# Chapter 14. Ideal Bose gas Equation of state

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 14 Ideal Bose gas In this chapter, we shall study the thermodynamic properties of a gas of non-interacting bosons. We will show that the symmetrization of the wavefunction due to the indistinguishability of particles has important consequences on the behavior of the system. The most important consequence of the quantum mechanical symmetrization is the Bose- Einstein condensation, which is in this sense a special phase transition as it occurs in a system of non-interacting particles. We shall consider, as an example, a gas of photons and a gas of phonons Equation of state We consider a gas of non-interacting bosons in a volume at temperature T and chemical potential µ. The system is allowed to interchange particles and energy with the surroundings. The appropriate ensemble to treat this many-body system is the grand canonical ensemble. Our bosons are non-relativistic particles with spin s, whose one-particle energies ε( k) include only the kinetic energy term and are given by ε( k) = ε(k) = h2 k 2 2m. Since the lowest one-particle energy ε 0 is zero, ε 0 = ε(0) = 0, the chemical potential must fulfill the condition: as we discussed in chapter 12. < µ < 0, We consider a situation when the gas is in a box with volume = L x L y L z and subject to periodic boundary conditions. In the thermodynamical limit (N,, with 177

2 178 CHAPTER 14. IDEAL BOSE GAS n = N = const), the sums over the wavevector k can be replaced by integrals as in the case of the Fermi gas. However, here we have to be careful when µ happens to approach the value 0. In order to see what kind of trouble we then might get into, let us calculate the ground state occupation. The expectation value of the occupation number is given by < ˆn r >= f + (ε r ) = 1 e β(εr µ) 1. For βµ << 1, the occupation of the lowest energy state ε(0) = 0 can be approximated as 1 < ˆn 0ms >= e βµ 1 = 1 1 βµ βµ, which means that < ˆn 0ms > can assume any macroscopic value. On the other hand, the density of states Ω(E), which has the same expression as for fermionic systems (eq. 13.8), Ω(E) E 0 as E 0. This is where we are going to encounter a problem: if we replace r by de Ω(E), we will get that the ground state has zero weight even though, as we have just shown, it can be macroscopically occupied. In the case of a fermionic system, we would not have this problem due to the Pauli principle: < ˆn r >: 0 < ˆn r > 1. In order to avoid the problem in the bosonic system, we treat the ground state separately. The grand canonical potential Ω(T,,z) (do not confuse it with the DOS Ω(E)) can be written then as βω(t,,z) = (2s+1) (2π) 34π + (2s+1)ln(1 z) }{{} term corresponding to the ground state ε(0) = 0 With the substitution β x = hk 2m and the definition of the thermal de Broglie wavelength 2πβ h 2 λ = m, expression (14.1) becomes βω(t,,z) = 2s+1 4 λ 3 π We use the Taylor series expansion of the ln, 0 ln(1 y) = 0 dk k 2 ln ( 1 ze βε(k)). (14.1) ( dxx 2 ln 1 ze x2) +(2s+1)ln(1 z). (14.2) n=1 y n n ( y < 1),

3 14.1. EQUATION OF STATE 179 for the integral: We define the functions and 0 ( dxx 2 ln 1 ze x2) π = 4 g 5/2 (z) = 4 π g 3/2 (z) = z d dz g 5/2(z) = 0 n=1 z n n 5/2. ( dxx 2 ln 1 ze x2) = n=1 z n n 3/2. n=1 z n n 5/2 With these definitions, the grand canonical potential (eq. (14.2) takes the form βω(t,,z) = 2s+1 λ 3 g 5/2 (z)+(2s+1)ln(1 z). (14.3) Note that except for the extra term on the right-hand side, it has the same form as the expression for the Fermi gas. From Ω = P, we get βp = 2s+1 g λ 3 5/2 (z) 2s+1 ln(1 z). (14.4) We express the fugacity z in terms of the density of particles n: n = < ˆN > ( ) = z z βp T, = 2s+1 g λ 3 3/2 (z)+ 2s+1 z 1 z (14.5) and then, by combining eq. (14.4) and (14.5), we obtain the thermal equation of state. The term n 0 = 2s+1 z 1 z in eq. (14.5) describes the contribution of the ground state to the particle density n as can be seen from with 1 < ˆn 0m s >= 1 1 z 1 1 = 1 m s = s, s+1,...,+s. z 1 z n 0 2s+1, n 0 can be macroscopically large, which corresponds to the Bose-Einstein condensation.

