Cold fermions, Feshbach resonance, and molecular condensates (II)

Size: px
Start display at page:

Download "Cold fermions, Feshbach resonance, and molecular condensates (II)"

Transcription

1 Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$ NSF, NIST, Hertz

2 I. Cold Fermions

3 Quantum Particles There are two types of quantum particles found in nature - bosons and fermions. Bosons like to do the same thing. Fermions are independent-minded. Atoms, depending on their composition, can be either. bosons: 87 Rb, 23 Na, 7 Li, H, 39 K, 4 He*, 85 Rb, 133 Cs fermions: 40 K, 6 Li

4 Bosons integer spin Ψ 1,2 = Ψ 2,1 Atoms in a harmonic potential. Bose-Einstein condensation 1995 other bosons: photons, liquid 4 He

5 Fermions half-integer spin Ψ 1,2 = - Ψ 2,1 (Pauli exclusion principle) T = 0 E F = k b T F spin spin Fermi sea of atoms 1999 other fermions: protons, electrons, neutrons

6 Quantum gases Bosons T C Fermions T F BEC phase transition Fermi sea of atoms gradually emerges for T<T F d λ debroglie d ultralow T

7 Fermionic atoms 40 K Jin, JILA Inguscio, LENS others in progress 6 Li Hulet, Rice Salomon, ENS Thomas, Duke Ketterle, MIT Grimm, Innsbruck Future: Cr, Sr, Yb, radioactive isotopes Rb, metastable *He, *Ne

8 Cooling fermions Evaporative cooling requires collisions, but at low T identical fermions stop colliding.

9 Cooling strategies for fermions Simultaneous cooling evaporate atoms in two spin-states magnetic trap 40 K optical trap 6 Li Sympathetic cooling evaporate bosonic atoms and cool fermionic atoms via thermal contact two isotopes 7 Li + 6 Li two species 87 Rb + 40 K 23 Na + 6 Li

10 40 K spin-states 4P 3/2 ~10 14 Hz 4S 1/2 hyperfine f=7/2 f=9/2 Zeeman ~10 9 m Hz ~ f = 9/2 Hz m f = 7/2. m f =-9/2

11 More on spin-states spin spin Energy splitting is 10 s MHz. T = 1 μk corresponds to 20 khz. spin degree of freedom is frozen

12 Collision measurement 1. Add energy in one dimension of trap 2. Watch thermal relaxation before after relaxation

13 Collisions and Fermions two spin-states elastic collision cross section one spin-state

14 Cooling a gas of 40 K atoms 1. Laser cooling and trapping 300 K to 1 mk, 10 9 atoms 2. Magnetic trapping & evaporative cooling 1 mk to 1 μk, atoms spin 1 spin 2 3. Optical trapping & evaporative cooling 1 μk to 50 nk, atoms can confine any spin-state can apply arbitrary B-field

15 Probing the ultracold gas Time-of-flight absorption imaging Probing the atoms

16 Stern-Gerlach imaging Time-of-flight absorption imaging B gradient Probing the atoms

17 Quantum degenerate atomic Fermi gases 1999: 40 K JILA 6 Li - Rice, Duke, ENS, MIT, Innsbruck; 40 K - LENS, ETH Zurich E F = k B T F Fermi sea of atoms T ~ 0.05 T F low temperature, low density: T ~ 100 nk, n ~ cm -3

18 Quantum degeneracy velocity distributions E F T/T F =0.77 n 0 = 0.28 T/T F =0.27 n 0 = Fermi sea of atoms E F T/T F =0.11 n 0 =

19 Quantum degeneracy 20 T/T Fermi = 0.05 N = , T = 16 nk T/T Fermi = 0.05 μ/k b T T/T F

20 Fermi gas thermometry Determine temperature from (1) surface fit to expanded cloud (2) an embedded non-degenerate gas surface fit T / T Fermi T impurity / T Fermi Impurity spin state Fermi gas

21 II. Feshbach resonance

22 Interactions Interactions are characterized by the s-wave scattering length, a a > 0 repulsive, a < 0 attractive Large a strong interactions In an ultracold atomic gas, we can control a! 0 scattering length

23 Magnetic-field Feshbach resonance V(R) R repulsive R R R a>0, repulsive a<0, attractive > ΔB attractive molecules

24 Magnetic-field Feshbach resonance repulsive free atoms > ΔB attractive molecules

25 Experimental observation 1. Trap Loss (3-body inelastic collisions) three 87 Rb- 40 K Feshbach resonances: S. Inouye et al., cond-mat, 2004.

