Landau-Fermi liquid theory

Size: px
Start display at page:

Download "Landau-Fermi liquid theory"

Transcription

1 Landau- 1 Chennai Mathematical Institute April 25, Final year project under Prof. K. Narayan, CMI

2 Interacting fermion system I Basic properties of metals (heat capacity, susceptibility,...) were explained by Sommerfeld, Pauli and others in 1928 They described metals as system of non-interacting Fermions, a Fermi gas This description is known to work over a large temperature range (several orders of magnitude) [Coleman, 2010] However, at sufficiently low T, electron repulsion comparable to its energy Why does the non-interacting picture work so well?

3 Interacting fermion system II In 1956, Lev Landau developed a of interacting spin-1/2 Fermions, to explain stability of Fermi gas against perturbations The Landau- has been successful in explaining systems such as metals, nuclear matter, liquid He-3 etc. [Schofield, 1999] The key ideas behind Landau s are the principle of adiabaticity and Pauli s exclusion prnciple. Generic Hamiltonian H = ɛ p c pσc pσ + V (q)c p 1 q c p 2 +q c p 1 c p2 p,σ p i,q,σ

4 Adiabaticity Start with ground state of non-interacting system and slowly turn on interactions Landau s argument If full Hamiltonian has the same symmetries of unperturbed Hamiltonian then its ground states can be obtained by perturbatively transforming the simple ground state. [Pines and Noziéres, 1966] Note: This means that we ignore the possibility of a phase transition Similarly, low-lying excitations of non-interacting are mapped to low lying excitations of interacting

5 Adiabaticity Start with ground state of non-interacting system and slowly turn on interactions Landau s argument If full Hamiltonian has the same symmetries of unperturbed Hamiltonian then its ground states can be obtained by perturbatively transforming the simple ground state. [Pines and Noziéres, 1966] Note: This means that we ignore the possibility of a phase transition Similarly, low-lying excitations of non-interacting are mapped to low lying excitations of interacting

6 Adiabaticity Start with ground state of non-interacting system and slowly turn on interactions Landau s argument If full Hamiltonian has the same symmetries of unperturbed Hamiltonian then its ground states can be obtained by perturbatively transforming the simple ground state. [Pines and Noziéres, 1966] Note: This means that we ignore the possibility of a phase transition Similarly, low-lying excitations of non-interacting are mapped to low lying excitations of interacting

7 Adiabaticity Start with ground state of non-interacting system and slowly turn on interactions Landau s argument If full Hamiltonian has the same symmetries of unperturbed Hamiltonian then its ground states can be obtained by perturbatively transforming the simple ground state. [Pines and Noziéres, 1966] Note: This means that we ignore the possibility of a phase transition Similarly, low-lying excitations of non-interacting are mapped to low lying excitations of interacting

8 Adiabaticity II Turning on interactions conserves dynamical variables such as spin and momentum of excitations (this is a consequence of Pauli s exclusion principle) The low lying excitations of the full systems are called Landau quasiparticles

9 Adiabaticity II Turning on interactions conserves dynamical variables such as spin and momentum of excitations (this is a consequence of Pauli s exclusion principle) The low lying excitations of the full systems are called Landau quasiparticles

10 Adiabaticity II Turning on interactions conserves dynamical variables such as spin and momentum of excitations (this is a consequence of Pauli s exclusion principle) The low lying excitations of the full systems are called Landau quasiparticles

11 Scattering rate I Quasiparticle excitations come from adiabatic continuation of noninteracting states Thus, they need not be eigenstates of the new Hamiltonian. As such they have finite lifetime τ, arising solely from scattering with other quasiparticles We consider only long-lived excitations, viz, those having lifetime τ, where ɛ is the excitation energy ɛ Estimate scattering rate for external particle of energy ɛ 1

12 Scattering rate II It can be shown [Phillips, 2003] that the scattering rate 1 τ ρ = (ɛ 1 ɛ F ) 2 At low temperature T, we can take the average excitation energy to be k B T and hence we have 1 τ T 2 for small T Thus, transport properties, such as resistivity, have T 2 temperature dependance. This quadratic dependence is a key property of Fermi

