Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Size: px
Start display at page:

Download "Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017"

Transcription

1 Thermal & Statistical Physics Study Questions for the Spring 018 Department Exam December 6, a. Define the chemical potential. Show that two systems are in diffusive equilibrium if 1. You may start with F = F1 + F (free energy) and use the fact that 1 should minimize F. b. Now consider a 1-d gas of length L and number of distinguishable and non-interacting particles N. Assume that temperature T is high enough that we are in the classical regime. Find the chemical potential in terms of T and other parameters of the problem. c. Now find the free energy F and the specific heat at constant volume CV.. Consider a three-dimensional Fermi-Dirac gas of particles within some volume V. a. Write down the distribution function for a Fermi-Dirac gas (ave. # of particles in a state). Sketch it at T = 0, labeling the axes and indicating the Fermi energy. b. Write down an expression for the total number of spin 1/ particles, N, and then evaluate this expression at T=0 to find the zero-temperature Fermi energy for an extreme relativistic gas of electrons with energy - momentum relation E = pc. c. Find the total energy of this system at T = 0 in terms of the Fermi energy and the total number of particles.

2 3. The Diesel engine cycle consists of (see figure) processes: Suppose the cycle is applied to n moles of an ideal diatomic gas. In terms of the given pressures and volumes and the gas constant R, give expressions for a. the heat QH given to the gas during combustion. b. the heat QC removed from the gas during the cooling process. c. the entropy change of the gas in process BC. d. the entropy change of the gas in process CD. AB: Adiabatic compression from volume V0 to volume V1, where pressure = p1. The compression ratio rc = V0/V1 is high enough that it causes ignition of the air-fuel mixture without needing a spark. BC: Expansion at constant pressure p1 from volume V1 to V < V0, during the burning of the fuel. CD: Adiabatic expansion from V to V0, with expansion ratio re = V0/V. DA: Constant volume (V0) cooling back to the original temperature at point A. Treat the gas as an ideal gas, and suppose that the constant pressure (Cp) and constant volume (Cv) heat capacities are known. a. Calculate the efficiency of the cycle, defined as the ratio of the work output to the heat adsorbed per cycle, W/QH. b. Express as a function of C p / C v, re, and r c. c. Calculate the entropy changes in each process of the cycle, and sketch the cycle in a S-T diagram. 4. A system consists of three particles, each of which has three non-degenerate energy states--0, and 3. Determine the canonical partition function if the particles are a. classical particles (note: classical particles are distinguishable) b. fermions c. bosons

3 5. Consider a system of N non-degenerate distinguishable particles each with a magnetic moment which may be antiparallel, perpendicular, or parallel to an applied magnetic field. The corresponding energy W under magnetic field B at temperature T=To. B is µb, 0, and -µb, respectively. The system is in equilibrium a. Calculate the average energy E and average entropy S of the system. b. Calculate the average number of particles in each level. c. Calculate the average energy E and the entropy S of the system right after turning over the magnetic field ( B to B ). What is the temperature T of the system at this moment? 6. Consider two single-particle states and two particles. Find the entropy of this system when the following statistics apply: a. Maxwell-Boltzmann (classical) b. Fermi-Dirac c. Bose-Einstein d. Derive an approximate condition relating temperature and density to determine when or when not quantum statistics must be used. 7. Consider a 1-dimensional ideal electron gas, length L( V) and temperature T. a. Show that the energy for 1 electron may be written 1 / m n n 1,,3,... L b. Find the partition function for N electrons and hence show that PV = NRT. 8. In a mono-atomic crystalline solid each atom can occupy either a regular lattice site or an interstitial site. The energy of an atom at an interstitial site exceeds the energy of an atom at a lattice site by ε. Assume that the number of atoms, lattice sites, and interstitial sites are all equal in number. a. Calculate the entropy of the crystal in the state where exactly n of the N atoms are at interstitial sites. b. What is the temperature of the crystal in this state, if the crystal is at thermal equilibrium? c. If ε = 0.5 ev and the temperature of the crystal is 73 K, what is the fraction of atoms at interstitial sites? Hint: You have two choices to make in this problem which atoms to put in interstitial sites, and which interstitial sites to put them in.

