NMR in Strongly Correlated Electron Systems

Size: px
Start display at page:

Download "NMR in Strongly Correlated Electron Systems"

Transcription

1 NMR in Strongly Correlated Electron Systems Vesna Mitrović, Brown University Journée Claude Berthier, Grenoble, September 211

2 C. Berthier, M. H. Julien, M. Horvatić, and Y. Berthier, J. Phys. I France 6, 225 (1996). M. H. Julien, T. Fehér, M. Horvatić, C. Berthier, O. N. Bakharev, P. Ségransan, G.Collin, and J. F. Marucco, Phys. Rev. Lett. 84, 3422 (2).

3 2D Electron Gas MBE heterostructures M242 and M28 1 layers: E 2D Electron Gas in H z : B = B >> 25 nm 3 nm 185 nm 25 nm eb /m* GaAs Ga.7 Al.3 As Si delta doping Ga.9 Al.1 As e - density n = eb /h gµ Β Β n n (E) LLL filling factor ν = 1 S.E. Barrett and collaborators, Yale University - OP-NMR [Fig: S. Melinte, PhD thesis (21)] C. Bertier and collaborators, GNHMFL,Grenoble - NMR

4 2D Electron Gas NMR line-shift ( 69,71 Ga) N N K S P = = 2 N + N n average spin polarisation k S z k GaAs QWs: 2D electrons shift K S AlGaAs barriers: no electrons reference 1 layers: 3 nm 25 nm GaAs Ga.7 Al.3 As Si delta doping Ga.9 Al.1 As K S (R i ) P(R i )ρ e (R i ) (GNHMFL,Grenoble)

5 2D Electron Gas NMR line-shift ( 69,71 Ga) N N K S P = = 2 N + N n average spin polarisation k S z k GaAs QWs: 2D electrons shift K S AlGaAs barriers: no electrons reference K S (R i ) P(R i )ρ e (R i ) (GNHMFL,Grenoble)

6 2D Electron Gas NMR line-shift ( 69,71 Ga) N N K S P = = 2 N + N n average spin polarisation k 3 nm S z k 25 nm GaAs QWs: 2D electrons shift K S AlGaAs barriers: no electrons reference barriers Quantum Wells K S (R i ) P(R i )ρ e (R i ) close to Si δ-doping (GNHMFL,Grenoble)

7 2D Electron Gas NMR line-shift ( 69,71 Ga) K S P = N N N + N = 2 n average spin polarisation k S z k P(gµ B H/k B T ) if g GaAs QWs: 2D electrons shift K S AlGaAs barriers: no electrons reference 1 layers: 3 nm 25 nm GaAs Ga.7 Al.3 As Si delta doping Ga.9 Al.1 As (GHMFL,Grenoble) S. Melinte, et al., Phys. Rev. B 64, (21).

8 ν =1 state - elementary excitations? Localized holes and electrons Skyrmion Anti-skyrmion S.L. Sondhi et al., Phys. Rev. B 47, (1993). H. A. Fertig et al., Phys. Rev. B 5, 1118 (1994). Energy gap & size (s) S.E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995). P. Khandelwal et al., Phys. Rev. Lett. 86, 5353 (21). g = E z E c

9 Skyrmion Size (S) Energy gap & size (s = N o of reversed spins within an excitation) g = E z E c Limits # of spin-flips Favors FM ordering E z = gµ B B E c = e 2 εl B g s To vary skyrmion size tune g : g - hydrostatic pressure - Al.13 Ga.87 As - QW (g theory = -.4 ; g GaAs =.44)

10 Large Skyrmions in Al.13 Ga.87 As (g ) Quantum Wells Magnetotransport measurements in Al.13 Ga.87 As QW (S. P. Shukla et al., PRB 61, 4469 (2)) s 5 Small g sample: 3 QWs g theory = -.4 g GaAs =.44 n 2D = cm -2 Problem: How to separate the signals? P(gµ B H/k B T ) m = 3 cm 2 / Vs QW: 24 nm of Al.13 Ga.87 As 1. barrier ----> 71 Ga, ν = 1 barriers: nm of Al.35 Ga.65 As.8 T = 65 mk Magnitude [a. u.] Frequency [MHz]