13 Two-point I Like any field, the two-point correlator gives important information about the. We have the two point [Abrikosov et al., 1975] G( r 2 r 1, t 2 t 1 ) = i 0 T ψ( r 2, t 2 )ψ ( r 1, t 1 ) 0 where T denotes the time-ordered product, defined (for Fermionic operators A, B) as { A(t 1 )B(t 2 ) for t 1 > t 2 T A(t 1 )B(t 2 ) = B(t 2 )A(t 1 ) for t 2 > t 1 We expand G( r, t) in basis m of momentum eigenstates

14 Two-point II Use notation: E m E 0 = ɛ m + µ, E m E 0 = ɛ m µ µ is chemical potential Taking Fourier transform we get G( p, ω) = i + i m m δ( p p m ) ω ɛ m µ + iδ ψ 0m 2 δ( p + p m ) ω + ɛ m µ iδ ψ 0m 2

15 Analytic structure Seperating the real and imaginary parts in the expression we get Re G( p, ω) = 1 π P Im G( p, ω ) sgn(ω µ) ω ω We can define s G R, G A such that Re G = Re G R = Re G A Im G R = Im G sgn(ω µ) Im G A = Im G sgn(ω µ) Observe that G R, G A are analytic in upper- and lower-half plans respectively

16 Poles and residues Recall the expression for G(p, ω), δ( p p m ) G( p, ω) = i ω ɛ m µ + iδ ψ 0m 2 + i m m δ( p + p m ) ω + ɛ m µ iδ ψ 0m 2 Note that this expression has poles at ω = ɛ m + µ and ω = ɛ m + µ for all m, m That is, every single-particle excitation (quasiparticle or hole) corresponds to pole of the. For given quasiparticle state m (hole m ), we have pole at ω = ɛ m + µ (or ω = ɛ m + µ) with residues Z m = ψ 0m 2 = m ψ 0 2

17 Poles and residues Recall the expression for G(p, ω), Note that this expression has poles at ω = ɛ m + µ and ω = ɛ m + µ for all m, m That is, every single-particle excitation (quasiparticle or hole) corresponds to pole of the. For given quasiparticle state m (hole m ), we have pole at ω = ɛ m + µ (or ω = ɛ m + µ) with residues Z m = ψ 0m 2 = m ψ 0 2 Z m = ψ 0m 2 = m ψ 0 2 This is physical interpretation for residues

18 Occupation number I Suppose we have a given momentum state Let us write the number operator expectation value (Schrödinger representation) as This can be written as N( p) = S 0 ψ p ψ p 0 S N( p) = 2i lim t 0 + G( p, ω)e iωt dω We split this integral as µ G( p, ω)e iωt dω + µ G( p, ω)e iωt dω

19 Occupation number II Recall that for ω < µ (ω > µ), G has poles in upper (lower) half plane It can be shown that two parts of the integral cancel out, except for residue from pole corresponding to p (only if it is above p F ) [Lifshitz and Pitaevskii, 1980] Thus, we have N(p > p F ) N(p < p F ) = Z p where Z p is the residue at Fermi surface

20 Occupation number III Figure: Jump in the occupation number at the Fermi surface Jump in occupation number is another important property of Fermi Z = 1, 0 correspond to Fermi-gas and non- respectively

21 Breakdown of behaviour Over the past thirty years, materials have been found which behave as Fermi with renormalization of up to 10 3 (heavy Fermion systems) This illustrates the robustness of Landau s. However, materials have also been found that violate low-energy description of quasiparticles (eg.: High-T c cuprates) [Senthil, 2008]

22 Vanishing residue Suppose we expand a quasiparticle state perturbatively, [Varma et al., 2002] m = Z 1/2 m ψ 0 +N k 1,k 2,k 3 V (q p)c k 1 c k2 c k 3 δ(q; p) (first term is free particle creation, second one comes from interaction) We say behaviour breaks down as Z m 0 This is equivalent to diverging contribution from many-particle states

23 I Abrikosov, A., Gorkov, L., and Dzyaloshinski, I. (1975). Methods of quantum field in statistical physics. Dover books on physics. Dover Publications. Coleman, P. (2010). to many body physics. Rutgers University (draft version). Lifshitz, E. M. and Pitaevskii, L. P. (1980). Statistical Physics Part 2. Elsevier. Phillips, P. (2003). Advanced solid state physics. Frontiers in Physics Series. Westview Press.