4 9. a. Write down the Boltzmann equation for a gas. Explain the meaning of each of the quantities appearing in it. Make sure you write the right-hand-side (collision integral) in its general form as an integration over distribution functions. b. What assumptions have gone into this equation? Quantify them if you can. When would you expect these assumptions to be valid? Indicate where these assumptions are used in the derivation of the Boltzmann equation. n(x) / s. Show that c. Consider a dilute gas in a steady state with a concentration gradient within the relaxation time and to first order, the particle flux may be written n(x) kt Jx nvx D ; D x m where V x is the average value of vx. Assume that locally the particles follow a Maxwell- Boltzmann distribution m f o(v,x) n(x) exp 3/ mv / kt. kt 10. a. Write down the partition function for a spin (s = ± ½) in a magnetic field. Use this to find an expression for the magnetization of N spins in a magnetic field B at temperature T. The magnetization of an individual spin is ± m. b. Show that for high enough temperatures the susceptibility dm/db is Nm /T. 11. A system of N distinguishable non-interacting particles has one-particle energy levels of En where the degeneracy of the nth level is equal to n, and n=1,, 3,... a. Show that the partition function of the system is k T. where 1 B e Z e 1 b. Calculate the entropy of the system of particles. c. Determine the behavior of the entropy at high temperature. d. Determine the behavior of the specific heat at high temperatures. N n,

5 1. Consider a particle in a 1-dimensional box of side L with available energy levels (in the presence of a magnetic field B along Z) n n m B; / L m n is an integer greater than zero and m m k. z ˆ a. What is the partition function for this particle? b. What is the partition function for N classical, identical, noninteracting particles in the same box in the presence of a magnetic field. Hence find an expression for the internal energy U, and Helmholtz free energy F. c. What is the equilibrium pressure and magnetization of this gas? 13. Consider an extreme relativistic classical gas (ignore spin) with single particle energy ε = p c + m c 4 pc where p is momentum and c is the velocity of light. a. If this gas is confined to 1-dimension (length L) show that = nhc/l (n = 1,, 3,...) and then find the partition function Z1 for a single particle. b. Now find F and show that PV = NkT 14. Consider an ideal gas of diatomic molecules. The rotational motion is quantized according to j j ( j1) o, j = 0, 1,,... The multiplicity of each rotational level is g j j 1. a. Find the rotational part of the partition function Z for one molecule. b. Convert the sum (for Z) to an integral and evaluate the integral for kt o. From this find an expression for the specific heat capacity at constant volume at low temperatures. 15. A system has the following equations of state: 3 u pv p A v T where A is a constant, u=u/n, v=v/n, and N is the number of particles. a. Show that the entropy of this system can be written as 1/ 4 7 A S(U, V, N) U V N 3 3 b. Calculate the Helmholtz free energy, F(T,V,N). 4 3/ 4 1/ 1/ 4

6 16. a. From the condition that two coexisting phases of a given chemical substance must have the same chemical potential, 1, derive the Claussius-Clayperon equation dp S S 1 dt V V 1 b. Drawn below is the phase diagram for He 4. Carefully explain why the slope of the liquid-solid phase boundary is zero at T = In a temperature range near absolute temperature T, the tension force F of a stretched plastic rod is related to its length L by the expression F at (L L o) where a and Lo are positive constants, Lo being the unstretched length of the rod. When L = Lo, the heat capacity CL of the rod (measured at constant length) is given by the relation CL = bt, where b is a constant. a. Write down the fundamental thermodynamic relation for this system, expressing ds in terms of de and dl. S/ L. b. The entropy S(T,L) of the rod is a function of T and L. Compute T c. Knowing S(To,Lo), find S(T,L) at any other temperature T and length L. (It is most convenient to calculate first the change of entropy with temperature at the length Lo where the heat capacity is known.) d. If the rod is thermally insulated but stretched a small distance L from equilibrium, find the change in T. e. Calculate the heat capacity CL (L,T) of the rod when its length is L instead of Lo. 18. A lead bullet with mass m=10 grams, leaves a gun with speed v=500m/s and a temperature of 150 o C. It is shot into a large body of water at 5 o C. The specific heat of lead is 18 J/kg K, and for water it is 4190 J/kg K. a. Describe briefly what time-dependent temperature changes might occur in the bullet and in the water near it. b. Estimate the energy transferred to the water. c. Estimate the total entropy change after the bullet has cooled to the water temperature.