11 Separate overlapping QW and barriers signal? Small tip angle technique : M(t), pulse, signal π/2 t = π t = τ M (t=2τ) t = 2τ repeat t = T R time S N = f TR, Tip Angle T 1

12 Separate overlapping QW and barriers signal? Small tip angle technique : M(t), pulse, signal π/2 t = π t = τ M (t=2τ) t = 2τ repeat t = T R time S N = f TR, Tip Angle T 1

13 Separate overlapping QW and barriers signal? Small tip angle technique : M(t), pulse, signal π/2 t = π t = τ M (t=2τ) t = 2τ repeat t = T R time % 9 % S N = f TR, Tip Angle T 1 Tip Angle θ [rad] % 7 % 6 % 5 % 4 % 3 % 2 %.4 1 % T R / T 1

14 Separate overlapping QW and barriers signal? Small tip angle technique : S N = f TR, Tip Angle T 1 GOOD!!! very different T 1 for QW and barriers Pulse power dependence : Tip Angle θ [rad] % 9 % 8 % 7 % 6 % 5 % 4 % 3 % 2 % Amplitude [a. u.] T = 65 mk barriers QW.4 1 % T R / T Frequency [MHz] Pulse Length [µs] 2 µs =.75 π/2 [V. Mitrović et al., 27]

15 QW signal Magnitude [a. u.] Ga, ν = 1 QW contribution only (barriers subtracted) T = 65 mk 13 mk 28 mk 315 mk 375 mk 45 mk 612 mk 7 mk 98 mk "P = 1" Frequency [KHz] Frequency shift [KHz] Line Width (FWHM) Average Line Position Polarization Frequency [KHz] Temperature [K] 1. g -.1 g GaAs at low-t : "negative", small, strongly inhomogeneous polarization

16 Superconductor in a Magnetic Field The destruction of SC by a magnetic field I. Orbital Effect II. Pauli paramagnetism Abrikosov Vortex Lattice Cooper-pairs Breaking G-L Equation: H orb c 2 = Φ 2πξ 2 E P = E c H P c 2 = 2 gµ B STM images obtained at NIST Relative importance of the two effects described by the Maki Parameter: α = 2 Horb c 2 Hc P χ nh 2 = 1 2 N() 2 χ n = 1 2 (gµ B) 2 N

17 The FFLO State Pauli pair breaking dominates over the orbital effects α 2 Horb C 2 HC P > a novel SC phase - FFLO is predicted to form FFLO * Cooper pairs acquire finite momentum, q 2µ B H/v F & (r) varies periodically in space (r) 1/q BCS k, k FFLO k, k + q q 2µ BH u F P. Fulde and R. A. Ferrell, Phys. Rev. 135, A55 (1964); A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964).

18 The FFLO State Pauli pair breaking dominates over the orbital effects α 2 Horb C 2 HC P > a novel SC phase - FFLO is predicted to form FFLO * Cooper pairs acquire finite momentum, q 2µ B H/v F & (r) varies periodically in space (r) 1/q P. Fulde and R. A. Ferrell, Phys. Rev. 135, A55 (1964); A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964).

19 FFLO SC Imbalanced Spin Population T= E Nature and stability of SC phase with population imbalanced? k' k E F FFLO P. Fulde and R. A. Ferrell, Phys. Rev. 135, A55 (1964); A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964). ~ µ B B q = k' - k Phases with gapless excitations g(e) G. Sarma, J. Phys. Chem. Solids 24, 129 (1963); breached pair SC - W. V. Liu and F. Wilczek, PRL. 9, 472 (23); R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. 76, 263 (24). Mixed Phases of SC and Normal P. F. Bedaque, H. Caldas, G. Rupak PRL 91, 2472 (23); H. Caldas, PRA 69, 6362 (24); J. Carlson, S. Reddy, PRL 95, 641 (25); M. W. Zwierlein et al., Science 311, 492 (26).