24 II Pines, D. and Noziéres, P. (1966). The of quantum. W. A. Benjamin Inc. Schofield, A. J. (1999).. Contemporary Physics, 40: Senthil, T. (2008). Critical fermi surfaces and non-fermi liquid metals. Phys. Rev. B, 78(3): Varma, C. M., Nussinov, Z., and van Saarloos, W. (2002). Singular or non-fermi. Physics Reports, 361(5-6):

25 Acknowledgements I would like to thank my advisor Prof. K. Narayan for his support I would also like to thank my colleague, Debangshu Mukherjee, for helpful comments I also thank Prof. Baskaran, IMSc., and Prof. Kedar Damle, TIFR, for useful discussions

Landau-Fermi liquid theory

Landau-Fermi liquid theory Landau-Fermi liquid theory Shreyas Patankar Chennai Mathematical Institute Abstract We study the basic properties of Landau s theory of a system of interacting fermions (a Fermi liquid). The main feature

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

Fermi Liquid and BCS Phase Transition

Fermi Liquid and BCS Phase Transition Fermi Liquid and BCS Phase Transition Yu, Zhenhua November 2, 25 Abstract Landau fermi liquid theory is introduced as a successful theory describing the low energy properties of most fermi systems. Besides

More information

2.1 Green Functions in Quantum Mechanics

2.1 Green Functions in Quantum Mechanics Chapter 2 Green Functions and Observables 2.1 Green Functions in Quantum Mechanics We will be interested in studying the properties of the ground state of a quantum mechanical many particle system. We

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Billiard ball model for structure factor in 1-D Heisenberg anti-ferromagnets

Billiard ball model for structure factor in 1-D Heisenberg anti-ferromagnets Billiard ball model for structure factor in 1-D Heisenberg anti-ferromagnets Shreyas Patankar 1 Chennai Mathematical Institute August 5, 2010 1 Project with Prof. Kedar Damle, TIFR and Girish Sharma, Satyasai

More information

Lecture notes for QFT I (662)

Lecture notes for QFT I (662) Preprint typeset in JHEP style - PAPER VERSION Lecture notes for QFT I (66) Martin Kruczenski Department of Physics, Purdue University, 55 Northwestern Avenue, W. Lafayette, IN 47907-036. E-mail: markru@purdue.edu

More information

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 6. Fermion Pairing. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 6 Fermion Pairing WS2010/11: Introduction to Nuclear and Particle Physics Experimental indications for Cooper-Pairing Solid state physics: Pairing of electrons near the Fermi surface with antiparallel

More information

CCMS Summer 2007 Lecture Series Fermi- and non-fermi Liquids Lecture 3: Fermi-liquid Theory

CCMS Summer 2007 Lecture Series Fermi- and non-fermi Liquids Lecture 3: Fermi-liquid Theory CCMS Summer 2007 Lecture Series Fermi- and non-fermi Liquids Lecture 3: Fermi-liquid Theory Dmitrii L. Maslov maslov@phys.ufl.edu (Dated: July 22, 2007) 1 Notation 1 Here and thereafter, L1 stands for

More information

Fermi liquids and fractional statistics in one dimension

Fermi liquids and fractional statistics in one dimension UiO, 26. april 2017 Fermi liquids and fractional statistics in one dimension Jon Magne Leinaas Department of Physics University of Oslo JML Phys. Rev. B (April, 2017) Related publications: M Horsdal, M

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID ABSTRACT--- I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Green Functions in Many Body Quantum Mechanics

Green Functions in Many Body Quantum Mechanics Green Functions in Many Body Quantum Mechanics NOTE This section contains some advanced material, intended to give a brief introduction to methods used in many body quantum mechanics. The material at the

More information

Correlated Electron Compounds: from real materials to model systems and back again

Correlated Electron Compounds: from real materials to model systems and back again Correlated Electron Compounds: from real materials to model systems and back again A. J. Millis Boulder 2010 Stereotypical theoretical physicist s view of condensed matter physics Crystal structure =>

More information

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 5 Hartree-Fock Theory WS2010/11: Introduction to Nuclear and Particle Physics Particle-number representation: General formalism The simplest starting point for a many-body state is a system of

More information

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit:

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: Chapter 13 Ideal Fermi gas The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: k B T µ, βµ 1, which defines the degenerate Fermi gas. In this

More information

Landau Theory of Fermi Liquids : Equilibrium Properties

Landau Theory of Fermi Liquids : Equilibrium Properties Quantum Liquids LECTURE I-II Landau Theory of Fermi Liquids : Phenomenology and Microscopic Foundations LECTURE III Superfluidity. Bogoliubov theory. Bose-Einstein condensation. LECTURE IV Luttinger Liquids.

