NMR: Examples. Vesna Mitrović, Brown University. Boulder Summer School, 2008

Size: px
Start display at page:

Download "NMR: Examples. Vesna Mitrović, Brown University. Boulder Summer School, 2008"

Transcription

1 NMR: Examples Vesna Mitrović, Brown University Boulder Summer School, 2008

2 To Remember Static NMR Spectrum Measurements Local Magnetic Field Probability Distribution ω n = γ n H loc = γ n (H 0 + H hf ) H hf = n A n,k S k Width of an NMR spectrum Distribution of S z (r) K(T ) χ (q =0, ω 0) Shift of an NMR spectrum Magnetic susceptibility In metals: K(T ) N(E F ) T 1 1 χ (q, ω 0) T 1 2 χ (q, ω 0)

3 2D Electron Gas - T1 Contrast Imaging MBE heterostructures M242 and M layers: 25 nm 185 nm 30 nm 250 nm GaAs Ga 0.7 Al 0.3 As Si delta doping Ga 0.9 Al 0.1 As e - density (S.E. Barrett and collaborators, Yale University) (M. Horvatic & C. Bertier and collaborators, GHMFL,Grenoble)

4 2D Electron Gas - T1 Contrast Imaging MBE heterostructures M242 and M layers: E 2D Electron Gas in H0 z : B = 0 B >> 0 25 nm 185 nm 30 nm 250 nm eb /m* GaAs Ga 0.7 Al 0.3 As Si delta doping Ga 0.9 Al 0.1 As e - density n 0 = eb /h gµ Β Β n n (E) LLL filling factor ν = 1 (S.E. Barrett and collaborators, Yale University) (M. Horvatic & C. Bertier and collaborators, GHMFL,Grenoble)

5 2D Electron Gas - T1 Contrast Imaging MBE heterostructures M242 and M layers: E 2D Electron Gas in H0 z : B = 0 B >> 0 25 nm 185 nm 30 nm 250 nm eb /m* GaAs Ga 0.7 Al 0.3 As Si delta doping Ga 0.9 Al 0.1 As e - density n 0 = eb /h gµ Β Β n n (E) LLL filling factor ν = 1 [Fig: S. Melinte, PhD thesis (2001)] (S.E. Barrett and collaborators, Yale University) (M. Horvatic & C. Bertier and collaborators, GHMFL,Grenoble)

6 Static Shift Measurements : NMR line-shift ( 69,71 Ga) N N K S P = = 2 N + N n k average spin polarisation S z k GaAs QWs: 2D electrons shift K S AlGaAs barriers: no electrons reference 100 layers: 30 nm 250 nm GaAs Ga 0.7 Al 0.3 As Si delta doping Ga 0.9 Al 0.1 As (GHMFL,Grenoble)

7 Static Shift Measurements : NMR line-shift ( 69,71 Ga) N N K S P = = 2 N + N n k average spin polarisation S z k GaAs QWs: 2D electrons shift K S AlGaAs barriers: no electrons reference (GHMFL,Grenoble)

8 Static Shift Measurements : NMR line-shift ( 69,71 Ga) N N K S P = = 2 N + N n k average spin polarisation S z k GaAs QWs: 2D electrons shift K S AlGaAs barriers: no electrons reference 30 nm 250 nm barriers Quantum Wells close to Si δ-doping (GHMFL,Grenoble)

9 Static Shift Measurements : NMR line-shift ( 69,71 Ga) K S P = N N N + N = 2 n k S z k P(gµ B H/k B T ) 0 average spin polarisation What if g -> 0? GaAs QWs: 2D electrons shift K S AlGaAs barriers: no electrons reference 100 layers: 30 nm 250 nm GaAs Ga 0.7 Al 0.3 As Si delta doping Ga 0.9 Al 0.1 As (GHMFL,Grenoble)

10 Static Shift Measurements : NMR line-shift ( 69,71 Ga) K S P = N N N + N = 2 n average spin polarisation k S z k P(gµ B H/k B T ) 0 GaAs QWs: 2D electrons shift K S What if g -> 0? AlGaAs barriers: no electrons reference (GHMFL,Grenoble)

11 ν = 1 state - elementary excitations? Localized holes and electrons Skyrmion Anti-skyrmion Energy gap & size (s) S.E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) P. Khandelwal et al., Phys. Rev. Lett. 86, 5353 (2001) g = E z E c

12 Skyrmion Size (s) Energy gap & size (s = N o of reversed spins within an excitation) g = E z E c Limits # of spin-flips Favors FM ordering E z = gµ B B E c = e 2 εl B g 0 s To vary skyrmion size tune g : g 0 - hydrostatic pressure - Al 0.13 Ga 0.87 As - QW (g theory = ; g GaAs = 0.44)