20 FFLO Observed? The conditions for the FFLO to stabilize are very stringent: H orb c 2 Type-II SC with very high are required so that the Pauli paramagnetic limit can be reached. In other words the FFLO state can form only in materials with large Maki parameter ( α>1.8). Materials with high purity are required (ξ l) since impurities destroy the FFLO state. Materials with anisotropic Fermi surface or gap function are more likely to observe an FFLO phase since such anisotropy favors its stabilization. The dimensionality of the system can also be crucial. Low dimensionality proves to be beneficial.

21 CeCoIn5 Heavy-Fermion SC : ( Tc = 2.3 K) CeCoIn5 H orb c 2 1 ξ 2 (m ) 2 Very Clean Material : very high. l 3 nm ξ 3 Å Ce Co In1 In2 Anisotropic SC gap function : d x 2 y 2 symmetry with line nodes. Layered structure. quasi-2d electronic nature Rich ground for interesting physics: Unconventional SC, Quantum Criticality, Interplay of SC and Magnetism

22 Phase Diagram 12 1 H [1] H [T] H [T] H [1] T T [K] [K] A. Bianchi et al., PRL 91, 1874 (23)

23 Phase Diagram 12 1 H [1] H [T] H [T] H [1] T T [K] [K] A. Bianchi et al., PRL 91, 1874 (23)

24 Phase Diagram H [T] H [T] FFLO? H [1] H [1] Pauli pair breaking dominates over the orbital effects Other reports supporting the FFLO: Thermal conductivity Magnetization Penetration depth Ultrasound velocity NMR α 2 Horb C 2 HC P > T T [K] [K] A. Bianchi et al., PRL 91, 1874 (23) & a novel SC phase - FFLO is predicted to form Cooper pairs acquire finite (r) momentum, q 2µ B H/u F (r) varies periodically in space. 1/q

25 Phase Diagram H [T] H [T] FFLO? mag. order! H [1] H [1] Pauli pair breaking dominates over the orbital effects Other reports supporting the FFLO: Thermal conductivity Magnetization Penetration depth Ultrasound velocity NMR α 2 Horb C 2 HC P > T T [K] [K] A. Bianchi et al., PRL 91, 1874 (23) & a novel SC phase - FFLO is predicted to form Cooper pairs acquire finite (r) momentum, q 2µ B H/u F (r) varies periodically in space. 1/q NMR and Neutron Diffraction reveal long-range magnetism nature of SC, character of magnetic order, driving mechanism of their coexistence?

26 NMR Measurements Ce Co In1 In2 H [1]

27 NMR Measurements Ce Co In1 In2 H [1]

28 NMR Measurements Ce Co In1 In2 H [1]

29 NMR Measurements Ce Co In1 In2 H [1]

30 NMR Measurements Ce Co In1 In2 H [1] FFLO * (r) varies periodically in space ξ 35 Å LRO a 5 Å Same features on all 3 India SC Different features on different In sites MAGNETISM

31 Phase Diagram by NMR IC + FFLO? H* Normal H [T] 1 9 esc H c2 8 lfsc Temperature [K] G. Koutroulakis et al., PRL (21).

32 Phase Diagram by NMR IC + FFLO? H* Normal H [T] 1 9 esc H c2 8 lfsc Temperature [K] G. Koutroulakis, M. D. Stewart, Brown University G. Koutroulakis et al., PRL (21). M. Horvatić, C. Berthier, Laboratoire National des Champs Magnétiques Intenses, CNRS G. Lapertot, G. Knebel, J. Flouquet, SPSMS, CEA, Grenoble CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

33 SC & AF G. Knebel et al., J. Phys. Soc. Jpn. 77, (28). (28). V. F. Mitrovic et al., Physica B 43, 986 (28). Ce Co In1 In AF FFLO N H [T] 9 8 SC Temperature [mk]

34 Phase Diagram by NMR H [T] IC + FFLO?.2 H* Normal esc lfsc Temperature [K] H c Magnitude [arb.units] IC In(1) In(1) In(2 ) ac ( H o ) H o = T T T T T T 1.95 T 1.76 T 1.69 T 1.63 T SC T~ 7 mk In (2 ) ac G. Koutroulakis et al., PRL 14, 871 (21) 9.67 T 9.43 T f - f [MHz] res 1.36 T 9.94 T 9.9 T 7.99 T