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

Bosonization of 1-Dimensional Luttinger Liquid

Bosonization of 1-Dimensional Luttinger Liquid Bosonization of 1-Dimensional Luttinger Liuid Di Zhou December 13, 2011 Abstract Due to the special dimensionality of one-dimensional Fermi system, Fermi Liuid Theory breaks down and we must find a new

More information

QUALIFYING EXAMINATION, Part 1. 2:00 PM 5:00 PM, Thursday September 3, 2009

QUALIFYING EXAMINATION, Part 1. 2:00 PM 5:00 PM, Thursday September 3, 2009 QUALIFYING EXAMINATION, Part 1 2:00 PM 5:00 PM, Thursday September 3, 2009 Attempt all parts of all four problems. Please begin your answer to each problem on a separate sheet, write your 3 digit code

More information

Lecture 3: Fermi-liquid theory. 1 General considerations concerning condensed matter

Lecture 3: Fermi-liquid theory. 1 General considerations concerning condensed matter Phys 769 Selected Topics in Condensed Matter Physics Summer 200 Lecture 3: Fermi-liquid theory Lecturer: Anthony J. Leggett TA: Bill Coish General considerations concerning condensed matter (NB: Ultracold

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

Strange metal from local quantum chaos

Strange metal from local quantum chaos Strange metal from local quantum chaos John McGreevy (UCSD) hello based on work with Daniel Ben-Zion (UCSD) 2017-08-26 Compressible states of fermions at finite density The metallic states that we understand

More information

Causality. but that does not mean it is local in time, for = 1. Let us write ɛ(ω) = ɛ 0 [1 + χ e (ω)] in terms of the electric susceptibility.

Causality. but that does not mean it is local in time, for = 1. Let us write ɛ(ω) = ɛ 0 [1 + χ e (ω)] in terms of the electric susceptibility. We have seen that the issue of how ɛ, µ n depend on ω raises questions about causality: Can signals travel faster than c, or even backwards in time? It is very often useful to assume that polarization

More information

MANY BODY PHYSICS - HT Meeting 3 pt.1: Mattuck Chapter 0-2

MANY BODY PHYSICS - HT Meeting 3 pt.1: Mattuck Chapter 0-2 MANY BODY PHYSICS - HT 2007 Meeting 3 pt.1: Mattuck Chapter 0-2 1 1 The Many-Body Problem for Everybody 1.1 The many body problem Systems of many interacting bodies. Examples: Nucleons in a nucleus Electrons

More information

V. FERMI LIQUID THEORY

V. FERMI LIQUID THEORY V. FERMI LIQUID THEORY Markus Holzmann LPMMC, Maison de Magistère, Grenoble, and LPTMC, Jussieu, Paris markus@lptl.jussieu.fr http://www.lptl.jussieu.fr/users/markus/cours.html (Dated: March 30, 2010)

More information

Condensed matter theory Lecture notes and problem sets 2012/2013

Condensed matter theory Lecture notes and problem sets 2012/2013 Condensed matter theory Lecture notes and problem sets 2012/2013 Dmitri Ivanov Recommended books and lecture notes: [AM] N. W. Ashcroft and N. D. Mermin, Solid State Physics. [Mar] M. P. Marder, Condensed

More information

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM I. The interaction of electromagnetic fields with matter. The Lagrangian for the charge q in electromagnetic potentials V

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Lecture 2: Ultracold fermions

Lecture 2: Ultracold fermions Lecture 2: Ultracold fermions Fermions in optical lattices. Fermi Hubbard model. Current state of experiments Lattice modulation experiments Doublon lifetimes Stoner instability Ultracold fermions in optical

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest

Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest Lecture 6: Fluctuation-Dissipation theorem and introduction to systems of interest In the last lecture, we have discussed how one can describe the response of a well-equilibriated macroscopic system to

More information

7.4. Why we have two different types of materials: conductors and insulators?

7.4. Why we have two different types of materials: conductors and insulators? Phys463.nb 55 7.3.5. Folding, Reduced Brillouin zone and extended Brillouin zone for free particles without lattices In the presence of a lattice, we can also unfold the extended Brillouin zone to get