13 Large Skyrmions in Al 0.13 Ga 0.87 As (g 0) Quantum Wells Magnetotransport measurements in Al 0.13 Ga 0.87 As QW (S. P. Shukla et al., PRB 61, 4469 (2000)) s 50 Small g sample: 30 QWs g theory = g GaAs = 0.44 n 2D = cm -2 Problem: How to separate the signals? P(gµ B H/k B T ) 0 m 0 = cm 2 / Vs QW: 24 nm of Al 0.13 Ga 0.87 As 1.0 barrier ----> 71 Ga, ν = 1 barriers: nm of Al 0.35 Ga 0.65 As 0.8 T = 65 mk Magnitude [a. u.] Frequency [MHz]

14 Separate overlapping QW and barriers signal? Small tip angle technique : M(t), pulse, signal π/2 t = 0 π t = τ M (t=2τ) t = 2τ repeat t = T R time S N = f ( ) TR, Tip Angle T 1

15 Separate overlapping QW and barriers signal? Small tip angle technique : M(t), pulse, signal π/2 t = 0 π t = τ M (t=2τ) t = 2τ repeat t = T R time S N = f ( ) TR, Tip Angle T 1

16 Separate overlapping QW and barriers signal? Small tip angle technique : M(t), pulse, signal π/2 t = 0 π t = τ M (t=2τ) t = 2τ repeat t = T R time % 90 % S N = f ( ) TR, Tip Angle T 1 Tip Angle θ [rad] % 70 % 60 % 50 % 40 % 30 % 20 % % T R / T 1

17 Separate overlapping QW and barriers signal? Small tip angle technique : S N = f ( ) TR, Tip Angle T 1 Tip Angle θ [rad] % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % T R / T 1

18 Separate overlapping QW and barriers signal? Small tip angle technique : S N = f ( ) TR, Tip Angle T 1 GOOD!!! very different T 1 for QW and barriers Pulse power dependence : Tip Angle θ [rad] % 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % Amplitude [a. u.] T = 65 mk barriers QW % T R / T Frequency [MHz] Pulse Length [µs] 2 µs = π/2 [V. Mitrović et al., 2007]

19 Magnitude [a. u.] Ga, ν = 1 QW contribution only (barriers subtracted) T = 65 mk 130 mk 208 mk 315 mk 375 mk 450 mk 612 mk 700 mk 908 mk "P = 1" Frequency [KHz]

20 QW signal Magnitude [a. u.] Ga, ν = 1 QW contribution only (barriers subtracted) Frequency [KHz] 20 T = 65 mk 130 mk 208 mk 315 mk 375 mk 450 mk 612 mk 700 mk 908 mk "P = 1" Frequency [KHz] Frequency shift [KHz] Line Width (FWHM) Average Line Position Polarization Temperature [K] g -0.1 g GaAs at low-t : "negative", small, strongly inhomogeneous polarization

21 Inhomogeneous Systems Stripe phase (Tranquada et al., Nature 1995) (T. Imai and collaborators, MIT & McMaster University) (M. Julien and collaborators, UJF & GHMFL,Grenoble) (C.Hamel, N. Curro and collaborators, LANL)

22 What s going on in LSCO? «Inc.» AF LRO (stripe pattern) Suzuki et al. Kimura et al. Wakimoto et al. Glassy freezing Cluster spin-glass Niedermayer et al., Julien et al.? Enhanced AF order from vortex cores Katano et al. Lake et al. Inhomogneneity & Phase Separation Singer et al.

23 Spatial inhomogeneities (Distribution of T 1 values) La 1.88 Sr 0.12 CuO 4 (T c = 30 K) 139 La NMR T = 4.9 K Case 1. Spatially resolved measurement Case 2. Not resolved phenomenological fit exponent α quantifies disorder strength Case 3. Not resolved convolute with distribution function deduce parameters Single T 1 : M 0 M M = k c k e b k t T 1

24 Analysis of Spatial Inhomogeneities I 1. phenomenological fit: exponent α quantifies disorder strength good qualitative analysis 2. Convolute with distribution function of T 1 Single T 1 α α α M α (t, T1 1 ) = e 28 t T e 15 t T e 6 t T e M G (t) = ( π/2 σ log ) 1 t T 1 α. e 2 (log R 1 log T 1 1 ) 2 /σ 2 log Mα=1 (t, R 1 ) d(log R 1 ) M G (t) = P (log R 1 log T 1 1 ) M α=1 (t, R 1 ) d(log R 1 )

