-Milano 26/11/2009 GWs from rotating neutron stars LMXBs and accretion models Emission mechanisms Crustal and core mountains Magnetic mountains

More information

Neutron star Equa-ons of State: An ideal to aim towards

Neutron star Equa-ons of State: An ideal to aim towards Neutron star Equa-ons of State: An ideal to aim towards Astrophysical modeling generally requires EOS tables more extensive than tradi-onal pressure versus energy density: Chemical poten-als, density-

More information

PHYS 393 Low Temperature Physics Set 2: Liquid Helium-4

PHYS 393 Low Temperature Physics Set 2: Liquid Helium-4 PHYS 393 Low Temperature Physics Set 2: Liquid Helium-4 Christos Touramanis Oliver Lodge Lab, Office 319 c.touramanis@liverpool.ac.uk He 4 atom Two protons, two neutrons in nucleus: I=0 Two electrons in

More information

Condensed Matter Physics and the Nature of Spacetime

Condensed Matter Physics and the Nature of Spacetime Condensed Matter Physics and the Nature of Spacetime Jonathan Bain Polytechnic University Prospects for modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. 1. EFTs

More information

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington)

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington) Anomalous hydrodynamics and gravity Dam T. Son (INT, University of Washington) Summary of the talk Hydrodynamics: an old theory, describing finite temperature systems The presence of anomaly modifies hydrodynamics

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

COLOR SUPERCONDUCTIVITY

COLOR SUPERCONDUCTIVITY COLOR SUPERCONDUCTIVITY Massimo Mannarelli INFN-LNGS massimo@lngs.infn.it GGI-Firenze Sept. 2012 Compact Stars in the QCD Phase Diagram, Copenhagen August 2001 Outline Motivations Superconductors Color

More information

Instabilities in neutron stars and gravitational waves

Instabilities in neutron stars and gravitational waves Instabilities in neutron stars and gravitational waves Andrea Passamonti INAF-Osservatorio di Roma AstroGR@Rome 2014 Rotational instabilities Non-axisymmetric instabilities of a rotating fluid star What

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

Hybrid stars within a SU(3) chiral Quark Meson Model

Hybrid stars within a SU(3) chiral Quark Meson Model Hybrid stars within a SU(3) chiral Quark Meson Model Andreas Zacchi 1 Matthias Hanauske 1,2 Jürgen Schaffner-Bielich 1 1 Institute for Theoretical Physics Goethe University Frankfurt 2 FIAS Frankfurt Institute

More information

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012)

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012) Superfluidity E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN-90014 University of Oulu, Finland (Dated: June 8, 01) PACS numbers: 67.40.-w, 67.57.-z, 74., 03.75.-b I. INTRODUCTION Fluids

More information

Tests of nuclear properties with astronomical observations of neutron stars

Tests of nuclear properties with astronomical observations of neutron stars Institute for Nuclear Theory 17 July 2014 Tests of nuclear properties with astronomical observations of neutron stars Wynn Ho University of Southampton, UK Nils Andersson University of Southampton, UK

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Revision Lecture Derek Lee Imperial College London May 2006 Outline 1 Exam and Revision 2 Quantum Theory of Matter Microscopic theory 3 Summary Outline 1 Exam and Revision 2 Quantum

More information

Pulsar glitch dynamics in general relativity

Pulsar glitch dynamics in general relativity Pulsar glitch dynamics in general relativity Jérôme Novak (jerome.novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot Sourie, Novak, Oertel &

More information

Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra

Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra Landau Fermi liquid theory in nuclear & many-body theory May 22 nd 26 th 2017,

More information

Superfluid Heat Conduction in the Neutron Star Crust

Superfluid Heat Conduction in the Neutron Star Crust Superfluid Heat Conduction in the Neutron Star Crust Sanjay Reddy Los Alamos National Lab Collaborators : Deborah Aguilera Vincenzo Cirigliano Jose Pons Rishi Sharma arxiv:0807.4754 Thermal Conduction

More information

Hydrodynamics of fluids with spin

Hydrodynamics of fluids with spin Francesco Becattini, University of Florence Hydrodynamics of fluids with spin F. B., F. Piccinini, Ann. Phys. 323, 2452 (2008). F.B., L. Tinti, arxiv:0911.0864, to appear (hopefully soon) in Ann. Phys.

More information

Phonon contribution to the thermal conductivity in neutron star core

Phonon contribution to the thermal conductivity in neutron star core Phonon contribution to the thermal conductivity in neutron star core Tata Institute of Fundamental Research E-mail: sreemoyee.sarkar@tifr.res.in Cristina Manuel Instituto de Ciencias del Espacio (IEEC/CSIC)

More information

arxiv: v1 [hep-ph] 21 May 2008

arxiv: v1 [hep-ph] 21 May 2008 1 Chromomagnetic Instability and Gluonic Phase in Dense Neutral Quark Matter Osamu Kiriyama arxiv:85.334v1 [hep-ph] 21 May 28 Institut für Theoretische Physik, J.W. Goethe-Universität, D-6438 Frankfurt

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

On the Higgs mechanism in the theory of

On the Higgs mechanism in the theory of On the Higgs mechanism in the theory of superconductivity* ty Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften D-85748 Garching Outline Phenomenological

More information

What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries

What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries Astronomical Institute Anton Pannekoek Low Mass X-ray Binaries Mass is stripped from the donor Forms

More information

Phase Oscillation between Superfluid and Normal State of Neutrons in Neutron Stars The Origin of Glitches of Pulsars 1

Phase Oscillation between Superfluid and Normal State of Neutrons in Neutron Stars The Origin of Glitches of Pulsars 1 Phase Oscillation between Superfluid and Normal State of Neutrons in Neutron Stars The Origin of Glitches of Pulsars Qiu-he Peng a,b ( qhpeng@nju.edu.cn ) Zhi quan Luo a,c a School of Physics and electronic

More information

Versatility of the Abelian Higgs Model

Versatility of the Abelian Higgs Model Versatility of the Abelian Higgs Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA Versatility of the Abelian Higgs Model (2013) back to start 1 Contents

More information

Gravitational Waves from Neutron Stars

Gravitational Waves from Neutron Stars Gravitational Waves from Neutron Stars Astronomical Institute Anton Pannekoek Elastic outer crust Neutron star modelling Elastic inner curst with superfluid neutrons Superfluid neutrons and superconducting

More information

Towards new relativistic hydrodynamcis from AdS/CFT

Towards new relativistic hydrodynamcis from AdS/CFT Towards new relativistic hydrodynamcis from AdS/CFT Michael Lublinsky Stony Brook with Edward Shuryak QGP is Deconfined QGP is strongly coupled (sqgp) behaves almost like a perfect liquid (Navier-Stokes

More information

Quark Structure of the Pion

Quark Structure of the Pion Quark Structure of the Pion Hyun-Chul Kim RCNP, Osaka University & Department of Physics, Inha University Collaborators: H.D. Son, S.i. Nam Progress of J-PARC Hadron Physics, Nov. 30-Dec. 01, 2014 Interpretation

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Color superconductivity in cold and dense quark matter

Color superconductivity in cold and dense quark matter Color superconductivity in cold and dense quark matter Habilitationsschrift im Fach Theoretische Physik vorgelegt beim Rektorat der Technischen Universität Wien von Andreas Schmitt aus Frankfurt am Main

More information

Heavy Quark Diffusion in AdS/CFT

Heavy Quark Diffusion in AdS/CFT Purdue University January 5th 2011 AdS/CFT is a correspondence that relates certain Quantum Field Theories and certain String Theories. Some characteristics of the correspondence. Large N c N = 4 SYM theory

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information