More information

a = ( a σ )( b σ ) = a b + iσ ( a b) mω 2! x + i 1 2! x i 1 2m!ω p, a = mω 2m!ω p Physics 624, Quantum II -- Final Exam

a = ( a σ )( b σ ) = a b + iσ ( a b) mω 2! x + i 1 2! x i 1 2m!ω p, a = mω 2m!ω p Physics 624, Quantum II -- Final Exam Physics 624, Quantum II -- Final Exam Please show all your work on the separate sheets provided (and be sure to include your name). You are graded on your work on those pages, with partial credit where

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Monday, April 13. Today: equation of motion method (EOM) Dyson equation and Self-energy. Many-Body Green s Functions

Monday, April 13. Today: equation of motion method (EOM) Dyson equation and Self-energy. Many-Body Green s Functions Monday, April 13 Today: equation of motion method (EOM) Dyson equation and Self-energy Unperturbed propagator Take a system of non interacting fermions The unperturbed propagator is: ( ) or Unperturbed

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Transport Coefficients of the Anderson Model via the numerical renormalization group

Transport Coefficients of the Anderson Model via the numerical renormalization group Transport Coefficients of the Anderson Model via the numerical renormalization group T. A. Costi 1, A. C. Hewson 1 and V. Zlatić 2 1 Department of Mathematics, Imperial College, London SW7 2BZ, UK 2 Institute

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA Shigeji Fujita and Salvador V Godoy Mathematical Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII Table of Contents and Categories XV Constants, Signs, Symbols, and General Remarks

More information

REVIEW REVIEW. Quantum Field Theory II

REVIEW REVIEW. Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Lecture 1: The Equilibrium Green Function Method

Lecture 1: The Equilibrium Green Function Method Lecture 1: The Equilibrium Green Function Method Mark Jarrell April 27, 2011 Contents 1 Why Green functions? 2 2 Different types of Green functions 4 2.1 Retarded, advanced, time ordered and Matsubara

More information

Microscopic Properties of BCS Superconductors (cont.)

Microscopic Properties of BCS Superconductors (cont.) PHYS598 A.J.Leggett Lecture 8 Microscopic Properties of BCS Superconductors (cont.) 1 Microscopic Properties of BCS Superconductors (cont.) References: Tinkham, ch. 3, sections 7 9 In last lecture, examined

More information

Summary of Mattuck Chapters 16 and 17

Summary of Mattuck Chapters 16 and 17 Summary of Mattuck Chapters 16 and 17 Tomas Petersson Växjö university 2008-02-05 1 Phonons form a Many-Body Viewpoint Hamiltonian for coupled Einstein phonons Definition of Einstein phonon propagator

More information

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I Physics 342 Lecture 30 Solids Lecture 30 Physics 342 Quantum Mechanics I Friday, April 18th, 2008 We can consider simple models of solids these highlight some special techniques. 30.1 An Electron in a

More information

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m LS coupling 1 The big picture We start from the Hamiltonian of an atomic system: H = [ ] 2 2 n Ze2 1 + 1 e 2 1 + H s o + H h f + H B. (1) 2m n e 4πɛ 0 r n 2 4πɛ 0 r nm n,m Here n runs pver the electrons,

More information

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0,

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0, 5. Superconductivity In this chapter we shall introduce the fundamental experimental facts about superconductors and present a summary of the derivation of the BSC theory (Bardeen Cooper and Schrieffer).

More information

Universal theory of complex SYK models and extremal charged black holes

Universal theory of complex SYK models and extremal charged black holes HARVARD Universal theory of complex SYK models and extremal charged black holes Subir Sachdev Jerusalem Winter School, December 31, 2018 HARVARD Wenbo Fu Yingfei Gu Grigory Tarnopolsky 1. Quantum matter

More information

Non-Fermi liquids. A. J. Schofield

Non-Fermi liquids. A. J. Schofield Non-Fermi liquids A. J. Schofield The University of Cambridge, Department of Physics, The Theory of Condensed Matter Group, The Cavendish Laboratory, Madingley Road, Cambridge. CB3 HE November 11, 1998

More information

Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or "Second Quantization"

Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or Second Quantization Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or "Second Quantization" Outline 1 Bosons and Fermions 2 N-particle wave functions ("first quantization" 3 The method of quantized