25 Analysis of Spatial Inhomogeneities I 1. phenomenological fit: exponent α quantifies disorder strength good qualitative analysis 2. Convolute with distribution function of T 1 Single T 1 α α α M α (t, T1 1 ) = e 28 t T e 15 t T e 6 t T e M G (t) = ( π/2 σ log ) 1 t T 1 α. e 2 (log R 1 log T 1 1 ) 2 /σ 2 log Mα=1 (t, R 1 ) d(log R 1 ) La 1.88 Sr 0.12 CuO 4 (T c = 30 K) 139 La NMR M G (t) = P (log R 1 log T 1 1 ) M α=1 (t, R 1 ) d(log R 1 ) T = 4.9 K

26 T 1 Distribution: x = 12 % (T c = 30 K) Probability distribution K La 1.88 Sr 0.12 CuO 4 80 K T c = 30 K 59 K 45 K 38 K 32 K 30 K 25 K 20 K 18 K 15 K 13 K 10 K 9 K 7 K 6 K 5 K 3.2 K 2.3 K -2 0 T g from µsr = 20 K 2 log[t 1-1 ] 4 6 T 1-1 [s -1 ] ( T 1 1 x = T c = 30 K T [K] )average ( T1 1 ) α α σ log Inhomogeneities develop below ~ 80 K

27 Probing spin dynamics with T 1 Time fluctuations of the hyperfine field 1 = γ 2 n T 2 A 1 + ( ) 2 S(0)S(t) e iω nt dt J(ω n ) Simple Model: 1 S(0)S(t) = S 2 e t /τ c BPP T 1 τ c 1 + ω n 2 τ c 2 Slowing down of fluctuations τ c T 1-1 enhancement until maximum when τ c -1 = ω n

28 T 1 Distribution: x = 12 % (T c = 30 K) Probability distribution K La 1.88 Sr 0.12 CuO 4 80 K T c = 30 K 59 K 45 K 38 K 32 K 30 K 25 K 20 K 18 K 15 K 13 K 10 K 9 K 7 K 6 K 5 K 3.2 K 2.3 K -2 0 T g from µsr = 20 K 2 log[t 1-1 ] 4 6 T 1-1 [s -1 ] ( T 1 1 x = T c = 30 K T [K] )average ( T1 1 ) α α σ log Inhomogeneities develop below ~ 80 K

29 Spatial inhomogeneities (Vortex States) Case 1. Spatially resolved measurement Case 2. Not resolved phenomenological fit exponent α quantifies disorder strength Case 3. Not resolved convolute with distribution function deduce parameters

30 Real Space Magnetic Field Distribution in the Vortex Lattice

31 NMR Microscopy Field Probability Distribution ~ NMR Spectrum M. Takigawa et al., PRL 83, 3057 (1999) -R. Wortis et al., PRB 61, (2000) -D. Morr and R. Wortis, PRB 61, R882 (2000) -N. J. Curro et al., PRB 62, 3473 (2000)

32 Normal State vs. Low Temperature Spectra Data Calculation H 0 = 4 T T 50 mk Magnitude [A.U.] H[T]

33 Normal State vs. Low Temperature Spectra Data Calculation H 0 = 4 T T 50 mk Magnitude [A.U.] H[T]

34 Spectra - f(t R )

35 Spectra - f(t R )

36 Low Temperature T 1 vs. H 0 & H int 0.8 T = 11K T 1-1 [s -1 ] H 0 13 T 23 T 37 T H int [T]

37 Low Temperature T 1 vs. H 0 & H int 0.8 T = 11K T 1-1 [s -1 ] H 0 13 T 23 T 37 T H int [T]

38 Low Temperature T 1 vs. H 0 & H int 0.8 T = 11K T 1-1 [s -1 ] H 0 13 T 23 T 37 T H int [T]

39 Low Temperature T 1 vs. H 0 & H int 0.8 T = 11K T 1-1 [s -1 ] H 0 13 T 23 T 37 T H int [T]

40 Outside the Cores T 1-1 increases with increasing H 0 T 1-1 increases with increasing H int, i.e. on approaching vortex core (TT 1 ) -1 = Constant T 1 lower then inside

41 Low Energy Excitations s-wave Low energy excitations bound to the core region and and occupy a fraction ~ B\H c2 (Caroli-deGennes-Matricon States). C. Caroli, P. G. degennes, J. Matricon, J., Phys. Lett. 9, 307, (1964) H. F. Hess et al., PRL 62, 214, (1989) d-wave Low energy excitations extended along nodal directions. G. E. Volovik, JETP Lett. 58, 469 (1993) Nature of the core states? I. Maggio-Aprile et al., PRL 75, 2754 (1995) Ch. Renner Ch. et al., PRL 80, 3603 (1998) S. H. Pan et al., PRL 85, 1536 (2000) J. E. Hoffman et al., Science 295, 452 (2002)