4 180 CHAPTER 14. IDEAL BOSE GAS The caloric equation of state can be obtained by calculating the internal energy U: ( ) ( ) U = β lnz(t,z,) = β βω(t,,z) By considering eq. (14.3), one obtains z, U = 3 2 k BT 2s+1 λ 3 g 5/2 (z). (14.6) This expression is the same as the one for the Fermi gas when f 5/2 (z) is substituted by g 5/2 (z). Combining eq. (14.6) and eq. (14.5), one can derive the caloric equation of state. Now, we combine (14.4) and eq. (14.6) to get z, U = 3 2 P k BT(2s+1)ln(1 z). Note that the expression for the Bose gas has an extra term 3 2 k BT(2s+1)ln(1 z), which was absent in the case of the Fermi gas as well as in the case of the ideal gas of particles Classical limit We first investigate the classical limit (non-degenerate Bose gas) corresponding to low particle densities and high temperatures. In this limit, z = e βµ << 1 so that 1 < ˆn r >= z 1 e βεr 1 << 1 ze βεr and the Bose-Einstein distribution function reduces to the Maxwell-Boltzmann one. All energy levels are only weakly occupied. The probability of double occupancy is practically zero. It is therefore to be expected that in this limit the differences between Bose-, Fermiand Boltzmann statistics are negligible. As z << 1, it is sufficient to retain only the first two terms of the series for g 5/2 (z) and g 3/2 (z): g 5/2 (z) z + z2 2 5/2, g 3/2 (z) z + z2 2 3/2.

5 14.2. CLASSICAL LIMIT 181 With that, the particle density takes the following form: n 2s+1 ( z 1+ z ) + 2s+1 λ 3 2 3/2 2s+1 λ 3 z ( 1+ z 2 3/2 ) In the zeroth approximation, we thus have that and therefore z 1 z + 2s+1 z(1 z). ( ) nλ 3 (2s+1)z (0) 1+ λ3 z (0) nλ 3 (2s+1) ( 1+ λ3 As in the case of the Fermi gas, here the classical limit corresponds to nλ 3 << 1, i.e., small particle densities and small thermal de Broglie wavelengths. The condition λ 3 << 1 allows us to neglect the correcting term coming from the explicit consideration of the ground state contribution so that we can write z (0) nλ3 2s+1, which is the same result as we had for fermions. The equation of state reduces then to the equation of state for classical particles: ). βp = 2s+1 nλ 3 λ 3 2s+1, P = < ˆN > k B T. In order to obtain the next order corrections, we make use of the equation n 2s+1 ( z 1+ z ) λ 3 2 3/2 where we neglect the term corresponding to the ground state contribution, which can be rewritten in terms of z (0) as ) nλ 3 2s+1 z(0) z (1+ (1) z(1) 2 3/2 and then as z (1) z (0) ( 1+ z(1) 2 3/2 ). (14.7)

6 182 CHAPTER 14. IDEAL BOSE GAS In the right-hand side of eq. (14.7), we approximate z (1) by z (0) : ) z (1) z(0) z (1 (0) z(0). 1+ z(0) 2 3/2 2 3/2 We substitute this expression in the pressure equation for the ideal Bose gas, βp 2s+1 λ 3 g 5/2 (z) 2s+1 λ 3 z (1), where the ground state contribution has been neglected. This gives us P =< ˆN > k B T [ 1 ] nλ (2s+1) The last term in this expression are the quantum corrections. Note that if we consider now, for comparison, the equation of state for a real gas (the van der Waals equation, for instance), we would observe that similar additive corrections appear with respect to the ideal case due to the interaction between particles. Here, however, the additive terms originate from the indistinguishability principle and not from the interaction among particles. The correcting term for the ideal Fermi gas was positive and therefore contributed as a repulsion among particles. For the Bose gas, the additive term is negative and therefore contributes as an attraction among particles. Quantitatively, the quantum corrections are much smaller than terms coming from the interaction among particles Bose-Einstein condensation We consider now the limit of high particle densities and low temperatures(quantum limit), where one finds important qualitative differences between bosons, fermions and classical particles. For bosons, we have the restriction < µ 0, which determines the range of value that z assumes: 0 < z < 1. The functions g α (z) = n=1 z n n α