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 25 Jun 2003

arxiv:cond-mat/ v2 [cond-mat.str-el] 25 Jun 2003 Magnetic field-induced Landau Fermi Liquid in high-t c metals M.Ya. Amusia a,b, V.R. Shaginyan a,c 1 arxiv:cond-mat/0304432v2 [cond-mat.str-el] 25 Jun 2003 a The Racah Institute of Physics, the Hebrew

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

3. Quantum matter without quasiparticles

3. Quantum matter without quasiparticles 1. Review of Fermi liquid theory Topological argument for the Luttinger theorem 2. Fractionalized Fermi liquid A Fermi liquid co-existing with topological order for the pseudogap metal 3. Quantum matter

More information

Photoemission Studies of Strongly Correlated Systems

Photoemission Studies of Strongly Correlated Systems Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005 MgB2 High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations

More information

Renormalization Group and Fermi Liquid. Theory. A.C.Hewson. Dept. of Mathematics, Imperial College, London SW7 2BZ. Abstract

Renormalization Group and Fermi Liquid. Theory. A.C.Hewson. Dept. of Mathematics, Imperial College, London SW7 2BZ. Abstract Renormalization Group and Fermi Liquid Theory A.C.Hewson Dept. of Mathematics, Imperial College, London SW7 2BZ. Abstract We give a Hamiltonian based interpretation of microscopic Fermi liquid theory within

More information

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford) Wilsonian and large N theories of quantum critical metals Srinivas Raghu (Stanford) Collaborators and References R. Mahajan, D. Ramirez, S. Kachru, and SR, PRB 88, 115116 (2013). A. Liam Fitzpatrick, S.

More information

Physics 622: Quantum Mechanics -- Part II --

Physics 622: Quantum Mechanics -- Part II -- Physics 622: Quantum Mechanics -- Part II -- Prof. Seth Aubin Office: room 255, Small Hall, tel: 1-3545 Lab: room 069, Small Hall (new wing), tel: 1-3532 e-mail: saaubi@wm.edu web: http://www.physics.wm.edu/~saubin/index.html

More information

561 F 2005 Lecture 14 1

561 F 2005 Lecture 14 1 56 F 2005 Lecture 4 56 Fall 2005 Lecture 4 Green s Functions at Finite Temperature: Matsubara Formalism Following Mahan Ch. 3. Recall from T=0 formalism In terms of the exact hamiltonian H the Green s

More information

Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found.

Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found. Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found. In applying quantum mechanics to 'real' chemical problems, one is usually faced with a Schrödinger

More information

Toward a unified description of equilibrium and dynamics of neutron star matter

Toward a unified description of equilibrium and dynamics of neutron star matter Toward a unified description of equilibrium and dynamics of neutron star matter Omar Benhar INFN and Department of Physics Sapienza Università di Roma I-00185 Roma, Italy Based on work done in collaboration

More information

Time dependent perturbation theory 1 D. E. Soper 2 University of Oregon 11 May 2012

Time dependent perturbation theory 1 D. E. Soper 2 University of Oregon 11 May 2012 Time dependent perturbation theory D. E. Soper University of Oregon May 0 offer here some background for Chapter 5 of J. J. Sakurai, Modern Quantum Mechanics. The problem Let the hamiltonian for a system

More information

V. ELECTRON GAS, RANDOM PHASE APPROXIMATION

V. ELECTRON GAS, RANDOM PHASE APPROXIMATION V. ELECTRON GAS, RANDOM PHASE APPROXIMATION Marus Holzmann LPMMC, Maison de Magistère, Grenoble, and LPTMC, Jussieu, Paris marus@lptl.jussieu.fr http://www.lptl.jussieu.fr/users/marus/cours.html (Dated:

More information

Review of scalar field theory. Srednicki 5, 9, 10

Review of scalar field theory. Srednicki 5, 9, 10 Review of scalar field theory Srednicki 5, 9, 10 2 The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate

More information

QUANTUM CHAOS IN NUCLEAR PHYSICS

QUANTUM CHAOS IN NUCLEAR PHYSICS QUANTUM CHAOS IN NUCLEAR PHYSICS Investigation of quantum chaos in nuclear physics is strongly hampered by the absence of even the definition of quantum chaos, not to mention the numerical criterion of

More information

with a proper choice of the potential U(r). Clearly, we should include the potential of the ions, U ion (r):.