42 Outside the Cores - Energy Spectrum of Nodal QP T 1 1 N i (E)N f (E) In the nodal region quasiparticle DOS varies linearly on energy T 1 depends on the product of initial and final QP energies QP energy depends on temperature, applied field, and internal field E k = ɛ 2 k + 2 k ± 1 2 γ e H 0 + v f (k) p s = E T ±Z +D

43 Low Temperature T 1 vs. H 0 & H int 0.8 T = 11K T -1-1 T 1 [s -1 1 [s -1 ] ] H 0 H 0 13 T T T 37 T H int int [T]

44 Outside the Cores - Energy Spectrum of Nodal QP T 1 1 N i (E)N f (E) E i E f E k = E T ± Z + D T 1 1 ~ D 2 Z 2 F 1 T 1 1 E T + D i + Z E T + D f Z T 1 1 ~ D 2 + Z 2 F 3

45 Outside the Cores - Energy Spectrum of Nodal QP T 1 1 ~ D 2 + Z 2 F T = 11K 0.6 T 1-1 [s -1 ] 0.4 H T 23 T 37 T F 3 dominant scattering process H int [T] BUT q ~ (π, π) required => QP are AF correlated

46 Spatial inhomogeneities (FFLO) The destruction of SC by a magnetic field.! I. Orbital Effect II. Pauli paramagnetism Abrikosov Vortex Lattice Cooper-pairs Breaking G-L Equation: H orb c 2 = Φ 0 2πξ 2 E P = E c H P c 2 = 1 2 χ nh 2 0 = 1 2 N(0) 2 χ n = 1 2 (gµ B) 2 N 0 2 gµ B Relative importance of the two effects described by the Maki Parameter: α = 2 Horb c 2 H P c 2

47 Basic Idea: The FFLO State Pauli pair breaking dominates over the orbital effects ( α ) 2 Horb C 2 HC P > Formation of a new pairing state with finite center-of-mass momentum can reduce the paramagnetic pair-breaking effect. The critical field can be further enhanced! P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964); A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964). BCS ( k, k ) FFLO ( k, k + q ) q 2µ BH u F

48 Basic Idea: The FFLO State Pauli pair breaking dominates over the orbital effects ( α ) 2 Horb C 2 HC P > Formation of a new pairing state with finite center-of-mass momentum can reduce the paramagnetic pair-breaking effect. The critical field can be further enhanced! P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964); A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964).

49 The FFLO State Finite q breaks spatial symmetry. SC order parameter oscillates in real space. (FF) ( r) = q e i q r!(r) (LO) More generally: ( r) = q cos ( q r) 0 1/q ( r) = m m e iq m r Y. Matsuda & H. Shimahara

50 The FFLO State Finite q breaks spatial symmetry. SC order parameter oscillates in real space. (FF) ( r) = q e i q r!(r) (LO) ( r) = q cos ( q r) 0 More generally: ( r) = m m e iq m r 1/q 2D thin film Y. Matsuda & H. Shimahara

51 FFLO SC Imbalanced Spin Populations T=0 k' E k Nature and stability of SC phase with population imbalanced? E F ~ µ B B FFLO q = k' - k g(e) P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964); A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964). Phases with gapless excitations G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963); breached pair SC - W. V. Liu and F. Wilczek, PRL. 90, (2003); R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. 76, 263 (2004). Mixed Phases of SC and Normal P. F. Bedaque, H. Caldas, G. Rupak PRL 91, (2003); H. Caldas, PRA 69, (2004); J. Carlson, S. Reddy, PRL 95, (2005); M. W. Zwierlein et al., Science 311, 492 (2006).

52 Microscopic Probes? Order Parameter Text d-wave Magnetization Text s-wave s-wave d-wave d-wave LDOS (spin-up)text s-wave LDOS (spin-up; low energy peak)text d-wave Q. Wang et al., PRL 96, (2006)

53 The NMR Probe Image of Local Magnetic Field Probability Distribution Local Magnetic susceptibility (LDOS)!(r) 1D 0 1/q d-wave D Magnitude [A.U.] Hint [T]

54 The NMR Probe Image of Local Magnetic Field Probability Distribution Local Magnetic susceptibility (LDOS) M. Ichioka and K. Machida, PRB 76, (2007).

55 Pseudogap Shastry-Mila-Rice form factors for HTS, Physica C 157, 561 (1989). 1 ν T 1z T = C q F β Im χ β (q, ω nn ) ω nn Examine magnetic field responce of the pseudogap in different regions of the Brillouin zone => spin gap vs pairing gap?