7 14.3. BOSE-EINSTEIN CONDENSATION 183 are related to one another through the recursive formula: g α 1 (z) = z d dz g α(z). In the interval 0 z 1, they are positive and monotonically growing functions of z (see Fig. 14.1). Figure 14.1: g α family. For z = 1, g α coincide with the Riemann function ζ, defined as 1 ζ(n) = p = 1 dy yn 1 n (1 2 1 n )Γ(n) e y +1. Thus, p=1 ( ) 5 g 5/2 (1) = ζ = 1.342, 2 ( ) 3 g 3/2 (1) = ζ = and g 1/2 (z) diverges at z = 1. From the expression for the particle density for bosons n, n = 2s+1 g λ 3 3/2 (z)+ 2s+1 z z 1, we have that the particle density of the (2s+1)-degenerate ground state ε(k = 0) = 0, defined as n 0 = 2s+1 z z 1, can be written in the following form: n 0 = n 2s+1 λ 3 g 3/2 (z). Since, as can be observed in Fig. 14.1, g 3/2 (z) for 0 < z 1 varies in the interval [0, 2.612], there should be temperatures T and densities n where n > 2s+1 λ 3 g 3/2 (1). 0

8 184 CHAPTER 14. IDEAL BOSE GAS In this case, n 0 > 0, that is, a finite fraction of bosons occupies the ground state. When βµ 0, n 0 becomes macroscopically large. This phenomenon is called Bose-Einstein condensation. This macroscopic state would not be that spectacular if it occured only for temperatures k B T < ε 1 ε(k = 0) = ε 1, (14.8) where ε 1 is the first excited state. For macroscopic systems, this condition is fulfilled for temperatures T < K so that at T = 0 all particles are in the ground state. What is so spectacular about the Bose-Einstein condensation is that it sets in at much higher temperatures than those imposed by eq. (14.8). In fact, the phase transition to the condensed state occurs when nλ 3 = (2s+1)g 3/2 (1), whichdefinesthecritical valueforthedebrogliewavelengthλ c foragivenparticledensity n: λ 3 c = 2s+1 ( 2π h 2 ) 3/2 n g 3/2(1) = mk B T c and hence the critical temperature T c at which the phase transition occurs: k B T c = 2π h2 m ( ) 2/3 n. (2s+1)g 3/2 (1) For a given temperature T, we can find the critical density n c : n c (T) = 2s+1 ( ) 3/2 mkb T g λ 3 3/2 (1) = (2s+1) 2π h 2 g 3/2(1). Since the particle density is proportional to the inverse the average interparticle distance r to the third power, n 1 r 3, we can argue that the Bose-Einstein condensation occurs when the thermal de Broglie wavelength λ approaches r : λ r. Comparison of the critical temperature T c of the ideal Bose gas with the Fermi temperature T F of the ideal Fermi gas Consider s = 1/2 fermions with mass m f and s = 0 bosons with mass m b, both system with equal densities n f = n b = n. The T F /T c is then given as T F T c = 1 4π (3π2 g 3/2 (1)) 2/3m b m f 1.45 m b m f.

9 14.3. BOSE-EINSTEIN CONDENSATION 185 For m b m f 1, both temperatures are of the same order of magnitude. Let us consider now a gas of conduction electrons and a gas of 4 He atoms as representative fermionic and bosonic systems. In this case, m b m f , T f 10 4 K and therefore T c 3.13 K. This value of T c is much bigger that what one would expect for a normal occupation of the ground state, T K. In this example, we demonstrate that the Bose-Einstein condensation is a phase transition. Fugacity In order to understand the phenomenon, let us represent n, n = 2s+1 g λ 3 3/2 (z)+ 2s+1 z 1 z, graphically. For that, we plot the function y 1 (z) and the constant y 1 (z) = g 3/2 (z)+ λ3 z (1 z) y 2 = nλ3 2s+1 on the same graph. The intersection between these two curves provides z as a function of T and n. With this graphical representation, we can obtain z(t,n) at a given.

10 186 CHAPTER 14. IDEAL BOSE GAS The solution z b corresponds to the condensate region since there ( ) nλ 3 > g 3/2 (1). 2s+1 In the thermodynamic limit (N,, n = const) the term coming from the ground state contribution λ 3 z (1 z) has to remain finite. This implies that (1 z) has to remain finite, i.e., 1 z has to behave as 1. Therefore, for, we can approximate the fugacity as nλ 3 solution of z = 2s+1 = g nλ 3 3/2(z) for 2s+1 < g 3/2(1), nλ 3 1 for 2s+1 g 3/2(1). Then, since n 0 n 0 = n 2s+1 λ 3 g 3/2 (z), n 0 if nλ 3 2s+1 < g 3/2(1), ( ) 3/2 n 0 2s+1 1 n nλ g 3/2(1) = 1 λ3 c T 3 λ = 1 nλ 3 if 3 2s+1 g 3/2(1). For 0 < T < T c, we have a mixture of two phases (see Fig. 14.2): the condensate phase formed by the macroscopic fraction of N 0 bosons out of N occupying the lowest energy level: [ ( ) ] 3/2 T N 0 = N 1 and the gas phase formed by the rest of the particles N 1 which are in excited ( k 0) states: ( ) 3/2 T N 1 = N N 0 = N. T c T c T c