35 Phase Diagram by NMR H [T] IC + FFLO?.2 H* Normal esc lfsc Temperature [K] H c Magnitude [arb.units] IC In(1) In(1) In(2 ) ac ( H o ) H o = T T T T T T 1.95 T 1.76 T 1.69 T 1.63 T SC T~ 7 mk In (2 ) ac G. Koutroulakis et al., PRL 14, 871 (21) 9.67 T 9.43 T f - f [MHz] res 1.36 T 9.94 T 9.9 T 7.99 T

36 Phase Diagram by NMR IC + FFLO? H* Normal H [T] 1 9 esc H c2 8 lfsc Temperature [K]

37 Phase Diagram by NMR H [T] IC + FFLO?.2 H* Normal esc lfsc Temperature [K] H c Magnitude [arb.units] IC In(1) T~ 7 mk In(2 ) ac ( H o ) In (2 ) ac 9.67 T 9.43 T f - f [MHz] res H o = T T 1.36 T 9.94 T 9.9 T 7.99 T Rapid loss of spin coherence Strong AF fluctuations present

38 Phase Diagram by NMR H [T] IC + FFLO?.2 H* Normal esc lfsc Temperature [K] H c Magnitude [arb.units] IC In(1) T~ 7 mk In(2 ) ac ( H o ) In (2 ) ac 9.67 T 9.43 T f - f [MHz] res H o = T T 1.36 T 9.94 T 9.9 T 7.99 T Rapid loss of spin coherence Strong AF fluctuations present Significant line broadening Enhanced susceptibility around defects

39 Phase Diagram by NMR H [T] IC + FFLO?.2 H* Normal esc lfsc Temperature [K] H c Magnitude [arb.units] IC In(1) T~ 7 mk In(2 ) ac ( H o ) In (2 ) ac 9.67 T 9.43 T f - f [MHz] res H o = T T 1.36 T 9.94 T 9.9 T 7.99 T Rapid loss of spin coherence Strong AF fluctuations present Significant line broadening Enhanced susceptibility around defects New Phase: possibly a FFLO in the presence of strong AF fluctuations Y. Yanase & M. Sigrist, J. Phys. Soc. Jpn. 78, (29).

NMR: Examples. Vesna Mitrović, Brown University. Boulder Summer School, 2008

NMR: Examples. Vesna Mitrović, Brown University. Boulder Summer School, 2008 NMR: Examples Vesna Mitrović, Brown University Boulder Summer School, 2008 To Remember Static NMR Spectrum Measurements Local Magnetic Field Probability Distribution ω n = γ n H loc = γ n (H 0 + H hf )

More information

Fulde Ferrell Larkin Ovchinnikov State in Heavy Fermion Superconductors

Fulde Ferrell Larkin Ovchinnikov State in Heavy Fermion Superconductors Typeset with jpsj2.cls Full Paper Fulde Ferrell Larkin Ovchinnikov State in Heavy Fermion Superconductors Y. Matsuda 1,2 and H. Shimahara 3 1 Department of Physics, Kyoto University, Kitashirakawa,

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 21 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.supr-con] 21 Feb 2007 Typeset with jpsj2.cls Full Paper Fulde Ferrell Larkin Ovchinnikov State in Heavy Fermion Superconductors Y. Matsuda 1,2 and H. Shimahara 3 arxiv:cond-mat/0702481v1 [cond-mat.supr-con] 21 Feb

More information

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields---

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields--- Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields--- Kazu. Machida Okayama Univ collaborators M. Ichioka, T. Mizushima, H. Adachi, N. Nakai, Y. Tsutsumi Outline Phenomena related

More information

Superconductivity and Electron Correlations in Ruthenates

Superconductivity and Electron Correlations in Ruthenates University of St Andrews School of Physics and Astronomy Superconductivity and Electron Correlations in Ruthenates Andy Mackenzie University of St Andrews, UK Key collaborator: Yoshi Maeno, Kyoto University