56 Pseudogap Explore magnetic field dependece of T1 T~ T* T~ T* T~ Tc T~ Tc MMP - (Millis 1990) χ(q, ω) =χ AF + χ FL = 1 4 j αξ 2 µ 2 B 1+ξ 2 (q Q j ) 2 iω/ω SF + χ 0 1 iπω/γ q (π, π) q (0, 0) Q i =(π ± δ, π ± δ)

57 SF-MMP: lim ω 0 1 T 1 T = χ (q, ω) ω k B χ(q, ω) =χ AF + χ FL = 1 4 2µ 2 B 2 q F c (q) 1 4 Pseudogap j j αξ 2 µ 2 B 1+ξ 2 (q Q j ) 2 iω/ω SF + αξ(t ) 2 µ 2 B /ω SF [1 + ξ(t ) 2 (q Q j ) 2 ] 2 + χ 0π Γ χ 0 1 iπω/γ ξ(t )=ξ 0 T x (T x + T ) 17 ( T1 T) a) Spin-Gap: 0.2 ω 1 SF [ tanh ( (T Tp ) c 1 )] [ξ 2 0 ξ(t )2 ] 63 ( T1 T) b) Temperature [K]

58 Pseudogap AF correlations (q (π,π)) supprressed below T* away from (q (π,π)) pseudo gap shows magnetic field dependence (H0 < 10 T) => pairing fluctuations - precursory effetc to SC 0.5 a) 17 ( T1 T) χ (q (0, 0)) 63 ( T1 T) χ (q (π, π)) b) Temperature [K]

59 NMR in SC K χ(q =0, ω = 0) N(E F ) For singlet SC: Yoshida (1958) Curro(2005)

60 NMR in SC 1 χ (q, ω = 0) N i (E F )N f (E F ) T 1 d-wave: s-wave: d-wave: 1 T 3 T 1 s-wave: Habel-Slichter Peak (u & v - coherence factors)

NMR in Strongly Correlated Electron Systems

NMR in Strongly Correlated Electron Systems NMR in Strongly Correlated Electron Systems Vesna Mitrović, Brown University Journée Claude Berthier, Grenoble, September 211 C. Berthier, M. H. Julien, M. Horvatić, and Y. Berthier, J. Phys. I France

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides Marc-Henri Julien Laboratoire de Spectrométrie Physique Université J. Fourier Grenoble I Acknowledgments

More information

The NMR Probe of High-T c Materials

The NMR Probe of High-T c Materials R.E. Walstedt The NMR Probe of High-T c Materials 4y Springer Contents Introduction 1 1.1 The Basic Phenomenology of High-T c. Materials 1 1.2 Carrier Doping and the Master Phase Diagram 2 1.3 The NMR

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Inhomogeneous spin and charge densities in d-wave superconductors

Inhomogeneous spin and charge densities in d-wave superconductors Inhomogeneous spin and charge densities in d-wave superconductors Arno P. Kampf Paris, June 2009 Collaborative Research Center SFB 484 Cooperative Phenomena in Solids: Metal-Insulator-Transitions and Ordering

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

The Nernst effect in high-temperature superconductors

The Nernst effect in high-temperature superconductors The Nernst effect in high-temperature superconductors Iddo Ussishkin (University of Minnesota) with Shivaji Sondhi David Huse Vadim Oganesyan Outline Introduction: - High-temperature superconductors: physics

More information

Visualization of atomic-scale phenomena in superconductors

Visualization of atomic-scale phenomena in superconductors Visualization of atomic-scale phenomena in superconductors Andreas Kreisel, Brian Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peayush Choubey, Peter Hirschfeld Department

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

Correlatd electrons: the case of high T c cuprates

Correlatd electrons: the case of high T c cuprates Correlatd electrons: the case of high T c cuprates Introduction: Hubbard U - Mott transition, The cuprates: Band structure and phase diagram NMR as a local magnetic probe Magnetic susceptibilities NMR

More information

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields---

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields--- Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields--- Kazu. Machida Okayama Univ collaborators M. Ichioka, T. Mizushima, H. Adachi, N. Nakai, Y. Tsutsumi Outline Phenomena related

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES studies of cuprates Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Goals of lecture Understand why gaps are important and various ways that gap

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Disordered Superconductors

Disordered Superconductors Cargese 2016 Disordered Superconductors Claude Chapelier, INAC-PHELIQS, CEA-Grenoble Superconductivity in pure metals Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 015, 0 (0), P. 1 7 Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model V. L. Kulinskii, D. Yu. Panchenko