26 Experimental observation 2. Elastic collision rate (σ=4πa 2 ) 10-9 mf = -9/2, -7/2 mixture σ (cm 2 ) T. Loftus et al., PRL 88, (2002) B (gauss)

27 More 40 K resonances σ (cm 2 ) 10-9 m f = -7/2 gas a p-wave resonance! C. A. Regal et al., PRL 90, (2003) B (gauss) 10-9 mf =-7/2,-5/2 mixture σ (cm 2 ) another s-wave resonance B (gauss)

28 Experimental observation 3. Interaction energy 3000 (RF spectroscopy) scattering length (a o ) repulsive attractive Feshbach resonance between m f =-9/2,-5/2 Use Δν ~n 9 a 59 C. A. Regal and D. S. Jin, PRL, (2003) B (gauss)

29 M ole cule cre atio n -5/ / B hold(g ) B(t ) -5/2-9/2 ato mnu mb er(1 06) Experimental observation 4. Molecule creation -5/2 Ramp across Feshbach resonance from high to low B -9/2 energy B -5/2-9/2 atom number (10 6 ) B (gauss) C. A. Regal et al., Nature 424, 47 (2003). Motivation: E. A. Donley et al., Nature 417, 529 (2002)

30 Magnetic field sweep rate atom number (10 6 ) Reversible energy B inverse ramp speed (μs/g) Similar experiments: Bosons Innsbruck Garching JILA Fermions Rice ENS Innsbruck

31 Molecule detection Apply RF near the atomic m f =-5/2 to m f =-7/2 transition Σm f = -5/2 + -9/2 molecule -7/2 + -9/2-5/2-7/2-9/2 photodissociate the molecules -5/2-7/2-9/2

32 Molecule detection 1.0 transfer (arb) molecules atoms kinetic energy (MHz) dissociation threshold rf frequency (MHz)

33 Molecule binding energy Δν (khz) atoms molecules binding energy theory (Ticknor, Bohn) B (gauss) extremely weakly bound! C. Regal et al. Nature 424, 47 (2003)

34 Molecule conversion efficiency depends strongly on energy of Fermi gas 1.0 molecule fraction n pk ~10 13 cm T Fermi (μk) up to 70% conversion N molecule > 250,000

35 Molecule decay rate N m /N m (ms -1 ) N a /N a (ms -1 ) E Theory prediction: D.S. Petrov, C. Salomon, G.V. Shlyapnikov, condmat/ (2003) Expts: 1E-3 Rice, ENS, Innsbruck, JILA molecules atoms ΔB (gauss) ΔB (gauss) m f =-7/2, -9/2 m f =-5/2, -9/2 no molecules with molecules C. A. Regal, M. Greiner, and D. S. Jin, PRL 92, (2004) C. A. Regal, M. Greiner, and D. S. Jin, cond-mat/ (2003)

36 Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$ NSF, NIST, Hertz

37 III. BCS-BEC crossover

38 Bose-Einstein condensation BEC shows up in condensed matter, nuclear physics, elementary particle physics, astrophysics, and atomic physics. Excitons, biexcitons in semiconductors Cooper pairs of electrons in superconductors Neutron pairs, protron pairs in nuclei And neutron stars Alkali atoms in ultracold atom gases 4 He atoms in superfluid liquid He Mesons in neutron star matter 3 He atom pairs in superfluid 3 He-A,B

39 Bosons and Fermions Condensation requires bosons. Material bosons are composite particles, made up of fermions. For a gas of bosonic atoms, the underlying fermion degrees of freedom are not accessible. 87 Rb, 23 Na, By starting with a gas of fermionic atoms we can explore how bosonic degrees of freedom emerge. 40 K, 6 Li,

40 Making condensates with fermions BEC of diatomic molecules 1. Bind fermions together. 2. BEC spin spin BCS superconductivity/superfluidity Condensation of Cooper pairs of atoms (pairing in momentum space, near the Fermi surface) E F Something in between? BCS-BEC crossover