More information

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl Magnetism, Bad Metals and Superconductivity: Iron Pnictides and Beyond September 11, 2014 Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises Gertrud Zwicknagl Institut

More information

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Chengfu Mu, Peking University Collaborated with Lianyi He, J.W.Goethe University Prof. Yu-xin Liu, Peking University

More information

Superconductivity at high magnetic field

Superconductivity at high magnetic field Superconductivity at high magnetic field How can we achieve superconductivity at very high magnetic fields? What sort of materials should we choose to look at? Theory - introduction to superconductivity

More information

Knight Shift Measurements on Superconducting Sr 2 RuO 4

Knight Shift Measurements on Superconducting Sr 2 RuO 4 Knight Shift Measurements on Superconducting Sr 2 RuO 4 c b a Sr 2 RuO 4 Sr Ru O RuO 2 plane Layered Perovskite structure Maeno et al. Nature 372, 532 ( 94) K. Ishida A,B,. Murakawa, A. Mukuda, B Y. Kitaoka,

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localised ferromagnetism: moments localised in real space Ferromagnet

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Spontaneous currents in ferromagnet-superconductor heterostructures

Spontaneous currents in ferromagnet-superconductor heterostructures Institute of Physics and Nanotechnology Center UMCS Spontaneous currents in ferromagnet-superconductor heterostructures Mariusz Krawiec Collaboration: B. L. Györffy & J. F. Annett Bristol Kazimierz 2005

More information

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s.

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s. 1957-2 Miniworkshop on Strong Correlations in Materials and Atom Traps 4-15 August 2008 Superconductivity, magnetism and criticality in the 115s. THOMPSON Joe David Los Alamos National Laboratory Materials

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Non-centrosymmetric superconductivity

Non-centrosymmetric superconductivity Non-centrosymmetric superconductivity Huiqiu Yuan ( 袁辉球 ) Department of Physics, Zhejiang University 普陀 @ 拓扑, 2011.5.20-21 OUTLINE Introduction Mixture of superconducting pairing states in weak coupling

More information

Disordered Superconductors

Disordered Superconductors Cargese 2016 Disordered Superconductors Claude Chapelier, INAC-PHELIQS, CEA-Grenoble Superconductivity in pure metals Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

Phase diagrams of pressure-tuned Heavy Fermion Systems

Phase diagrams of pressure-tuned Heavy Fermion Systems Phase diagrams of pressure-tuned Heavy Fermion Systems G. Knebel, D. Aoki, R. Boursier, D. Braithwaite, J. Derr, Y. Haga, E. Hassinger, G. Lapertot, M.-A. Méasson, P.G. Niklowitz, A. Pourret, B. Salce,

More information

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Sashi Satpathy Department of Physics University of Missouri, Columbia, USA E Ref: K. V. Shanavas and S. Satpathy, Phys. Rev.

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Color Superconductivity in High Density QCD

Color Superconductivity in High Density QCD Color Superconductivity in High Density QCD Roberto Casalbuoni Department of Physics and INFN - Florence Bari,, September 9 October 1, 004 1 Introduction Motivations for the study of high-density QCD:

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

High-Temperature Superconductors: Playgrounds for Broken Symmetries

High-Temperature Superconductors: Playgrounds for Broken Symmetries High-Temperature Superconductors: Playgrounds for Broken Symmetries Gauge / Phase Reflection Time Laura H. Greene Department of Physics Frederick Seitz Materials Research Laboratory Center for Nanoscale

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Gareth Conduit Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localized ferromagnetism: moments localised in

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes Anomalous spin suscep.bility and suppressed exchange energy of 2D holes School of Chemical and Physical Sciences & MacDiarmid Ins7tute for Advanced Materials and Nanotechnology Victoria University of Wellington

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information

Impurity effects in high T C superconductors

Impurity effects in high T C superconductors Impurity effects in high T C superconductors J. Bobroff, S. Ouazi, H. Alloul, P. Mendels, N. Blanchard Laboratoire de Physique des Solides, Université Paris XI, Orsay G. Collin J.F. Marucco, V. Guillen