7 19. Consider a paramagnetic substance with the equation of state M = AH/(T-T 0 ). Here M is the magnetization, H is the applied magnetic field, A and T 0 are constants, and T is the temperature. The equation of state is valid only for T>T 0. Show that C M, the heat capacity at constant magnetization, is independent of M. 0. A system contains N sites. At a given site there is only one accessible orbital state, but this orbital can be occupied by 0, 1 or electrons of (opposite spin). The site energy is if occupied by two electrons, and zero otherwise. In addition, there is an externally applied magnetic field H that acts on the electron spin magnetic moment m. a. Find a formula for the Gibbs sum (Grand Partition function) on one site, as a function of the inverse temperature 1/ kot, chemical potential µ, and the above given quantities. b. What is the expected number of electrons per site <N>? c. What is the probability that a site is unoccupied? d. If the average number of electrons per site is found to be <N>=1, what is the chemical potential? 1. A classical monatomic ideal gas of N particles (each of mass m) is confined to a cylinder of radius r and infinite height. A gravitation field points along the axis of the cylinder downwards. a. Determine the Helmholtz energy A. b. Find the internal energy U and the specific heat Cv. c. Why iscv 3/ Nk?. Consider diatomic molecules adsorbed on a flat surface at temperature T. The molecules are free to move on the surface and to rotate within the plane of the surface this is a non-interacting D gas with rotational motion about one axis. The rotational state of the molecules is given by a single / I m, quantum number m (m=0, ±1, ±, ±3 ) and the rotational energy is given by m where I is the moment of inertia of the molecule. a. Find an expression for the rotational partition function of a single molecule. You need not evaluate the infinite series. b. Find the ratio of the probabilities of finding a molecule in states m=3 and m=.. c. Find the probability that m=1 given that / I d. Find the rotational contribution to the internal energy of the gas (N molecules) in the high temperature limit, where kt / I. 3. Similar to the van der Waals equation of state is the Dieterici equation of state. p(v b) = RTe a/rtv Find the critical constants pc, Vc and Tc in this model of a weakly interacting gas. This equation of state was proposed to account for the interaction of gas atoms with walls.

8 4. Consider 3-d lattice of N atoms arranged in a box of side L. a. Briefly explain why there are only 3N independent phonon modes and show that max (Debye frequency) is given by 1/ 3 c 6N m. L b. Show that at high temperatures the internal energy U = 3NkBT and that at low temperatures it is proportional to T 4. You can use the Bose-Einstein distribution to determine the occupation number of the states. 5. For a photon gas in a cavity, a. Show that p = ( U ) = V j n j ħ ( dω j ), where n j is the number of photons in mode j. S dv b. Also show that ( dω j dv ) = ω j 3V This leads us to the equation of state for the photon gas. c. Show that p = U 3V This pressure is called radiation pressure. d. Find an expression for the radiation pressure in terms of the temperature, and calculate its value at the center of the sun, where the temperature is ~10 7 K.

9 6. a. Compare the 4 level systems below. More than one particle may occupy a level. Which system has highest temperature lowest temperature lowest specific heat highest entropy b. Consider the system below. Explain why it can be thought of as having a negative temperature. (Hint: Consider the Boltzmann factor e -E/kT ). c. If this system (of part (b)) is brought into contact with a large reservoir at temperature TR (positive) draw a graph indicating how its temperature will change as a function of time as it comes to equilibrium with the reservoir. (Take the initial temperature of the system to be TS a negative number). d. Explain why no problems with the third law are encountered in part (c). 7. A sample of helium gas inside a cylinder terminated with a piston doubles its volume from Vi = 1m 3 to Vf = m 3. During this process the pressure and volume are related by PV 6/5 = A = constant. Assume that the product PV always equals U 3, where U is the internal energy. a. What is the change in energy of the gas? b. What is the change in entropy of the gas? c. How much heat was added to or removed from the gas?

10 8. A 1.00 kg block of ice at -0.0 o C is left to melt in the ocean, which is at o C. The specific heat of ice is 0 J/kg K, of water is 4186 J/kg K, and the heat of fusion of water is 333 kj/kg. a. Calculate the entropy change of the ocean. b. Calculate the total entropy change of (ocean plus block of ice). 9. Consider a volume of gas at pressure P and temperature T. a. Write down the multiplicity of states in this volume as a function of entropy S. b. Let So be the equilibrium entropy and Eo be the equilibrium energy. Expand the entropy as a function of energy S(E) about So to determine the multiplicity of states as a function of energy. c. Find an expression for the mean square fluctuation in energy in terms of the heat capacity of the gas. 30. Consider a system made out of one single classical oscillator in contact with a heat reservoir at a n temperature T. The potential energy of this one-dimensional oscillator is V(x) 0 x / a where 0 and a are constants. What is the thermal energy of the oscillator? (Note: Don't get scared by the integral that you will face; only powers of kt in the partition function would contribute to the thermal energy.) 31. Equipartition. A classical harmonic oscillator p Kq H m is in thermal contact with a heat bath at temperature T. Calculate the partition function for the oscillator in the canonical ensemble and show explicitly that E k T, and B B E E k T. 3. For a gas of molecules with diameter d, number density n and at a temperature T, find a. the mean free path, b. their average speed, and c. the pressure of the gas using kinetic arguments.