41 BCS-BEC landscape transition temperature T/T c F M. Holland et al., PRL 87, (2001) BCS BEC alkali atom BEC superfluid 4 He high T c superconductors superfluid 3 He superconductors Δ/ kt B energy to break fermion pair F

42 Pairing and Superfluidity Spin is additive: Fermions can pair up and form effective bosons: Ψ(1,,N) = Â [ φ(1,2) φ(3,4) φ(n-1,n) ] spin spin Molecules of fermionic atoms Generalized Cooper pairs of fermionic atoms Cooper pairs k F BEC of weakly bound molecules BCS - BEC crossover BCS superconductivity Cooper pairs: correlated momentum-space pairing BCS-BEC crossover for example: Eagles, Boulder Leggett, School Nozieres 2004 and Schmitt-Rink, Randeria, Strinati, Zwerger, Holland, Timmermans, Griffin, Levin

43 BCS-BEC crossover Predict a smooth connection between BCS and BEC 0.6 BEC BEC BCS 0.4 BCS T c / T F 0.2 A. Perali et al., cond-mat/ BCS 1/(k BEC (atoms) F a) (molecules) J. R. Engelbrecht et al., PRB 55, (1997) BCS BEC (atoms) (molecules) partial list: Eagles, Leggett, Nozieres and Schmitt-Rink, Randeria, Haussman, Strinati, Holland, Timmermans, Griffin, Levin,

44 Magnetic-field Feshbach resonance repulsive free atoms > ΔB attractive molecules

45 Changing the interaction strength in real time: FAST repulsive E F 2 μs/g > ΔB attractive molecules

46 Changing the interaction strength in real time: SLOW E F 40 μs/g > ΔB attractive molecules

47 Changing the interaction strength in real time: SLOWER E F 4000 μs/g > ΔB attractive molecules Cubizolles et al., PRL 91, (2003); L. Carr et al., cond-mat/

48 Molecular Condensate initial T/T F : Time of flight absorption image M. Greiner, C.A. Regal, and D.S. Jin, Nature 426, 537 (2003).

49 A BEC from a Fermi Sea! N 0 / N initial T / T F

50 Timescales Creating molecules energy B Creating molecular BEC E F molecule number (10 3 ) body inverse ramp speed (μs/g) condensate fraction many-body inverse sweep speed (μs/g) two orders of magnitude difference in timescales!

51 Observing a Fermi condensate repulsive? E F 40 μs/g 4000 μs/g > ΔB? attractive

52 Condensates w/o a two-body bound state N molecules 3x10 5 2x10 5 1x ΔB (gauss) Dissociation of molecules at low density C. Regal, M. Greiner, and D. S. Jin, PRL 92, (2004) ΔB = 0.12 G ΔB = 0.25 G ΔB=0.55 G T/T F =0.08

53 Fermionic condensate N 0 / N ΔB (G) T/T F =0.08 molecules atoms two-body molecules pairing due to many-body effects Clearly see condensation on the atom-side of the resonance!

54 Fermionic condensate 0.15 N 0 / N T/T F = ΔB (gauss) Clearly see condensation on the atom-side of the resonance! Condensate lives much longer near resonance than in BEC limit.

55 Mapping out a phase diagram repulsive a E F 40 μs/g 4000 μs/g > ΔB attractive T/T F molecules

56 BCS-BEC Crossover T/T F N 0 /N /(k F a) BCS (atoms) BEC (molecules) C. Regal, M. Greiner, and D. S. Jin, PRL 92, (2004)

57 BCS-BEC Crossover T/T F BCS 1/(k F a) Cooper pairs: collective, many-body effect weakly bound (pairing in momentum-space) pair size >> n -1/3 T c /T F << 1 T pairing = T c Fermion excitations N 0 /N BEC diatomic molecules: two-body effect tightly bound (pairing in real space) pair size << n -1/3 T c /T F ~ 1 T pairing >> T c Boson excitations

58 BCS-BEC crossover Predict a smooth connection between BCS and BEC 0.6 BEC BEC BCS 0.4 BCS T c / T F 0.2 A. Perali et al., cond-mat/ BCS 1/(k BEC (atoms) F a) (molecules) J. R. Engelbrecht et al., PRB 55, (1997) BCS BEC (atoms) (molecules) partial list: Eagles, Leggett, Nozieres and Schmitt-Rink, Randeria, Haussman, Strinati, Holland, Timmermans, Griffin, Levin,