More information

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES JÖRG SCHMALIAN AMES LABORATORY AND IOWA STATE UNIVERSITY Collaborators theory Ames: Rafael Fernandes Rutgers: Premala Chandra UCLA: Elihu Abrahams experiment

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

UPt 3 : More data after all these years

UPt 3 : More data after all these years UPt 3 : More data after all these years C. P. Opeil, S.J., M. J. Graf Boston College, Physics Department, Chestnut Hill, MA, USA A. de Visser University of Amsterdam, Van der Waal-Zeeman Institute, Amsterdam,

More information

Superconducting state of quasiparticles with spin dependent mass and their

Superconducting state of quasiparticles with spin dependent mass and their Superconducting state of quasiparticles with spin dependent mass and their distinguishability for Cooper-pair state J. Spałek 1*, M. M. Maśka, M. Mierzejewski, and J. Kaczmarczyk 1 1 Marian Smoluchowski

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Sep 2004

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Sep 2004 Superconductivity in CeCoIn 5 x Sn x : Veil Over an Ordered State or Novel Quantum Critical Point? arxiv:cond-mat/0409559v1 [cond-mat.str-el] 21 Sep 2004 E. D. Bauer, C. Capan, F. Ronning, R. Movshovich,

More information

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft An imbalanced Fermi gas in 1 + ɛ dimensions Andrew J. A. James A. Lamacraft 2009 Quantum Liquids Interactions and statistics (indistinguishability) Some examples: 4 He 3 He Electrons in a metal Ultracold

More information

A New Electronic Orbital Order Identified in Parent Compound of Fe-Based High-Temperature Superconductors

A New Electronic Orbital Order Identified in Parent Compound of Fe-Based High-Temperature Superconductors A New Electronic Orbital Order Identified in Parent Compound of Fe-Based High-Temperature Superconductors Cooperative Research Team on Predictive Capability for Strongly Correlated Systems Summary: The

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4

Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4 Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4 K. Miyake KISOKO, Osaka University Acknowledgements Y. Yoshioka JPSJ 78 (2009) 074701. K. Hoshihara JPSJ 74 2679 (2005) 2679. K. Ishida,

More information

Magnetic field dependence of the superconducting gap node topology in noncentrosymmetric CePt 3 Si

Magnetic field dependence of the superconducting gap node topology in noncentrosymmetric CePt 3 Si PHYSICAL REVIEW B 74, 184524 2006 Magnetic field dependence of the superconducting gap node topology in noncentrosymmetric CePt 3 Si I. Eremin Max-Planck-Institut für Physik Komplexer Systeme, D-01187

More information

Hidden Order and Nexus between Quantum Criticality and Phase Formation : The Case of URu 2 Si 2

Hidden Order and Nexus between Quantum Criticality and Phase Formation : The Case of URu 2 Si 2 Hidden Order and Nexus between Quantum Criticality and Phase Formation : The Case of URu 2 Si 2 J. A. Mydosh Max Planck Institute for Chemical Physics of Solids, Dresden and Kamerlingh Onnes Laboratory,

More information

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Marc-Henri Julien Laboratoire de Spectrométrie Physique Université J. Fourier Grenoble I Acknowledgments

More information

Symmetry Properties of Superconductors

Symmetry Properties of Superconductors Australian Journal of Basic and Applied Sciences, 6(3): 81-86, 2012 ISSN 1991-8178 Symmetry Properties of Superconductors Ekpekpo, A. Department of Physics, Delta State University, Abraka, Nigeria. Abstract:

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

Inhomogeneous phase formation on the border of itinerant ferromagnetism

Inhomogeneous phase formation on the border of itinerant ferromagnetism Inhomogeneous phase formation on the border of itinerant ferromagnetism Belitz et al., PRL 005 Gareth Conduit1, Andrew Green, Ben Simons1 1. University of Cambridge,. University of St Andrews Itinerant

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

Uniaxial Pressure on Strongly Correlated Materials

Uniaxial Pressure on Strongly Correlated Materials Uniaxial Pressure on Strongly Correlated Materials Zieve lab, UC Davis Owen Dix Miles Frampton Scooter Johnson Adrian Swartz Rena Zieve Samples Adam Dioguardi, UC Davis Jason Cooley, LANL Todd Sayles,