11 33. A sample of ideal gas is taken through the cyclic process abca shown in the figure. At point a, T = 300 K. a. What are the temperatures of the gas at points b and c? b. Complete the table by inserting the correct numerical value in each indicated cell. Note that Q is positive when heat is absorbed by the gas and W is positive when work is done by the gas. E is the change in internal energy of the gas. Q W E a b b c c a

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

Thermodynamics and Statistical Physics. Preliminary Ph.D. Qualifying Exam. Summer 2009

Thermodynamics and Statistical Physics. Preliminary Ph.D. Qualifying Exam. Summer 2009 Thermodynamics and Statistical Physics Preliminary Ph.D. Qualifying Exam Summer 2009 (Choose 4 of the following 6 problems) -----------------------------------------------------------------------------------------------------------

More information

Table of Contents [ttc]

Table of Contents [ttc] Table of Contents [ttc] 1. Equilibrium Thermodynamics I: Introduction Thermodynamics overview. [tln2] Preliminary list of state variables. [tln1] Physical constants. [tsl47] Equations of state. [tln78]

More information

Part II Statistical Physics

Part II Statistical Physics Part II Statistical Physics Theorems Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 67 Final Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all

More information

Final Exam for Physics 176. Professor Greenside Wednesday, April 29, 2009

Final Exam for Physics 176. Professor Greenside Wednesday, April 29, 2009 Print your name clearly: Signature: I agree to neither give nor receive aid during this exam Final Exam for Physics 76 Professor Greenside Wednesday, April 29, 2009 This exam is closed book and will last

More information

Physics 4230 Final Examination 10 May 2007

Physics 4230 Final Examination 10 May 2007 Physics 43 Final Examination May 7 In each problem, be sure to give the reasoning for your answer and define any variables you create. If you use a general formula, state that formula clearly before manipulating

More information

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m.

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m. College of Science and Engineering School of Physics H T O F E E U D N I I N V E B R U S I R T Y H G Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat Thursday 24th April, 2008

More information

Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Physics 404: Final Exam Name (print): I pledge on my honor that I have not given or received any unauthorized assistance on this examination. Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination." May 20, 2008 Sign Honor Pledge: Don't get bogged down on

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Newton's laws in principle tell us how anything works But in a system with many particles, the actual computations can become complicated. We will therefore be happy to get some 'average'

More information

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physics 607 Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all your

More information

Data Provided: A formula sheet and table of physical constants are attached to this paper.

Data Provided: A formula sheet and table of physical constants are attached to this paper. Data Provided: A formula sheet and table of physical constants are attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Spring Semester (2016-2017) From Thermodynamics to Atomic and Nuclear Physics

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS

Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS Imperial College London BSc/MSci EXAMINATION May 2008 This paper is also taken for the relevant Examination for the Associateship THERMODYNAMICS & STATISTICAL PHYSICS For Second-Year Physics Students Wednesday,

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

Thermodynamics & Statistical Mechanics

Thermodynamics & Statistical Mechanics hysics GRE: hermodynamics & Statistical Mechanics G. J. Loges University of Rochester Dept. of hysics & Astronomy xkcd.com/66/ c Gregory Loges, 206 Contents Ensembles 2 Laws of hermodynamics 3 hermodynamic

More information

Preliminary Examination - Day 2 August 16, 2013

Preliminary Examination - Day 2 August 16, 2013 UNL - Department of Physics and Astronomy Preliminary Examination - Day August 16, 13 This test covers the topics of Quantum Mechanics (Topic 1) and Thermodynamics and Statistical Mechanics (Topic ). Each

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work, with partial credit where it is deserved. Please give clear, well-organized solutions. 1. Consider the coexistence curve separating two different

More information

STATISTICAL MECHANICS & THERMODYNAMICS

STATISTICAL MECHANICS & THERMODYNAMICS UVA PHYSICS DEPARTMENT PHD QUALIFYING EXAM PROBLEM FILE STATISTICAL MECHANICS & THERMODYNAMICS UPDATED: OCTOBER 8 1. (a) For a gas of free electrons in d dimensions, compute the isothermal compressibility,

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the following

More information

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H Solutions exam 2 roblem 1 a Which of those quantities defines a thermodynamic potential Why? 2 points i T, p, N Gibbs free energy G ii T, p, µ no thermodynamic potential, since T, p, µ are not independent

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Statistical Thermodynamics COURSE CODE : PHAS2228 UNIT VALUE : 0.50 DATE

More information

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby Lecture 1: Probabilities Lecture 2: Microstates for system of N harmonic oscillators Lecture 3: More Thermodynamics,

More information

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3 The following two problems refer to this situation: #1 A cylindrical chamber containing an ideal diatomic gas is sealed by a movable piston with cross-sectional area A = 0.0015 m 2. The volume of the chamber

More information

Answer TWO of the three questions. Please indicate on the first page which questions you have answered.