11 14.4. THERMODYNAMICS FOR THE IDEAL BOSE GAS 187 Figure 14.2: Occupation density of the ground state of the ideal Bose gas as a function of temperature. At T = 0, N 0 = N, N 1 = 0. The Bose-Einstein condensation takes place at T = T c Thermodynamics for the ideal Bose gas With the Bose-Einstein condensation and the concept of a mixed state of gas and condensate, we have a strong analogy with the gas-liquid phase transition that we discussed when studying properties of a real gas. As in that case, the abrupt change of n 0 at T c leads to discontinuities in the thermodynamic potentials of the ideal Bose gas, which have different analytical expressions above and below the critical point (T c, n c ). Thermal equation of state We consider the thermodymanic limit (N,, n = const). In the equation for pressure for the Bose gas given as the second term approaches zero: βp = 2s+1 g λ 3 5/2 (z) 2s+1 ln(1 z), 2s+1 ln(1 z) 0 for z < 1, i.e., n < n c. For the condensation region (n n c ), where z 1, the above limit is not trivial. Here we make use of the fact that as discussed previously, and also get 2s+1 (1 z) 1, ln(1 z) 0.

12 188 CHAPTER 14. IDEAL BOSE GAS Summarizing, we get the following equation for pressure: 2s+1 g λ 3 5/2 (z) for n < n c, βp = 2s+1 g λ 3 5/2 (1) for n > n c. In the condensation region, the pressure is independent of the volume and particle number; it only depends on temperature. This was also the case in the gas-liquid phase transition. Considering this analogy, the Bose-Einstein condensation can be described as a first-order phase transition. The Bose-Einstein condensation was predicted by Satyendra Bose and Albert Einstein in It took almost 70 years to have an experimental corroboration of this phenomenon with the ultracold gas systems. Previous experiments had been done with 4 He as well as with hydrogen.

### Quantum Grand Canonical Ensemble

Chapter 16 Quantum Grand Canonical Ensemble How do we proceed quantum mechanically? For fermions the wavefunction is antisymmetric. An N particle basis function can be constructed in terms of single-particle

### Physics 112 The Classical Ideal Gas

Physics 112 The Classical Ideal Gas Peter Young (Dated: February 6, 2012) We will obtain the equation of state and other properties, such as energy and entropy, of the classical ideal gas. We will start

### Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

### Statistical Mechanics Notes. Ryan D. Reece

Statistical Mechanics Notes Ryan D. Reece August 11, 2006 Contents 1 Thermodynamics 3 1.1 State Variables.......................... 3 1.2 Inexact Differentials....................... 5 1.3 Work and Heat..........................

### Phonon II Thermal Properties

Phonon II Thermal Properties Physics, UCF OUTLINES Phonon heat capacity Planck distribution Normal mode enumeration Density of states in one dimension Density of states in three dimension Debye Model for

### CHAPTER 4. Cluster expansions

CHAPTER 4 Cluster expansions The method of cluster expansions allows to write the grand-canonical thermodynamic potential as a convergent perturbation series, where the small parameter is related to the

### Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

### 84 Quantum Theory of Many-Particle Systems ics [Landau and Lifshitz (198)] then yields the thermodynamic potential so that one can rewrite the statist

Chapter 6 Bosons and fermions at finite temperature After reviewing some statistical mechanics in Sec. 6.1, the occupation number representation is employed to derive some standard results for noninteracting

### Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Thermal & Statistical Physics Study Questions for the Spring 018 Department Exam December 6, 017 1. a. Define the chemical potential. Show that two systems are in diffusive equilibrium if 1. You may start

### Physics 3700 Introduction to Quantum Statistical Thermodynamics Relevant sections in text: Quantum Statistics: Bosons and Fermions

Physics 3700 Introduction to Quantum Statistical Thermodynamics Relevant sections in text: 7.1 7.4 Quantum Statistics: Bosons and Fermions We now consider the important physical situation in which a physical

### + 1. which gives the expected number of Fermions in energy state ɛ. The expected number of Fermions in energy range ɛ to ɛ + dɛ is then dn = n s g s

Chapter 8 Fermi Systems 8.1 The Perfect Fermi Gas In this chapter, we study a gas of non-interacting, elementary Fermi particles. Since the particles are non-interacting, the potential energy is zero,

### Phys Midterm. March 17

Phys 7230 Midterm March 17 Consider a spin 1/2 particle fixed in space in the presence of magnetic field H he energy E of such a system can take one of the two values given by E s = µhs, where µ is the