59 Measuring the excitation spectrum Utilize tunable interaction to measure spectrum: dissociate pairs of atoms by modulating B-field a B B 0 B pert 1/ν pert t t pert E binding ΔB B(t)=B 0 +B pert sin(ωt) collective excitations: Grimm, Thomas rf measurement at crossover: Grimm

60 Excitation spectrum: BEC side 0.5 dissociation threshold: molecule binding energy E B /h Δ B=-801 m G N tilde (khz ms mg -2 ) m G -367 m G -119 m G single particle excitation spectrum: molecule dissociation f (k H z)

61 Excitation spectrum: BCS side collective excitation pair dissociation ΔB=5 mg N tilde (khz ms mg -2 ) mg 378 mg excitation spectrum shows pairing containing information about crossover regime, no theoretical model available yet mg f (khz)

62 Exctitation spectrum ν (khz) ν (khz) ν max ν ΔB (mg) maximum position threshold position BEC side: dissociation threshold according to molecule binding energy BCS side: nonzero maximum pairing

63 Conclusion An atomic Fermi gas provides experimental access to the BCS-BEC crossover region. Fermi gas molecular BEC interconversion has been explored. Condensates of fermionic atom pairs have been achieved! Next Cooper pairs with strong interactions BEC with extremely weakly bound molecules Many opportunities for further experimental and theoretical work...

64 Current group members: M. Greiner J. Goldwin S. Inouye C. Regal J. Smith M. Olsen

65 The End.

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Fermi Condensates ULTRACOLD QUANTUM GASES

Fermi Condensates ULTRACOLD QUANTUM GASES Fermi Condensates Markus Greiner, Cindy A. Regal, and Deborah S. Jin JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado,

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

BEC and superfluidity in ultracold Fermi gases

BEC and superfluidity in ultracold Fermi gases Collège de France, 11 Apr 2005 BEC and superfluidity in ultracold Fermi gases Rudolf Grimm Center of Quantum Optics Innsbruck University Austrian Academy of Sciences two classes Bosons integer spin Fermions

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Condensation of pairs of fermionic lithium atoms

Condensation of pairs of fermionic lithium atoms Condensation of pairs of fermionic lithium atoms Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 5/10/04 KITP workshop, Santa Barbara BEC I Ultracold fermions

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

Superfluidity in interacting Fermi gases

Superfluidity in interacting Fermi gases Superfluidity in interacting Fermi gases Quantum many-body system in attractive interaction Molecular condensate BEC Cooper pairs BCS Thomas Bourdel, J. Cubizolles, L. Khaykovich, J. Zhang, S. Kokkelmans,

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Search. Search and Discovery Ultracold Fermionic Atoms Team up as Molecules: Can They Form Cooper Pairs as Well? 1 of 10 11/12/2003 4:57 PM

Search. Search and Discovery Ultracold Fermionic Atoms Team up as Molecules: Can They Form Cooper Pairs as Well? 1 of 10 11/12/2003 4:57 PM 1 of 10 11/12/2003 4:57 PM Welcome! John Edward Thomas Search Table of contents Past issues Links to advertisers Products advertised Place an ad Buyers' guide About us Contact us Submit press release American

More information

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP May 2007 Cold Atom Collaborators: Qijin Chen J. Stajic (U Chicago; LANL) Yan He (U. Chicago) ChihChun Chien (U. Chicago)

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Superfluidity and Superconductivity Macroscopic Quantum Phenomena

Superfluidity and Superconductivity Macroscopic Quantum Phenomena Superfluid Bose and Fermi gases Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/11/2013 Universal Themes of Bose-Einstein Condensation Leiden Superfluidity

More information

Contents Ultracold Fermi Gases: Properties and Techniques Index

Contents Ultracold Fermi Gases: Properties and Techniques Index V Contents 1 Ultracold Fermi Gases: Properties and Techniques 1 Selim Jochim 1.1 Introduction 1 1.2 Ultracold Fermions in a Trap 2 1.2.1 Ideal Fermi Gas 3 1.3 Preparing an Ultracold Fermi Gas 6 1.4 Interactions