Answer TWO of the three questions. Please indicate on the first page which questions you have answered. STATISTICAL MECHANICS June 17, 2010 Answer TWO of the three questions. Please indicate on the first page which questions you have answered. Some information: Boltzmann s constant, kb = 1.38 X 10-23 J/K

More information

Preliminary Examination - Day 2 August 15, 2014

Preliminary Examination - Day 2 August 15, 2014 UNL - Department of Physics and Astronomy Preliminary Examination - Day 2 August 15, 2014 This test covers the topics of Thermodynamics and Statistical Mechanics (Topic 1) and Mechanics (Topic 2). Each

More information

International Physics Course Entrance Examination Questions

International Physics Course Entrance Examination Questions International Physics Course Entrance Examination Questions (May 2010) Please answer the four questions from Problem 1 to Problem 4. You can use as many answer sheets you need. Your name, question numbers

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions 1 PHYS3113, 3d year Statistical Mechanics Tutorial problems Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions Problem 1 The macrostate probability in an ensemble of N spins 1/2 is

More information

Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck!

Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck! 1 Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck! For all problems, show your reasoning clearly. In general, there will be little or no

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: Ripplons Problem Set #11 Due in hand-in box by 4:00 PM, Friday, May 10 (k) We have seen

More information

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Bahram M. Askerov Sophia R. Figarova Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases With im Figures Springer Contents 1 Basic Concepts of Thermodynamics and Statistical Physics...

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B. Sc. M. Sci. Physics 2B28: Statistical Thermodynamics and Condensed Matter Physics

More information

Phys Midterm. March 17

Phys Midterm. March 17 Phys 7230 Midterm March 17 Consider a spin 1/2 particle fixed in space in the presence of magnetic field H he energy E of such a system can take one of the two values given by E s = µhs, where µ is the

More information

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2) 1. This question is about thermodynamic processes. (a) Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas.......... An ideal gas is held in a container by a moveable

More information

CHAPTER 9 Statistical Physics

CHAPTER 9 Statistical Physics CHAPTER 9 Statistical Physics 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Historical Overview Maxwell Velocity Distribution Equipartition Theorem Maxwell Speed Distribution Classical and Quantum Statistics Fermi-Dirac

More information

Phonon II Thermal Properties

Phonon II Thermal Properties Phonon II Thermal Properties Physics, UCF OUTLINES Phonon heat capacity Planck distribution Normal mode enumeration Density of states in one dimension Density of states in three dimension Debye Model for

More information

Physics PhD Qualifying Examination Part I Wednesday, January 21, 2015

Physics PhD Qualifying Examination Part I Wednesday, January 21, 2015 Physics PhD Qualifying Examination Part I Wednesday, January 21, 2015 Name: (please print) Identification Number: STUDENT: Designate the problem numbers that you are handing in for grading in the appropriate

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Preliminary Examination - Day 2 Friday, May 11, 2018

Preliminary Examination - Day 2 Friday, May 11, 2018 UNL - Department of Physics and Astronomy Preliminary Examination - Day Friday, May, 8 This test covers the topics of Thermodynamics and Statistical Mechanics (Topic ) and Quantum Mechanics (Topic ). Each

More information

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley Fundamentals of and Statistical thermal physics F. REIF Professor of Physics Universüy of California, Berkeley McGRAW-HILL BOOK COMPANY Auckland Bogota Guatemala Hamburg Lisbon London Madrid Mexico New

More information

01. Equilibrium Thermodynamics I: Introduction

01. Equilibrium Thermodynamics I: Introduction University of Rhode Island DigitalCommons@URI Equilibrium Statistical Physics Physics Course Materials 2015 01. Equilibrium Thermodynamics I: Introduction Gerhard Müller University of Rhode Island, gmuller@uri.edu

More information

Statistical Mechanics and Thermodynamics

Statistical Mechanics and Thermodynamics Problems Statistical Mechanics and Thermodynamics SoSe 2018 April 15, 2018 JGU Mainz - Institut für Physik 1 Undergraduate level Problem 1 Thermodyn. 1. Two containers of equal volume are filled with an

More information

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper.