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

Critical and Glassy Spin Dynamics in Non-Fermi-Liquid Heavy-Fermion Metals

Critical and Glassy Spin Dynamics in Non-Fermi-Liquid Heavy-Fermion Metals Critical and Glassy Spin Dynamics in Non-Fermi-Liquid Heavy-Fermion Metals D. E. MacLaughlin Department of Physics University of California Riverside, California U.S.A. Leiden p.1 Behavior of spin fluctuations

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Magnetic Resonance in magnetic materials

Magnetic Resonance in magnetic materials Ferdinando Borsa, Dipartimento di Fisica, Universita di Pavia Magnetic Resonance in magnetic materials Information on static and dynamic magnetic properties from Nuclear Magnetic Resonance and Relaxation

More information

Fulde Ferrell Larkin Ovchinnikov State in Heavy Fermion Superconductors

Fulde Ferrell Larkin Ovchinnikov State in Heavy Fermion Superconductors Typeset with jpsj2.cls Full Paper Fulde Ferrell Larkin Ovchinnikov State in Heavy Fermion Superconductors Y. Matsuda 1,2 and H. Shimahara 3 1 Department of Physics, Kyoto University, Kitashirakawa,

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 21 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.supr-con] 21 Feb 2007 Typeset with jpsj2.cls Full Paper Fulde Ferrell Larkin Ovchinnikov State in Heavy Fermion Superconductors Y. Matsuda 1,2 and H. Shimahara 3 arxiv:cond-mat/0702481v1 [cond-mat.supr-con] 21 Feb

More information

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface B. Keimer Max-Planck-Institute for Solid State Research outline new quantum states in bulk? yes, good evidence for electronic nematic phase new

More information

Superconductivity and spin excitations in orbitally ordered FeSe

Superconductivity and spin excitations in orbitally ordered FeSe Superconductivity and spin excitations in orbitally ordered FeSe Andreas Kreisel, Brian M. Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peter J. Hirschfeld Department

More information

UPt 3 : More data after all these years

UPt 3 : More data after all these years UPt 3 : More data after all these years C. P. Opeil, S.J., M. J. Graf Boston College, Physics Department, Chestnut Hill, MA, USA A. de Visser University of Amsterdam, Van der Waal-Zeeman Institute, Amsterdam,

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

μsr Studies on Magnetism and Superconductivity

μsr Studies on Magnetism and Superconductivity The 14 th International Conference on Muon Spin Rotation, Relaxation and Resonance (μsr217) School (June 25-3, 217, Sapporo) μsr Studies on Magnetism and Superconductivity Y. Koike Dept. of Applied Physics,

More information

Impurity Resonances and the Origin of the Pseudo-Gap

Impurity Resonances and the Origin of the Pseudo-Gap Brazilian Journal of Physics, vol. 33, no. 4, December, 2003 659 Impurity Resonances and the Origin of the Pseudo-Gap Brian Møller Andersen Ørsted Laboratory, Niels Bohr Institute, Universitetsparken 5,

More information

Spontaneous currents in ferromagnet-superconductor heterostructures

Spontaneous currents in ferromagnet-superconductor heterostructures Institute of Physics and Nanotechnology Center UMCS Spontaneous currents in ferromagnet-superconductor heterostructures Mariusz Krawiec Collaboration: B. L. Györffy & J. F. Annett Bristol Kazimierz 2005

More information

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal? One-dimensional systems Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal? One-dimensional systems Spin-charge separation in insulators Spin-charge

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

Knight Shift Measurements on Superconducting Sr 2 RuO 4

Knight Shift Measurements on Superconducting Sr 2 RuO 4 Knight Shift Measurements on Superconducting Sr 2 RuO 4 c b a Sr 2 RuO 4 Sr Ru O RuO 2 plane Layered Perovskite structure Maeno et al. Nature 372, 532 ( 94) K. Ishida A,B,. Murakawa, A. Mukuda, B Y. Kitaoka,

More information

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli Department of Physics & Astronomy University of British Columbia Vancouver, B.C. Outline: Part I State-of-the-Art

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions Bandwidth control versus fillig control Strongly correlated Fermi liquids Spectral weight transfer and mass renormalization Bandwidth control Filling control Chemical potential

More information

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018 High Tc superconductivity in cuprates: Determination of pairing interaction Han-Yong Choi / SKKU SNU Colloquium May 30 018 It all began with Discovered in 1911 by K Onnes. Liquid He in 1908. Nobel prize

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

NMR studies of cuprates pseudogap, correlations, phase diagram: past and future?