### Grand-canonical ensembles

Grand-canonical ensembles As we know, we are at the point where we can deal with almost any classical problem (see below), but for quantum systems we still cannot deal with problems where the translational

### Workshop on Bose Einstein Condensation IMS - NUS Singapore

Workshop on Bose Einstein Condensation IMS - NUS Singapore 1/49 Bose-like condensation in half-bose half-fermi statistics and in Fuzzy Bose-Fermi Statistics Mirza Satriawan Research Group on Theoretical

### 1) K. Huang, Introduction to Statistical Physics, CRC Press, 2001.

Chapter 1 Introduction 1.1 Literature 1) K. Huang, Introduction to Statistical Physics, CRC Press, 2001. 2) E. M. Lifschitz and L. P. Pitajewski, Statistical Physics, London, Landau Lifschitz Band 5. 3)

### 8.333: Statistical Mechanics I Re: 2007 Final Exam. Review Problems

8.333: Statistical Mechanics I Re: 007 Final Exam Review Problems The enclosed exams (and solutions) from the previous years are intended to help you review the material. ******** Note that the first parts

### Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

### Elements of Statistical Mechanics

Dr. Y. Aparna, Associate Prof., Dept. of Physics, JNTU College of ngineering, JNTU - H, lements of Statistical Mechanics Question: Discuss about principles of Maxwell-Boltzmann Statistics? Answer: Maxwell

### UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland PHYSICS Ph.D. QUALIFYING EXAMINATION PART II January 20, 2017 9:00 a.m. 1:00 p.m. Do any four problems. Each problem is worth 25 points.

### Insigh,ul Example. E i = n i E, n i =0, 1, 2,..., 8. N(n 0,n 1,n 2,..., n 8 )= n 1!n 2!...n 8!

STATISTICS Often the number of particles in a system is prohibitively large to solve detailed state (from Schrodinger equation) or predict exact motion (using Newton s laws). Bulk properties (pressure,

### Quantum Field Theory

Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

### Set 3: Thermal Physics

Set 3: Thermal Physics Equilibrium Thermal physics describes the equilibrium distribution of particles for a medium at temperature T Expect that the typical energy of a particle by equipartition is E kt,

### September 6, 3 7:9 WSPC/Book Trim Size for 9in x 6in book96 7 Quantum Theory of Many-Particle Systems Eigenstates of Eq. (5.) are momentum eigentates.

September 6, 3 7:9 WSPC/Book Trim Size for 9in x 6in book96 Chapter 5 Noninteracting Fermi gas The consequences of the Pauli principle for an assembly of fermions that is localized in space has been discussed

### High order corrections to density and temperature of fermions and bosons from quantum fluctuations and the CoMD-α Model

High order corrections to density and temperature of fermions and bosons from quantum fluctuations and the CoMD-α Model Hua Zheng, 1,2 Gianluca Giuliani, 1 Matteo Barbarino, 1 and Aldo Bonasera 1,3 1 Cyclotron

### 2m + U( q i), (IV.26) i=1

I.D The Ideal Gas As discussed in chapter II, micro-states of a gas of N particles correspond to points { p i, q i }, in the 6N-dimensional phase space. Ignoring the potential energy of interactions, the

### Micro-canonical ensemble model of particles obeying Bose-Einstein and Fermi-Dirac statistics

Indian Journal o Pure & Applied Physics Vol. 4, October 004, pp. 749-757 Micro-canonical ensemble model o particles obeying Bose-Einstein and Fermi-Dirac statistics Y K Ayodo, K M Khanna & T W Sakwa Department

### IV. Classical Statistical Mechanics

IV. Classical Statistical Mechanics IV.A General Definitions Statistical Mechanics is a probabilistic approach to equilibrium macroscopic properties of large numbers of degrees of freedom. As discussed

### The free electron gas: Sommerfeld model

The free electron gas: Sommerfeld model Valence electrons: delocalized gas of free electrons (selectrons of alkalies) which is not perturbed by the ion cores (ionic radius of Na + equals 0.97 Å, internuclear

### UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B. Sc. M. Sci. Physics 2B28: Statistical Thermodynamics and Condensed Matter Physics

### INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH704 Solution

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH74 Solution. There are two possible point defects in the crystal structure, Schottky and

### Section 4 Statistical Thermodynamics of delocalised particles

Section 4 Statistical Thermodynamics of delocalised particles 4.1 Classical Ideal Gas 4.1.1 Indistinguishability Since the partition function is proportional to probabilities it follows that for composite