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS \1111~11\llllllllllllftllll~flrllllllllll\11111111111111111 >014407892 PHYS2060 THER1\1AL PHYSICS FINAL EXAMINATION SESSION 2 - NOVEMBER 2010 I. Time

More information

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions. 1. Quantum Mechanics (Spring 2007) Consider a hydrogen atom in a weak uniform magnetic field B = Bê z. (a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron,

More information

Physics 360 Review 3

Physics 360 Review 3 Physics 360 Review 3 The test will be similar to the second test in that calculators will not be allowed and that the Unit #2 material will be divided into three different parts. There will be one problem

More information

PHY214 Thermal & Kinetic Physics Duration: 2 hours 30 minutes

PHY214 Thermal & Kinetic Physics Duration: 2 hours 30 minutes BSc Examination by course unit. Friday 5th May 01 10:00 1:30 PHY14 Thermal & Kinetic Physics Duration: hours 30 minutes YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED

More information

Solutions Midterm Exam 3 December 12, Match the above shown players of the best baseball team in the world with the following names:

Solutions Midterm Exam 3 December 12, Match the above shown players of the best baseball team in the world with the following names: Problem 1 (2.5 points) 1 2 3 4 Match the above shown players of the best baseball team in the world with the following names: A. Derek Jeter B. Mariano Rivera C. Johnny Damon D. Jorge Posada 1234 = a.

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

UNIVERSITY OF LONDON. BSc and MSci EXAMINATION 2005 DO NOT TURN OVER UNTIL TOLD TO BEGIN

UNIVERSITY OF LONDON. BSc and MSci EXAMINATION 2005 DO NOT TURN OVER UNTIL TOLD TO BEGIN UNIVERSITY OF LONDON BSc and MSci EXAMINATION 005 For Internal Students of Royal Holloway DO NOT UNTIL TOLD TO BEGIN PH610B: CLASSICAL AND STATISTICAL THERMODYNAMICS PH610B: CLASSICAL AND STATISTICAL THERMODYNAMICS

More information

Preliminary Examination - Day 2 May 16, 2014

Preliminary Examination - Day 2 May 16, 2014 UNL - Department of Physics and Astronomy Preliminary Examination - Day May 6, 04 This test covers the topics of Thermodynamics and Statistical Mechanics (Topic ) and Mechanics (Topic ) Each topic has

More information

Physics Nov Cooling by Expansion

Physics Nov Cooling by Expansion Physics 301 19-Nov-2004 25-1 Cooling by Expansion Now we re going to change the subject and consider the techniques used to get really cold temperatures. Of course, the best way to learn about these techniques

More information

Minimum Bias Events at ATLAS

Minimum Bias Events at ATLAS Camille Bélanger-Champagne Lehman McGill College University City University of New York Thermodynamics Charged Particle and Correlations Statistical Mechanics in Minimum Bias Events at ATLAS Statistical

More information

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation:

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation: The next two questions pertain to the following situation: Consider the following two systems: A: three interacting harmonic oscillators with total energy 6ε. B: two interacting harmonic oscillators, with

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Kinetic Theory, Thermodynamics OBJECTIVE QUESTIONS IIT-JAM-2005

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Kinetic Theory, Thermodynamics OBJECTIVE QUESTIONS IIT-JAM-2005 Institute for NE/JRF, GAE, II JAM, JES, IFR and GRE in HYSIAL SIENES Kinetic heory, hermodynamics OBJEIE QUESIONS II-JAM-005 5 Q. he molar specific heat of a gas as given from the kinetic theory is R.

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 5 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular collisions

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Summary: Thermodynamic Potentials and Conditions of Equilibrium

Summary: Thermodynamic Potentials and Conditions of Equilibrium Summary: Thermodynamic Potentials and Conditions of Equilibrium Isolated system: E, V, {N} controlled Entropy, S(E,V{N}) = maximum Thermal contact: T, V, {N} controlled Helmholtz free energy, F(T,V,{N})

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

Thermodynamics (Lecture Notes) Heat and Thermodynamics (7 th Edition) by Mark W. Zemansky & Richard H. Dittman

Thermodynamics (Lecture Notes) Heat and Thermodynamics (7 th Edition) by Mark W. Zemansky & Richard H. Dittman Thermodynamics (Lecture Notes Heat and Thermodynamics (7 th Edition by Mark W. Zemansky & Richard H. Dittman 2 Chapter 1 Temperature and the Zeroth Law of Thermodynamics 1.1 Macroscopic Point of View If

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

1. Thermodynamics 1.1. A macroscopic view of matter

1. Thermodynamics 1.1. A macroscopic view of matter 1. Thermodynamics 1.1. A macroscopic view of matter Intensive: independent of the amount of substance, e.g. temperature,pressure. Extensive: depends on the amount of substance, e.g. internal energy, enthalpy.