More information

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France 1 Building & Infrastructure 2 3 Industrial building (steel panel construction) 6 explosion proof

More information

Effective field theory of one-dimensional polarized Fermi gas

Effective field theory of one-dimensional polarized Fermi gas Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) Effective field theory of one-dimensional polarized Fermi gas Erhai Zhao W. Vincent Liu Keywords Ultracold Fermi gas,

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP May 2007 Cold Atom Collaborators: Qijin Chen J. Stajic (U Chicago; LANL) Yan He (U. Chicago) ChihChun Chien (U. Chicago)

More information

Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice

Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice Small-Angle Neutron Scattering (SANS) Studies of Superconducting UPt 3 s Vortice Lattice Joseph Hlevyack 2012 NSF/REU Program Physics Department, University of Notre Dame Advisor: Morten R. Eskildsen,

More information

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 015, 0 (0), P. 1 7 Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model V. L. Kulinskii, D. Yu. Panchenko

More information

arxiv: v2 [cond-mat.supr-con] 25 Mar 2016

arxiv: v2 [cond-mat.supr-con] 25 Mar 2016 NMR properties of the polar phase of superfluid 3 He in anisotropic aerogel under rotation V.P.Mineev Commissariat a l Energie Atomique, INAC / SPSMS, 38054 Grenoble, France (Dated: March 28, 2016) arxiv:1508.03740v2

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor

Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor Wei Li 1, Hao Ding 1, Peng Deng 1, Kai Chang 1, Canli Song 1, Ke He 2, Lili Wang 2, Xucun Ma 2, Jiang-Ping Hu 3, Xi Chen 1, *,

More information

H c2 II (T) β"-(et) 2 SF 5 CH 2 CF 2 SO H p. =9.6 T (T c =5K) T c /u B H (T) T (mk) 200 H Plane. 56 mk

H c2 II (T) β-(et) 2 SF 5 CH 2 CF 2 SO H p. =9.6 T (T c =5K) T c /u B H (T) T (mk) 200 H Plane. 56 mk Low temperature upper critical eld studies in organic superconductor -(BEDT-TTF) 2 SF 5 CH 2 CF 2 SO 3 F. Zuo, P. Zhang, X. Su, J. S. Brooks, J. A. Schlueter y, J. Mohtasham, R. W. Winter, and G. L. Gard

More information

Heavy Fermion systems

Heavy Fermion systems Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators Heavy Fermion

More information

Superconductivity and spin excitations in orbitally ordered FeSe

Superconductivity and spin excitations in orbitally ordered FeSe Superconductivity and spin excitations in orbitally ordered FeSe Andreas Kreisel, Brian M. Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peter J. Hirschfeld Department

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

Superfluid Helium-3: From very low Temperatures to the Big Bang

Superfluid Helium-3: From very low Temperatures to the Big Bang Superfluid Helium-3: From very low Temperatures to the Big Bang Universität Frankfurt; May 30, 2007 Dieter Vollhardt Contents: The quantum liquids 3 He and 4 He Superfluid phases of 3 He Broken symmetries

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

nuclear level densities from exactly solvable pairing models

nuclear level densities from exactly solvable pairing models nuclear level densities from exactly solvable pairing models Stefan Rombouts In collaboration with: Lode Pollet, Kris Van Houcke, Dimitri Van Neck, Kris Heyde, Jorge Dukelsky, Gerardo Ortiz Ghent University

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

F. Rullier-Albenque 1, H. Alloul 2 1

F. Rullier-Albenque 1, H. Alloul 2 1 Distinct Ranges of Superconducting Fluctuations and Pseudogap in Cuprates Glassy29-2/7/29 F. Rullier-Albenque 1, H. Alloul 2 1 Service de Physique de l Etat Condensé, CEA, Saclay, France 2 Physique des

More information

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Quantum Gases Conference, Paris, 30 June 2007. Gunnar Möller

More information

Odd-Frequency Pairing in Superconducting Heterostructures

Odd-Frequency Pairing in Superconducting Heterostructures Odd-Frequency Pairing in Superconducting Heterostructures Alexander Golubov Twente University, The Netherlands Y. Tanaka Nagoya University, Japan Y. Asano Hokkaido University, Japan S. Kawabata AIST, Tsukuba,