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

High-Temperature Superfluidity

High-Temperature Superfluidity High-Temperature Superfluidity Tomoki Ozawa December 10, 2007 Abstract With the recent advancement of the technique of cooling atomic gases, it is now possible to make fermionic atom gases into superfluid

More information

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea? Krynica, June 2005 Quantum Optics VI Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Mixtures of ultracold Bose- and Fermi-gases Bright Fermi-Bose solitons

More information

Fermi gases in an optical lattice. Michael Köhl

Fermi gases in an optical lattice. Michael Köhl Fermi gases in an optical lattice Michael Köhl BEC-BCS crossover What happens in reduced dimensions? Sa de Melo, Physics Today (2008) Two-dimensional Fermi gases Two-dimensional gases: the grand challenge

More information

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics Studies of Ultracold Ytterbium and Lithium Anders H. Hansen University of Washington Dept of Physics U. Washington CDO Networking Days 11/18/2010 Why Ultracold Atoms? Young, active discipline Two Nobel

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering with Ultracold Atoms < 200 nk Our group: Precision BEC interferometry. Ultracold Mixtures

More information

Experimental realization of BCS-BEC crossover physics with a Fermi gas of atoms

Experimental realization of BCS-BEC crossover physics with a Fermi gas of atoms Experimental realization of BCS-BEC crossover physics with a Fermi gas of atoms by Cindy Regal 1 A thesis directed by Dr. Deborah Jin 1 and submitted to the Faculty of the Graduate School of the University

More information

Lecture 3 : ultracold Fermi Gases

Lecture 3 : ultracold Fermi Gases Lecture 3 : ultracold Fermi Gases The ideal Fermi gas: a reminder Interacting Fermions BCS theory in a nutshell The BCS-BEC crossover and quantum simulation Many-Body Physics with Cold Gases Diluteness:

More information

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe) Deconfined quark-gluon plasmas made in ultrarelativistic heavy ion collisions T ~ 10 2 MeV ~ 10 12 K (temperature of early universe at ~1µ sec) Bose-condensed and BCS fermion superfluid states T ~ nano

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University Cold Molecules and Controlled Ultracold Chemistry Jeremy Hutson, Durham University QuAMP Swansea, 11 Sept 2013 Experimentally accessible temperatures What is already possible in ultracold chemistry? Take

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

Many-Body Physics with Quantum Gases

Many-Body Physics with Quantum Gases Many-Body Physics with Quantum Gases Christophe Salomon Okinawa Summer school on quantum dynamics September 26-October 6, 2017 Ecole Normale Supérieure, Paris Summary of lectures Quantum simulation with

More information

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn Two-dimensional atomic Fermi gases Michael Köhl Universität Bonn Ultracold Fermi gases as model systems BEC/BCS crossover Search for the perfect fluid: Cold fermions vs. Quark-gluon plasma Cao et al.,

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Effective Field Theory and Ultracold Atoms

Effective Field Theory and Ultracold Atoms Effective Field Theory and Ultracold Atoms Eric Braaten Ohio State University support Department of Energy Air Force Office of Scientific Research Army Research Office 1 Effective Field Theory and Ultracold

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

From Optical Pumping to Quantum Gases

From Optical Pumping to Quantum Gases From Optical Pumping to Quantum Gases Claude Cohen-Tannoudji 22 nd International Conference on Atomic Physics Cairns, Australia, 26 July 2010 Collège de France 1 2010 : three anniversaries 60 th anniversary

More information

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases Bad Honnef, 07 July 2015 Impurities in a Fermi sea: Decoherence and fast dynamics impurity physics: paradigms of condensed matter-physics Fermi sea fixed scalar impurity orthogonality catastrophe P.W.

More information

BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids

BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids Daniel E. Sheehy Ames Laboratory Iowa State University Work in collaboration with L. Radzihovsky (Boulder)

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin Supersolids Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin This is a lively controversy in condensed matter physics. Experiment says yes. Theory says no, or at best maybe.