NMR studies of cuprates pseudogap, correlations, phase diagram: past and future? NMR studies of cuprates pseudogap, correlations, phase diagram: past and future? P. Mendels NMR LPS, Orsay J. Bobroff PhD students: H. Casalta, L. Guerrin, S. ouazi Post-docs: T Ohno, A. Mahajan, A. Mac

More information

Disordered Materials: Glass physics

Disordered Materials: Glass physics Disordered Materials: Glass physics > 2.7. Introduction, liquids, glasses > 4.7. Scattering off disordered matter: static, elastic and dynamics structure factors > 9.7. Static structures: X-ray scattering,

More information

How spin, charge and superconducting orders intertwine in the cuprates

How spin, charge and superconducting orders intertwine in the cuprates How spin, charge and superconducting orders intertwine in the cuprates Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the Kavli Institute for Theoretical Physics Program on Higher temperature

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Gareth Conduit Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localized ferromagnetism: moments localised in

More information

Superconductivity at high magnetic field

Superconductivity at high magnetic field Superconductivity at high magnetic field How can we achieve superconductivity at very high magnetic fields? What sort of materials should we choose to look at? Theory - introduction to superconductivity

More information

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT.. Jaeger, Orr, Goldman, Kuper (1986) Dissipation driven QCP s Haviland, Liu, and Goldman Phys. Rev.

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology Doping Meisner CuO 2 Spin Glass Magnetic Field

More information

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model Chengfu Mu, Peking University Collaborated with Lianyi He, J.W.Goethe University Prof. Yu-xin Liu, Peking University

More information

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Collaborators

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Quantum critical itinerant ferromagnetism

Quantum critical itinerant ferromagnetism Quantum critical itinerant ferromagnetism Belitz et al., PRL 2005 Cavendish Laboratory University of Cambridge Two types of ferromagnetism Localised ferromagnetism: moments localised in real space Ferromagnet

More information

Superconductivity and Electron Correlations in Ruthenates

Superconductivity and Electron Correlations in Ruthenates University of St Andrews School of Physics and Astronomy Superconductivity and Electron Correlations in Ruthenates Andy Mackenzie University of St Andrews, UK Key collaborator: Yoshi Maeno, Kyoto University

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Ultrafast Dynamics in Complex Materials

Ultrafast Dynamics in Complex Materials Ultrafast Dynamics in Complex Materials Toni Taylor MPA CINT, Center for Integrated Nanotechnologies Materials Physics and Applications Division Los Alamos National Laboratory Workshop on Scientific Potential

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University Dielectric Glassiness in Hole-Doped but Insulating Cuprates and Nickelates J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

More information

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. Low energy excitations in cuprates: an ARPES perspectie Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan. 15, 2014 Acknowledgements Shen Group Professor Zhi-Xun Shen Dr.

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology 63 Chapter 4 Vortex Checkerboard There is no need to invoke alternative order parameters to explain observed DOS modulations in optimally doped Bi 2 Sr 2 CaCu 2 O 8+δ. To continue the search for interesting

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

Investigations of the Core Structure of Magnetic Vortices in Type-II Superconductors by µsr

Investigations of the Core Structure of Magnetic Vortices in Type-II Superconductors by µsr Investigations of the Core Structure of Magnetic Vortices in Type-II Superconductors by µsr Jeff E. Sonier Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada Abstract

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Fluctuations in the aging dynamics of structural glasses

Fluctuations in the aging dynamics of structural glasses Fluctuations in the aging dynamics of structural glasses Horacio E. Castillo Collaborator: Azita Parsaeian Collaborators in earlier work: Claudio Chamon Leticia F. Cugliandolo José L. Iguain Malcolm P.

More information

Complementarity: muons and neutrons

Complementarity: muons and neutrons Complementarity: muons and neutrons Sue Kilcoyne Salford M5 4WT What can neutrons tell us? Neutrons: have wavelengths comparable to interatomic spacings (0.3-15 Å) have energies comparable to structural

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Large Fluctuations and Collective Phenomena in Disordered

More information

High temperature superconductivity

High temperature superconductivity High temperature superconductivity Applications to the maglev industry Elsa Abreu April 30, 2009 Outline Historical overview of superconductivity Copper oxide high temperature superconductors Angle Resolved

More information

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors Erica Carlson Karin Dahmen Eduardo Fradkin Steven Kivelson Dale Van Harlingen Michael

More information

Scanning Tunnelling Microscopy Observations of Superconductivity

Scanning Tunnelling Microscopy Observations of Superconductivity Department of physics Seminar I a Scanning Tunnelling Microscopy Observations of Superconductivity Author: Tim Verbovšek Mentor: dr. Rok Žitko Co-Mentor: dr. Erik Zupanič Ljubljana, February 013 Abstract