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Point-contact spectra of a Pt-Ir tip/lto film junction. The main panel shows differential conductance at 2, 12, 13, 16 K (0 T), and 10 K (2 T) to demonstrate

More information

Resistivity studies in magnetic materials. Makariy A. Tanatar

Resistivity studies in magnetic materials. Makariy A. Tanatar Resistivity studies in magnetic materials 590B Makariy A. Tanatar November 30, 2018 Classical examples Quantum criticality Nematicity Density waves: nesting Classics: resistivity anomaly at ferromagnetic

More information

Magnetic Transition in the Kondo Lattice System CeRhSn 2. Z. Hossain 1, L.C. Gupta 2 and C. Geibel 1. Germany.

Magnetic Transition in the Kondo Lattice System CeRhSn 2. Z. Hossain 1, L.C. Gupta 2 and C. Geibel 1. Germany. Magnetic Transition in the Kondo Lattice System CeRhSn 2 Z. Hossain 1, L.C. Gupta 2 and C. Geibel 1 1 Max-Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany. 2

More information

BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids

BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids Daniel E. Sheehy Ames Laboratory Iowa State University Work in collaboration with L. Radzihovsky (Boulder)

More information

Studies of inhomogeneous superconducting states in novel materials

Studies of inhomogeneous superconducting states in novel materials Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 211 Studies of inhomogeneous superconducting states in novel materials Robert Pearson Beaird Louisiana State University

More information

Superconductivity - Overview

Superconductivity - Overview Superconductivity - Overview Last week (20-21.11.2017) This week (27-28.11.2017) Classification of Superconductors - Theory Summary - Josephson Effect - Paraconductivity Reading tasks Kittel: Chapter:

More information

Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases

Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases M.T. Batchelor Department of Theoretical Physics and Mathematical Sciences Institute In collaboration with X.W. Guan, C.

More information

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine in the de Haas van Alphen effect Magnetic domains of non-spin origine related to orbital quantization Jörg Hinderer, Roman Kramer, Walter Joss Grenoble High Magnetic Field laboratory Ferromagnetic domains

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Superconductivity as observed by Magnetic Resonance

Superconductivity as observed by Magnetic Resonance Superconductivity as observed by Magnetic Resonance Author: Anton Potočnik Mentor: izr. prof. dr. Denis Arčon April 9, 2010 Abstract Magnetic resonance techniques proved numerous times in the past to be

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart Outline 1. Organic Conductors basics and development 2.

More information

Key symmetries of superconductivity

Key symmetries of superconductivity Key symmetries of superconductivity Inversion and time reversal symmetry Sendai, March 2009 1 st GCOE International Symposium 3 He A 1 phase Manfred Sigrist, ETH Zürich UGe 2 paramagnetic CePt 3 Si ferromagnetic

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver, B.C. Outline: Part I State-of-the-Art

More information

Superfluid Helium-3: From very low Temperatures to the Big Bang

Superfluid Helium-3: From very low Temperatures to the Big Bang Superfluid Helium-3: From very low Temperatures to the Big Bang Dieter Vollhardt Yukawa Institute, Kyoto; November 27, 2007 Contents: The quantum liquids 3 He and 4 He Superfluid phases of 3 He Broken

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

The magnetic RKKY-interaction in the superconducting phase of thulium borocarbide

The magnetic RKKY-interaction in the superconducting phase of thulium borocarbide The magnetic RKKY-interaction in the superconducting phase of thulium borocarbide by Jens Jensen, Ørsted Laboratory Collaborators: Risø: Niels Hessel Andersen Katrine Nørgaard Morten Ring Eskildsen Stine

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Quantum simulations, adiabatic transformations,

Quantum simulations, adiabatic transformations, Quantum simulations, adiabatic transformations, and resonating valence bond states Aspen June 2009 Simon Trebst Microsoft Station Q UC Santa Barbara Ulrich Schollwöck Matthias Troyer Peter Zoller High

More information