More information

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PH 05 PHYSICAL SCIENCE TEST SERIES # 1. Quantum, Statistical & Thermal Physics

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PH 05 PHYSICAL SCIENCE TEST SERIES # 1. Quantum, Statistical & Thermal Physics UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM BOOKLET CODE SUBJECT CODE PH 05 PHYSICAL SCIENCE TEST SERIES # Quantum, Statistical & Thermal Physics Timing: 3: H M.M: 00 Instructions. This test

More information

Supplement: Statistical Physics

Supplement: Statistical Physics Supplement: Statistical Physics Fitting in a Box. Counting momentum states with momentum q and de Broglie wavelength λ = h q = 2π h q In a discrete volume L 3 there is a discrete set of states that satisfy

More information

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0?

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0? TB [103 marks] 1. A periodic driving force of frequency ƒ acts on a system which undergoes forced oscillations of amplitude A. The graph below shows the variation with ƒ of A. The maximum amplitude A 0

More information

Preliminary Examination: Thermodynamics and Stat. Mech. Department of Physics and Astronomy University of New Mexico. Fall 2004

Preliminary Examination: Thermodynamics and Stat. Mech. Department of Physics and Astronomy University of New Mexico. Fall 2004 Preliminary Examination: Thermodynamics and Stat. Mech. Department of Physics and Astronomy University of New Mexico Fall 2004 Instructions: The exam consists two parts: 5 short answers (6 points each)

More information

4. Systems in contact with a thermal bath

4. Systems in contact with a thermal bath 4. Systems in contact with a thermal bath So far, isolated systems microcanonical methods 4.1 Constant number of particles:kittelkroemer Chap. 3 Boltzmann factor Partition function canonical methods Ideal

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Part II: Statistical Physics

Part II: Statistical Physics Chapter 7: Quantum Statistics SDSMT, Physics 2013 Fall 1 Introduction 2 The Gibbs Factor Gibbs Factor Several examples 3 Quantum Statistics From high T to low T From Particle States to Occupation Numbers

More information

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS This exam contains five problems. Work any three of the five problems. All problems

More information

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART III: QUANTUM MECHANICS

Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART III: QUANTUM MECHANICS Ph.D. QUALIFYING EXAMINATION DEPARTMENT OF PHYSICS AND ASTRONOMY WAYNE STATE UNIVERSITY PART III: QUANTUM MECHANICS Friday, January 8, 2016 10 AM 12 noon Room 245, Physics Research Building INSTRUCTIONS:

More information

1985B4. A kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100

1985B4. A kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100 1985B4. A 0.020-kilogram sample of a material is initially a solid at a temperature of 20 C. Heat is added to the sample at a constant rate of 100 joules per second until the temperature increases to 60

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 607 Final Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all

More information

University of Michigan Physics Department Graduate Qualifying Examination

University of Michigan Physics Department Graduate Qualifying Examination Name: University of Michigan Physics Department Graduate Qualifying Examination Part II: Modern Physics Saturday 17 May 2014 9:30 am 2:30 pm Exam Number: This is a closed book exam, but a number of useful

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2024W1 SEMESTER 2 EXAMINATION 2011/12 Quantum Physics of Matter Duration: 120 MINS VERY IMPORTANT NOTE Section A answers MUST BE in a separate blue answer book. If any blue

More information

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q.

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. 1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. (a) Compute the electric part of the Maxwell stress tensor T ij (r) = 1 {E i E j 12 } 4π E2 δ ij both inside

More information

(a) How much work is done by the gas? (b) Assuming the gas behaves as an ideal gas, what is the final temperature? V γ+1 2 V γ+1 ) pdv = K 1 γ + 1

(a) How much work is done by the gas? (b) Assuming the gas behaves as an ideal gas, what is the final temperature? V γ+1 2 V γ+1 ) pdv = K 1 γ + 1 P340: hermodynamics and Statistical Physics, Exam#, Solution. (0 point) When gasoline explodes in an automobile cylinder, the temperature is about 2000 K, the pressure is is 8.0 0 5 Pa, and the volume

More information

Unit 7 (B) Solid state Physics

Unit 7 (B) Solid state Physics Unit 7 (B) Solid state Physics hermal Properties of solids: Zeroth law of hermodynamics: If two bodies A and B are each separated in thermal equilibrium with the third body C, then A and B are also in

More information

Entropy in Macroscopic Systems

Entropy in Macroscopic Systems Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Review Entropy in Macroscopic Systems

More information

Summary Part Thermodynamic laws Thermodynamic processes. Fys2160,

Summary Part Thermodynamic laws Thermodynamic processes. Fys2160, ! Summary Part 2 21.11.2018 Thermodynamic laws Thermodynamic processes Fys2160, 2018 1 1 U is fixed ) *,,, -(/,,), *,, -(/,,) N, 3 *,, - /,,, 2(3) Summary Part 1 Equilibrium statistical systems CONTINUE...