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron 1 Dual species quantum gases with tunable interactions mixing vs. phase separation Polarons beyond mean field LHY droplets

More information

hal , version 1-9 Jan 2007

hal , version 1-9 Jan 2007 Expansion of a lithium gas in the BEC-BCS crossover L. Tarruell 1, M. Teichmann 1, J. McKeever 1, T. Bourdel 1, J. Cubizolles 1, L. Khaykovich 2, J. Zhang 3, N. Navon 1, F. Chevy 1, and C. Salomon 1 1

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions 2030-24 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 2009 Recent advances on ultracold fermions SALOMON Christophe Ecole Normale Superieure Laboratoire Kastler Brossel 24 Rue Lhomond F-75231

More information

arxiv:cond-mat/ v1 17 Apr 2000

arxiv:cond-mat/ v1 17 Apr 2000 Stable 85 Rb Bose-Einstein Condensates with Widely Tunable Interactions S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell and C. E. Wieman JILA, National Institute of Standards and Technology

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

arxiv:cond-mat/ v1 [cond-mat.other] 19 Dec 2005

arxiv:cond-mat/ v1 [cond-mat.other] 19 Dec 2005 Released momentum distribution of a Fermi gas in the BCS-BEC crossover arxiv:cond-mat/5246v [cond-mat.other] 9 Dec 25 M.L. Chiofalo, S. Giorgini 2,3 and M. Holland 2 INFM and Classe di Scienze, Scuola

More information

Strongly paired fermions

Strongly paired fermions Strongly paired fermions Alexandros Gezerlis TALENT/INT Course on Nuclear forces and their impact on structure, reactions and astrophysics July 4, 2013 Strongly paired fermions Neutron matter & cold atoms

More information

Path-integrals and the BEC/BCS crossover in dilute atomic gases

Path-integrals and the BEC/BCS crossover in dilute atomic gases Path-integrals and the BEC/BCS crossover in dilute atomic gases J. Tempere TFVS, Universiteit Antwerpen, Universiteitsplein 1, B261 Antwerpen, Belgium. J.T. Devreese TFVS, Universiteit Antwerpen, Universiteitsplein

More information

Degenerate atom-molecule mixture in a cold Fermi gas

Degenerate atom-molecule mixture in a cold Fermi gas Degenerate atom-molecule mixture in a cold Fermi gas Koelmans, S.J.J.M.F.; Shlyapniov, G.V.; Salomon, C. Published in: Physical Review A : Atomic, Molecular and Optical Physics DOI: 10.1103/PhysRevA.69.031602

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Quantum dynamics in ultracold atoms

Quantum dynamics in ultracold atoms Rather don t use Power-Points title Page Use my ypage one instead Quantum dynamics in ultracold atoms Corinna Kollath (Ecole Polytechnique Paris, France) T. Giamarchi (University of Geneva) A. Läuchli

More information

First Observations of an S-wave Contact on the Repulsive Side of a Feshbach Resonance. Scott Smale University of Toronto

First Observations of an S-wave Contact on the Repulsive Side of a Feshbach Resonance. Scott Smale University of Toronto First Observations of an S-wave Contact on the Repulsive Side of a Feshbach Resonance Scott Smale University of Toronto Contents 1 Introduction 3 2 Theory 5 2.1 Feshbach Resonances...............................

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang QC12, Pohang, Korea Experimental realization of spin-orbit coupling in degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,

More information

New states of quantum matter created in the past decade

New states of quantum matter created in the past decade New states of quantum matter created in the past decade From: Trapped cold atomic systems: Bose-condensed and BCS fermion superfluid states T ~ nanokelvin (traps are the coldest places in the universe!)

More information

Fluctuations between the BCS and BEC Limits in the System of Ultracold Alkali Atoms

Fluctuations between the BCS and BEC Limits in the System of Ultracold Alkali Atoms Vol. 109 (2006) ACTA PHYSICA POLONICA A No. 4 5 Proceedings of the XI National School Collective Phenomena and Their Competition Kazimierz Dolny, September 25 29, 2005 Fluctuations between the BCS and

More information

Why ultracold molecules?