More information

A brief Introduction of Fe-based SC

A brief Introduction of Fe-based SC Part I: Introduction A brief Introduction of Fe-based SC Yunkyu Bang (Chonnam National Univ., Kwangju, Korea) Lecture 1: Introduction 1. Overview 2. What is sign-changing s-wave gap : +/-s-wave gap Lecture

More information

F. Rullier-Albenque 1, H. Alloul 2 1

F. Rullier-Albenque 1, H. Alloul 2 1 Distinct Ranges of Superconducting Fluctuations and Pseudogap in Cuprates Glassy29-2/7/29 F. Rullier-Albenque 1, H. Alloul 2 1 Service de Physique de l Etat Condensé, CEA, Saclay, France 2 Physique des

More information

Spin-charge separation in doped 2D frustrated quantum magnets p.

Spin-charge separation in doped 2D frustrated quantum magnets p. 0.5 setgray0 0.5 setgray1 Spin-charge separation in doped 2D frustrated quantum magnets Didier Poilblanc Laboratoire de Physique Théorique, UMR5152-CNRS, Toulouse, France Spin-charge separation in doped

More information

Odd-Frequency Pairing in Superconducting Heterostructures

Odd-Frequency Pairing in Superconducting Heterostructures Odd-Frequency Pairing in Superconducting Heterostructures Alexander Golubov Twente University, The Netherlands Y. Tanaka Nagoya University, Japan Y. Asano Hokkaido University, Japan S. Kawabata AIST, Tsukuba,

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra M. Jarrell, A. Macridin, Th. Maier, D.J. Scalapino Thanks to T. Devereaux, A. Lanzara, W. Meevasana, B. Moritz, G. A. Sawatzky,

More information

Superconducting Stripes

Superconducting Stripes Superconducting Stripes By: Nick Vence I. Introduction In 1972 Bardeen, Cooper, and Schrieffer shared the Nobel prize in physics for describing a mechanism of superconductivity. Their BCS theory describes

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 Eduardo Fradkin University of Illinois at Urbana-Champaign Seminar at the Department of Physics Harvard

More information

The Ising model Summary of L12

The Ising model Summary of L12 The Ising model Summary of L2 Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet. How: Study the simplest possible model of a ferromagnet containing

More information

Search for conducting stripes in lightly hole doped YBCO

Search for conducting stripes in lightly hole doped YBCO Search for conducting stripes in lightly hole doped YBCO András Jánossy 1, Titusz Fehér 1,2 Kálmán Nagy 1 Andreas Erb 3 László Mihály 4 1 Budapest University of Technology and Economics, Institute of Physics

More information

Non-centrosymmetric superconductivity

Non-centrosymmetric superconductivity Non-centrosymmetric superconductivity Huiqiu Yuan ( 袁辉球 ) Department of Physics, Zhejiang University 普陀 @ 拓扑, 2011.5.20-21 OUTLINE Introduction Mixture of superconducting pairing states in weak coupling

More information

Geometrical frustration, phase transitions and dynamical order

Geometrical frustration, phase transitions and dynamical order Geometrical frustration, phase transitions and dynamical order The Tb 2 M 2 O 7 compounds (M = Ti, Sn) Yann Chapuis PhD supervisor: Alain Yaouanc September 2009 ann Chapuis (CEA/Grenoble - Inac/SPSMS)

More information

nuclear level densities from exactly solvable pairing models

nuclear level densities from exactly solvable pairing models nuclear level densities from exactly solvable pairing models Stefan Rombouts In collaboration with: Lode Pollet, Kris Van Houcke, Dimitri Van Neck, Kris Heyde, Jorge Dukelsky, Gerardo Ortiz Ghent University

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Theoretical Study of High Temperature Superconductivity

Theoretical Study of High Temperature Superconductivity Theoretical Study of High Temperature Superconductivity T. Yanagisawa 1, M. Miyazaki 2, K. Yamaji 1 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 Hakodate National College

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft An imbalanced Fermi gas in 1 + ɛ dimensions Andrew J. A. James A. Lamacraft 2009 Quantum Liquids Interactions and statistics (indistinguishability) Some examples: 4 He 3 He Electrons in a metal Ultracold

More information

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Electronic Liquid Crystal Phases in Strongly Correlated Systems Electronic Liquid Crystal Phases in Strongly Correlated Systems Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the workshop Materials and the Imagination, Aspen Center of Physics, January

More information

Impurity effects in high T C superconductors

Impurity effects in high T C superconductors Impurity effects in high T C superconductors J. Bobroff, S. Ouazi, H. Alloul, P. Mendels, N. Blanchard Laboratoire de Physique des Solides, Université Paris XI, Orsay G. Collin J.F. Marucco, V. Guillen

More information