### Density and temperature of fermions and bosons from quantum fluctuations

Density and temperature of fermions and bosons from quantum fluctuations Hua Zheng and Aldo Bonasera 1 1 Laboratori Nazionali del Sud, INFN, via Santa Sofia, 6, 951 Catania, Italy In recent years, the

### Basic Concepts and Tools in Statistical Physics

Chapter 1 Basic Concepts and Tools in Statistical Physics 1.1 Introduction Statistical mechanics provides general methods to study properties of systems composed of a large number of particles. It establishes

### The Gross-Pitaevskii Equation A Non-Linear Schrödinger Equation

The Gross-Pitaevskii Equation A Non-Linear Schrödinger Equation Alan Aversa December 29, 2011 Abstract Summary: The Gross-Pitaevskii equation, also called the non-linear Schrödinger equation, describes

### Theorie der Kondensierten Materie I WS 16/ Chemical potential in the BCS state (40 Punkte)

Karlsruhe Institute for Technology Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 6/7 Prof Dr A Shnirman Blatt PD Dr B Narozhny, T Ludwig Lösungsvorschlag Chemical

### 8.044 Lecture Notes Chapter 9: Quantum Ideal Gases

8.044 Lecture Notes Chapter 9: Quantum Ideal Gases Lecturer: McGreevy 9. Range of validity of classical ideal gas...................... 9-2 9.2 Quantum systems with many indistinguishable particles............

### Intermission: Let s review the essentials of the Helium Atom

PHYS3022 Applied Quantum Mechanics Problem Set 4 Due Date: 6 March 2018 (Tuesday) T+2 = 8 March 2018 All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the

### Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL BASIS

### From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

### Lecture 8. The Second Law of Thermodynamics; Energy Exchange

Lecture 8 The Second Law of Thermodynamics; Energy Exchange The second law of thermodynamics Statistics of energy exchange General definition of temperature Why heat flows from hot to cold Reading for

### Phase Transitions. µ a (P c (T ), T ) µ b (P c (T ), T ), (3) µ a (P, T c (P )) µ b (P, T c (P )). (4)

Phase Transitions A homogeneous equilibrium state of matter is the most natural one, given the fact that the interparticle interactions are translationally invariant. Nevertheless there is no contradiction

### Bachelor Thesis. Bose-Einstein condensates in magnetic microtraps with attractive atom-atom interactions. Florian Atteneder

Bachelor Thesis Bose-Einstein condensates in magnetic microtraps with attractive atom-atom interactions Florian Atteneder 33379 Supervisor: Ao.Univ.-Prof. Mag. Dr. Ulrich Hohenester University of Graz

### List of Comprehensive Exams Topics

List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

### 2. Thermodynamics. Introduction. Understanding Molecular Simulation

2. Thermodynamics Introduction Molecular Simulations Molecular dynamics: solve equations of motion r 1 r 2 r n Monte Carlo: importance sampling r 1 r 2 r n How do we know our simulation is correct? Molecular

### Chapter 7: Quantum Statistics

Part II: Applications SDSMT, Physics 2014 Fall 1 Introduction Photons, E.M. Radiation 2 Blackbody Radiation The Ultraviolet Catastrophe 3 Thermal Quantities of Photon System Total Energy Entropy 4 Radiation

### Sommerfeld-Drude model. Ground state of ideal electron gas

Sommerfeld-Drude model Recap of Drude model: 1. Treated electrons as free particles moving in a constant potential background. 2. Treated electrons as identical and distinguishable. 3. Applied classical

### Lecture 32: The Periodic Table

Lecture 32: The Periodic Table (source: What If by Randall Munroe) PHYS 2130: Modern Physics Prof. Ethan Neil (ethan.neil@colorado.edu) Announcements Homework #9 assigned, due next Wed. at 5:00 PM as usual.

### Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 5 Hartree-Fock Theory WS2010/11: Introduction to Nuclear and Particle Physics Particle-number representation: General formalism The simplest starting point for a many-body state is a system of

### 1 Bose condensation and Phase Rigidity

1 Bose condensation and Phase Rigidity 1.1 Overview and reference literature In this part of the course will explore various ways of describing the phenomenon of Bose-Einstein Condensation (BEC), and also

### Section 10: Many Particle Quantum Mechanics Solutions

Physics 143a: Quantum Mechanics I Section 10: Many Particle Quantum Mechanics Solutions Spring 015, Harvard Here is a summary of the most important points from this week (with a few of my own tidbits),

### Fermionic Algebra and Fock Space

Fermionic Algebra and Fock Space Earlier in class we saw how harmonic-oscillator-like bosonic commutation relations [â α,â β ] = 0, [ ] â α,â β = 0, [ ] â α,â β = δ α,β (1) give rise to the bosonic Fock

### HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8. From Last Time

HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8 From Last Time Philosophical effects in quantum mechanics Interpretation of the wave function: Calculation using the basic premises of quantum

### The goal of equilibrium statistical mechanics is to calculate the diagonal elements of ˆρ eq so we can evaluate average observables < A >= Tr{Â ˆρ eq

Chapter. The microcanonical ensemble The goal of equilibrium statistical mechanics is to calculate the diagonal elements of ˆρ eq so we can evaluate average observables < A >= Tr{Â ˆρ eq } = A that give

### Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function:

Essay outline and Ref to main article due next Wed. HW 9: M Chap 5: Exercise 4 M Chap 7: Question A M Chap 8: Question A From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation

### Before we go to the topic of hole, we discuss this important topic. The effective mass m is defined as. 2 dk 2

Notes for Lecture 7 Holes, Electrons In the previous lecture, we learned how electrons move in response to an electric field to generate current. In this lecture, we will see why the hole is a natural

### Unitary Fermi gas in the ɛ expansion

Unitary Fermi gas in the ɛ expansion Yusuke Nishida Department of Physics, University of Tokyo December 006 PhD Thesis Abstract We construct systematic expansions around four and two spatial dimensions

### Electrons in metals PHYS208. revised Go to Topics Autumn 2010

Go to Topics Autumn 010 Electrons in metals revised 0.1.010 PHYS08 Topics 0.1.010 Classical Models The Drude Theory of metals Conductivity - static electric field Thermal conductivity Fourier Law Wiedemann-Franz

### Calculating Band Structure

Calculating Band Structure Nearly free electron Assume plane wave solution for electrons Weak potential V(x) Brillouin zone edge Tight binding method Electrons in local atomic states (bound states) Interatomic

### Realization of Bose-Einstein Condensation in dilute gases

Realization of Bose-Einstein Condensation in dilute gases Guang Bian May 3, 8 Abstract: This essay describes theoretical aspects of Bose-Einstein Condensation and the first experimental realization of

### CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules Lecture 3 The Born-Oppenheimer approximation C.-K. Skylaris Learning outcomes Separate molecular Hamiltonians to electronic and nuclear parts according to the Born-Oppenheimer

### The following experimental observations (between 1895 and 1911) needed new quantum ideas:

The following experimental observations (between 1895 and 1911) needed new quantum ideas: 1. Spectrum of Black Body Radiation: Thermal Radiation 2. The photo electric effect: Emission of electrons from

### Single Particle State AB AB

LECTURE 3 Maxwell Boltzmann, Femi, and Bose Statistics Suppose we have a gas of N identical point paticles in a box of volume V. When we say gas, we mean that the paticles ae not inteacting with one anothe.

### Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)

Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA) http://hdl.handle.net/11245/2.99140 File ID Filename Version uvapub:99140 319071.pdf unknown SOURCE (OR PART

### 3. Introductory Nuclear Physics 1; The Liquid Drop Model

3. Introductory Nuclear Physics 1; The Liquid Drop Model Each nucleus is a bound collection of N neutrons and Z protons. The mass number is A = N + Z, the atomic number is Z and the nucleus is written

### Elementary Lectures in Statistical Mechanics

George DJ. Phillies Elementary Lectures in Statistical Mechanics With 51 Illustrations Springer Contents Preface References v vii I Fundamentals: Separable Classical Systems 1 Lecture 1. Introduction 3

### Physics 607 Final Exam

Physics 607 Final Exam Please show all significant steps clearly in all problems. 1. Let E,S,V,T, and P be the internal energy, entropy, volume, temperature, and pressure of a system in thermodynamic equilibrium

### Fermi Condensates ULTRACOLD QUANTUM GASES

Fermi Condensates Markus Greiner, Cindy A. Regal, and Deborah S. Jin JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado,

### Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest In the last lecture, we have discussed how one can describe the response of a well-equilibriated macroscopic system to

### Kinetic theory. Collective behaviour of large systems Statistical basis for the ideal gas equation Deviations from ideality

Kinetic theory Collective behaviour of large systems Statistical basis for the ideal gas equation Deviations from ideality Learning objectives Describe physical basis for the kinetic theory of gases Describe

### BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

### to satisfy the large number approximations, W W sys can be small.

Chapter 12. The canonical ensemble To discuss systems at constant T, we need to embed them with a diathermal wall in a heat bath. Note that only the system and bath need to be large for W tot and W bath

### Definite Integral and the Gibbs Paradox

Acta Polytechnica Hungarica ol. 8, No. 4, 0 Definite Integral and the Gibbs Paradox TianZhi Shi College of Physics, Electronics and Electrical Engineering, HuaiYin Normal University, HuaiAn, JiangSu, China,