with a proper choice of the potential U(r). Clearly, we should include the potential of the ions, U ion (r):. The Hartree Equations So far we have ignored the effects of electron-electron (e-e) interactions by working in the independent electron approximation. In this lecture, we shall discuss how this effect

More information

Optics and Response Functions

Optics and Response Functions Theory seminar: Electronic and optical properties of graphene Optics and Response Functions Matthias Droth, 04.07.2013 Outline: Light absorption by Dirac fermions Intro: response functions The optics of

More information

ASPECTS OF QUANTUM CRITICALITY IN ITINERANT ELECTRON FERROMAGNETIC SYSTEMS

ASPECTS OF QUANTUM CRITICALITY IN ITINERANT ELECTRON FERROMAGNETIC SYSTEMS ASPECTS OF QUANTUM CRITICALITY IN ITINERANT ELECTRON FERROMAGNETIC SYSTEMS by MARTYN LAURENCE LAWLEY A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of

More information

A guide to. Feynman diagrams in the many-body problem

A guide to. Feynman diagrams in the many-body problem A guide to. Feynman diagrams in the many-body problem Richard D. Mattuck SECOND EDITION PAGE Preface to second edition v Preface to first edition. vi i 0. The Many-Body Problem for Everybody 1 0.0 What

More information

Superfluid 3 He. Miguel A. Morales

Superfluid 3 He. Miguel A. Morales Superfluid 3 He Miguel A. Morales Abstract In this report I will discuss the main properties of the superfluid phases of Helium 3. First, a brief description of the experimental observations and the phase

More information

Singular or non-fermi liquids

Singular or non-fermi liquids Physics Reports 361 (2002) 267 417 Singular or non-fermi liquids C.M. Varma a;b;1, Z. Nussinov b, Wim van Saarloos b; a Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, USA b Universiteit

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Welcome to the Solid State

Welcome to the Solid State Max Planck Institut für Mathematik Bonn 19 October 2015 The What 1700s 1900s Since 2005 Electrical forms of matter: conductors & insulators superconductors (& semimetals & semiconductors) topological insulators...

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

PHYS 508 (2015-1) Final Exam January 27, Wednesday.

PHYS 508 (2015-1) Final Exam January 27, Wednesday. PHYS 508 (2015-1) Final Exam January 27, Wednesday. Q1. Scattering with identical particles The quantum statistics have some interesting consequences for the scattering of identical particles. This is

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Physics 139B Solutions to Homework Set 4 Fall 2009

Physics 139B Solutions to Homework Set 4 Fall 2009 Physics 139B Solutions to Homework Set 4 Fall 9 1. Liboff, problem 1.16 on page 594 595. Consider an atom whose electrons are L S coupled so that the good quantum numbers are j l s m j and eigenstates

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Introduction to particle physics Lecture 2

Introduction to particle physics Lecture 2 Introduction to particle physics Lecture 2 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Quantum field theory Relativistic quantum mechanics Merging special relativity and quantum mechanics

More information

MP464: Solid State Physics Problem Sheet

MP464: Solid State Physics Problem Sheet MP464: Solid State Physics Problem Sheet 1 Write down primitive lattice vectors for the -dimensional rectangular lattice, with sides a and b in the x and y-directions respectively, and a face-centred rectangular

More information

Physics 127a: Class Notes

Physics 127a: Class Notes Physics 127a: Class Notes Lecture 15: Statistical Mechanics of Superfluidity Elementary excitations/quasiparticles In general, it is hard to list the energy eigenstates, needed to calculate the statistical

More information

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1 Physics 624, Quantum II -- Exam 1 Please show all your work on the separate sheets provided (and be sure to include your name) You are graded on your work on those pages, with partial credit where it is

More information

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q APAS 50. Internal Processes in Gases. Fall 999. Transition Probabilities and Selection Rules. Correspondence between Classical and Quantum Mechanical Transition Rates According to the correspondence principle

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

equals the chemical potential µ at T = 0. All the lowest energy states are occupied. Highest occupied state has energy µ. For particles in a box:

equals the chemical potential µ at T = 0. All the lowest energy states are occupied. Highest occupied state has energy µ. For particles in a box: 5 The Ideal Fermi Gas at Low Temperatures M 5, BS 3-4, KK p83-84) Applications: - Electrons in metal and semi-conductors - Liquid helium 3 - Gas of Potassium 4 atoms at T = 3µk - Electrons in a White Dwarf

More information