More information

We already came across a form of indistinguishably in the canonical partition function: V N Q =

We already came across a form of indistinguishably in the canonical partition function: V N Q = Bosons en fermions Indistinguishability We already came across a form of indistinguishably in the canonical partition function: for distinguishable particles Q = Λ 3N βe p r, r 2,..., r N ))dτ dτ 2...

More information

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0. Problem #1 A. A projectile of mass m is shot vertically in the gravitational field. Its initial velocity is v o. Assuming there is no air resistance, how high does m go? B. Now assume the projectile is

More information

140a Final Exam, Fall 2006., κ T 1 V P. (? = P or V ), γ C P C V H = U + PV, F = U TS G = U + PV TS. T v. v 2 v 1. exp( 2πkT.

140a Final Exam, Fall 2006., κ T 1 V P. (? = P or V ), γ C P C V H = U + PV, F = U TS G = U + PV TS. T v. v 2 v 1. exp( 2πkT. 40a Final Exam, Fall 2006 Data: P 0 0 5 Pa, R = 8.34 0 3 J/kmol K = N A k, N A = 6.02 0 26 particles/kilomole, T C = T K 273.5. du = TdS PdV + i µ i dn i, U = TS PV + i µ i N i Defs: 2 β ( ) V V T ( )

More information

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM Please take a few minutes to read through all problems before starting the exam. Ask the proctor if you are uncertain about the meaning of any

More information

Qualification Exam: Statistical Mechanics

Qualification Exam: Statistical Mechanics Qualification Exam: Statistical Mechanics Name:, QEID#94223601: November, 2012 Qualification Exam QEID#94223601 2 Problem 1 1983-Fall-SM-U-1 1. Two containers of equal volume are filled with an equal number

More information

Statistical Mechanics Notes. Ryan D. Reece

Statistical Mechanics Notes. Ryan D. Reece Statistical Mechanics Notes Ryan D. Reece August 11, 2006 Contents 1 Thermodynamics 3 1.1 State Variables.......................... 3 1.2 Inexact Differentials....................... 5 1.3 Work and Heat..........................

More information

CHAPTER 9 Statistical Physics

CHAPTER 9 Statistical Physics CHAPTER 9 Statistical Physics 9.1 Historical Overview 9.2 Maxwell Velocity Distribution 9.3 Equipartition Theorem 9.4 Maxwell Speed Distribution 9.5 Classical and Quantum Statistics 9.6 Fermi-Dirac Statistics

More information

2. Estimate the amount of heat required to raise the temperature of 4 kg of Aluminum from 20 C to 30 C

2. Estimate the amount of heat required to raise the temperature of 4 kg of Aluminum from 20 C to 30 C 1. A circular rod of length L = 2 meter and diameter d=2 cm is composed of a material with a heat conductivity of! = 6 W/m-K. One end is held at 100 C, the other at 0 C. At what rate does the bar conduct

More information

Physics Qual - Statistical Mechanics ( Fall 2016) I. Describe what is meant by: (a) A quasi-static process (b) The second law of thermodynamics (c) A throttling process and the function that is conserved

More information

Classical Mechanics and Statistical/Thermodynamics. January 2015

Classical Mechanics and Statistical/Thermodynamics. January 2015 Classical Mechanics and Statistical/Thermodynamics January 2015 1 Handy Integrals: Possibly Useful Information 0 x n e αx dx = n! α n+1 π α 0 0 e αx2 dx = 1 2 x e αx2 dx = 1 2α 0 x 2 e αx2 dx = 1 4 π α

More information

Last Name: First Name ID

Last Name: First Name ID Last Name: First Name ID This is a set of practice problems for the final exam. It is not meant to represent every topic and is not meant to be equivalent to a 2-hour exam. These problems have not been

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Friday, January 18, 2013 1:00PM to 3:00PM General Physics (Part I) Section 5. Two hours are permitted for the completion of this section

More information

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram. AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

More information

liquid He

liquid He 8.333: Statistical Mechanics I Problem Set # 6 Due: 12/6/13 @ mid-night According to MIT regulations, no problem set can have a due date later than 12/6/13, and I have extended the due date to the last

More information

PHYSICS 221, FALL 2010 FINAL EXAM MONDAY, DECEMBER 13, 2010

PHYSICS 221, FALL 2010 FINAL EXAM MONDAY, DECEMBER 13, 2010 PHYSICS 221, FALL 2010 FINAL EXAM MONDAY, DECEMBER 13, 2010 Name (printed): Nine-digit ID Number: Section Number: Recitation Instructor: INSTRUCTIONS: i. Put away all materials except for pens, pencils,

More information