### Solution to the exam in TFY4230 STATISTICAL PHYSICS Friday december 19, 2014

NTNU Page 1 of 10 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk This solution consists of 10 pages. Problem 1. Cold Fermi gases Solution to the exam in TFY4230 STATISTICAL PHYSICS

### Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

### Comparing and Improving Quark Models for the Triply Bottom Baryon Spectrum

Comparing and Improving Quark Models for the Triply Bottom Baryon Spectrum A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the

### Reference for most of this talk:

Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

### Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

### Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

### Introduction to Computational Chemistry

Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

### PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring 2009 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 Spring 2009 POP QUIZ

### Name Class Date. Chapter: Arrangement of Electrons in Atoms

Assessment Chapter Test A Chapter: Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the

### 5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

### are divided into sets such that the states belonging

Gibbs' Canonical in Ensemble Statistical By Takuzo Distribution Mechanics. Law SAKAI (Read Feb. 17,1940) 1. librium The distribution state is obtained law for an assembly various methods. of molecules

### Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 1. The Properties of Gases 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The Perfect Gas 1.1 The states of gases 1.2 The gas laws Real Gases 1.3 Molecular interactions 1.4 The van

### CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait

CHEMISTRY 2000 Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system

### Van der Waals equation: event-by-event fluctuations, quantum statistics and nuclear matter

Van der Waals equation: event-by-event fluctuations, quantum statistics and nuclear matter Volodymyr Vovchenko In collaboration with Dmitry Anchishkin, Mark Gorenstein, and Roman Poberezhnyuk based on:

### Interacting Fermi Gases

Interacting Fermi Gases Mike Hermele (Dated: February 11, 010) Notes on Interacting Fermi Gas for Physics 7450, Spring 010 I. FERMI GAS WITH DELTA-FUNCTION INTERACTION Since it is easier to illustrate

### 8 Wavefunctions - Schrödinger s Equation

8 Wavefunctions - Schrödinger s Equation So far we have considered only free particles - i.e. particles whose energy consists entirely of its kinetic energy. In general, however, a particle moves under

### van Quantum tot Molecuul

10 HC10: Molecular and vibrational spectroscopy van Quantum tot Molecuul Dr Juan Rojo VU Amsterdam and Nikhef Theory Group http://www.juanrojo.com/ j.rojo@vu.nl Molecular and Vibrational Spectroscopy Based

### arxiv:nucl-th/ v1 24 Aug 2005

Test of modified BCS model at finite temperature V. Yu. Ponomarev, and A. I. Vdovin Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 498 Dubna, Russia Institut für Kernphysik,

### ChE 503 A. Z. Panagiotopoulos 1

ChE 503 A. Z. Panagiotopoulos 1 STATISTICAL MECHANICAL ENSEMLES 1 MICROSCOPIC AND MACROSCOPIC ARIALES The central question in Statistical Mechanics can be phrased as follows: If particles (atoms, molecules,

### Lecture 12: Phonon heat capacity

Lecture 12: Phonon heat capacity Review o Phonon dispersion relations o Quantum nature of waves in solids Phonon heat capacity o Normal mode enumeration o Density of states o Debye model Review By considering

### Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

* Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

### Condensed matter physics FKA091

Condensed matter physics FKA091 Ermin Malic Department of Physics Chalmers University of Technology Henrik Johannesson Department of Physics University of Gothenburg Teaching assistants: Roland Jago &

### arxiv:quant-ph/ v1 7 Dec 1996

Trapped Fermi gases D.A. Butts, D.S. Rokhsar, Department of Physics, University of California, Berkeley, CA 94720-7300 Volen Center for Complex Systems, Brandeis University, Waltham, MA 02254 (December

### Physics 221B Spring 2018 Notes 30 The Thomas-Fermi Model

Copyright c 217 by Robert G. Littlejohn Physics 221B Spring 218 Notes 3 The Thomas-Fermi Model 1. Introduction The Thomas-Fermi model is a relatively crude model of multi-electron atoms that is useful

### Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model

Quantum Mechanics and Atomic Physics Lecture 20: Real Hydrogen Atom /Identical particles http://www.physics.rutgers.edu/ugrad/361 physics edu/ugrad/361 Prof. Sean Oh Last time Hydrogen atom: electron in

### Understand the basic principles of spectroscopy using selection rules and the energy levels. Derive Hund s Rule from the symmetrization postulate.

CHEM 5314: Advanced Physical Chemistry Overall Goals: Use quantum mechanics to understand that molecules have quantized translational, rotational, vibrational, and electronic energy levels. In a large