Why ultracold molecules? Cold & ultracold molecules new frontiers J. Ye, JILA Michigan Quantum Summer School, Ann Arbor, June 18, 2008 Quantum dipolar gas Precision test QED ee- eehco OH H2O H2CO Quantum measurement Chemical reactions

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of Lithium isotopes

Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of Lithium isotopes Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of Lithium isotopes Florian Schreck To cite this version: Florian Schreck. Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate

More information

BCS: from Atoms and Nuclei to the Cosmos

BCS: from Atoms and Nuclei to the Cosmos BCS: from Atoms and Nuclei to the Cosmos Gordon Baym University of Illinois BCS theory has had a profound impact on physics well beyond laboratory superconductors and superfluids. This talk will describe

More information

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover 6th APCWQIS, December 2012 Bilal Tanatar December 6, 2012 Prologue 1 Introduction Prologue Cooling Techniques 2 BCS-BEC Crossover

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1 FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1 Tilman Esslinger, Department of Physics, ETH Zurich, Switzerland ABSTRACT The Fermi-Hubbard model is a key concept in condensed matter physics and

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates 2023-24 Workshop on Topics in Quantum Turbulence 16-20 March 2009 Experiments on Bose Condensates K. Helmerson National Institute of Standards and Technology Gaithersburg U.S.A. Atomic gas Bose-Einstein

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois BCS everywhere else: from Atoms and Nuclei to the Cosmos Gordon Baym University of Illinois October 13, 2007 Wide applications of BCS beyond laboratory superconductors Pairing of nucleons in nuclei Neutron

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University Molecular production at broad Feshbach resonance in cold Fermi-gas D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University College Station, Wednesday, Dec 5, 007 OUTLINE Alkali

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 9 Aug 2005

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 9 Aug 2005 Single-particle excitations in the BCS-BEC crossover region II: Broad Feshbach resonance arxiv:cond-mat/58213v1 [cond-mat.mtrl-sci] 9 Aug 25 Y. Ohashi 1 and A. Griffin 2 1 Institute of Physics, University

More information

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016 Ana Maria Rey Okinawa School in Physics 016: Coherent Quantum Dynamics Okinawa, Japan, Oct 4-5, 016 What can we do with ultra-cold matter? Quantum Computers Lecture II-III Clocks and sensors Synthetic

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Experimental realization of Bose Einstein condensation (BEC) of dilute atomic gases [Anderson, et al. (1995); Davis, et al. (1995); Bradley, et al. (1995, 1997)] has ignited a virtual explosion of research.

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

Lecture 2: Ultracold fermions

Lecture 2: Ultracold fermions Lecture 2: Ultracold fermions Fermions in optical lattices. Fermi Hubbard model. Current state of experiments Lattice modulation experiments Doublon lifetimes Stoner instability Ultracold fermions in optical

More information

arxiv:cond-mat/ v1 28 Jan 2003

arxiv:cond-mat/ v1 28 Jan 2003 Three-Fluid Description of the Sympathetic Cooling of a Boson-Fermion Mixture M. Wouters, J. Tempere, J. T. Devreese Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein, B260 arxiv:cond-mat/030544v

More information

Bose-Bose mixtures in confined dimensions

Bose-Bose mixtures in confined dimensions Bose-Bose mixtures in confined dimensions Francesco Minardi Istituto Nazionale di Ottica-CNR European Laboratory for Nonlinear Spectroscopy 22nd International Conference on Atomic Physics Cairns, July

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Piotr Magierski (Warsaw University of Technology/ University of Washington, Seattle) Collaborators: Aurel Bulgac (Seattle)

More information

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture. Nanoelectronics 14 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 27/February/2018 (P/T 005) Quick Review over the Last Lecture Function Fermi-Dirac distribution f ( E) = 1 exp E µ [( ) k B

More information

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline Dipolar Fermi gases Introduction, Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam Outline Experiments with magnetic atoms and polar molecules Topologcal p x +ip y phase in 2D Bilayer systems

More information

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

Thermodynamic Measurements in a Strongly Interacting Fermi Gas

Thermodynamic Measurements in a Strongly Interacting Fermi Gas J Low Temp Phys (2009) 154: 1 29 DOI 10.1007/s10909-008-9850-2 Thermodynamic Measurements in a Strongly Interacting Fermi Gas Le Luo J.E. Thomas Received: 25 July 2008 / Accepted: 12 October 2008 / Published

More information

The amazing story of Laser Cooling and Trapping

The amazing story of Laser Cooling and Trapping The amazing story of Laser Cooling and Trapping following Bill Phillips Nobel Lecture http://www.nobelprize.org/nobel_prizes/physics/ laureates/1997/phillips-lecture.pdf Laser cooling of atomic beams 1

More information