Supplementary Material

Size: px
Start display at page:

Download "Supplementary Material"

Transcription

1 Evolution of substrate specificity in the Nucleobase-Ascorbate Transporter (NAT) protein family Anezia Kourkoulou, Alexandros A. Pittis & George Diallinas Supplementary Material

2 Supplementary Figure S1. Phylogeny of microbial NATs. The tree shown includes all functionally characterized NATs from bacteria and fungi and their closest homologues from other prokaryotic and eukaryotic microorganisms, obtained by blastp ( The AzgA sequences at the bottom of the tree are functionally characterized purine transporters of the so-called AzgA-like family, which includes proteins structurally similar with NATs, but show very little primary sequence similarity and lack NAT-specific functional motif (closest out-group). Multiple sequence alignments was built from the selected NAT sequences (accession number shown in the figure) using MUSCLE v7..26 ( MEGA was also used for testing the aligned sequences for optimal amino acid substitution model. According to the AIC, the LG+G+F model (Le SQ, Gascuel O. Mol Biol Evol. 28 Jul;25(7):137-2) was selected and a tree was created using a maximum likelihood (ML), and visualized by FigTree v1.4.3 ( Bootstrap values are shown in bold at the nodes of the clades. Evolutionary distances are also shown on the branches of the tree. The variable, four-amino acid, part of the NAT signature motif is shown at the right side of the tree (in bold the residues critical for specificity, see main text). Note that the microbial NAT sequences shown in this tree are collapsed and referred as UapA-like sequences in Figure 1 of the main text.

3 72.ACYPI858-PA {Acyrthosiphon pisum} T Y G E N I G V L A I T R T Y G E N I G V L A I T R Ganpr1_626 {Gonapodya prolifera} T Y A E N M G T M G A T R T Y A E N M G T M G A T R Ganpr1_1368 {Gonapodya prolifera} T Y A E N M G T M G A T R T Y A E N M G T M G A T R 68 8.MVEG_6T {Mortierella verticillata} 4468.Q54NF {Dictyostelium discoideum} 4468.Q54ZL {Dictyostelium discoideum} 368.Mucci2_147 {Mucor circinelloides} T Y A E N I G V L S V T Q T Y A E N I G V L S V T Q 47.Phybl2_13112 {Phycomyces blakesleeanus} T Y A E N I G V V A I T R T Y A E N I G V V A I T R 47.Phybl2_1117 {Phycomyces blakesleeanus} T Y S E N I G V M A V T K T Y S E N I G V M A V T K 644.RO3T_13 {Rhizopus oryzae} T Y S E N I G V M A V T Q T Y S E N I G V M A V T Q 368.Mucci2_12667 {Mucor circinelloides} T Y S E N I G V M A V T Q T Y S E N I G V M A V T Q 7175.CpipJ_CPIJ2253-RA {Culex pipiens} A F A Q N V G L V A V T G A F A Q N V G L V A V T G 72.ACYPI3-PA {Acyrthosiphon pisum} N N G V I Q L T G N N G V I Q L T G ATZT {Physcomitrella patens} T Y A Q N N G V L S L S R T Y A Q N N G V L S L S R AS4K1 {Physcomitrella patens} T Y A Q N N G V L S L S R T Y A Q N N G V L S L S R Cre1.g.t1.1 {Chlamydomonas reinhardtii} T F A Q N N G V I S L T N T F A Q N N G V I S L T N 355.Cre1.g48.t1.2 {Chlamydomonas reinhardtii} T F A Q N N G V I S L T N T F A Q N N G V I S L T N 355.Cre1.g46.t1.1 {Chlamydomonas reinhardtii} T F A Q N N G V I A L T N T F A Q N N G V I A L T N {Phaeodactylum tricornutum CCAP 155/1} T L S Q N N G I V A L T R T L S Q N N G I V A L T R {Fragilariopsis cylindrus} T L S Q N N G I L V D L E T L S Q N N G I L V D L E {Fragilariopsis cylindrus} T L S Q N N G I V A L T R T L S Q N N G I V A L T R B8CGC1 {Thalassiosira pseudonana} T F S Q N N G V I G I T K T F S Q N N G V I G I T K {Phaeodactylum tricornutum CCAP 155/1} T F S Q N N G V I A L T K T F S Q N N G V I A L T K {Fragilariopsis cylindrus} T Y S E N N G V V A L T K T Y S E N N G V V A L T K {Fragilariopsis cylindrus} T Y S E N N G V V A L T K T Y S E N N G V V A L T K Ganpr1_348 {Gonapodya prolifera} T F A Q N N G V I A L T K T F A Q N N G V I A L T K 6 8.MVEG_T {Mortierella verticillata} C Y A Q N N G I I S L T R C Y A Q N N G I I S L T R 8.MVEG_7135T {Mortierella verticillata} V F A Q N N G I I A L T R V F A Q N N G I I A L T R 47.Phybl2_1416 {Phycomyces blakesleeanus} T F A Q N N G I I A L T R T F A Q N N G I I A L T R 644.RO3T_32 {Rhizopus oryzae} T Y S N N N G V I A V T Q T Y S N N N G V I A V T Q 368.Mucci2_146 {Mucor circinelloides} T F S Q N N G I I A V T R T F S Q N N G I I A V T R 644.RO3T_3 {Rhizopus oryzae} T F S Q N N G V I A V T R T F S Q N N G V I A V T R 47.Phybl2_ {Phycomyces blakesleeanus} T F A Q N N G V V A L T R T F A Q N N G V V A L T R 644.RO3T_118 {Rhizopus oryzae} T F A Q N N G V V A M T R T F A Q N N G V V A M T R 368.Mucci2_ {Mucor circinelloides} T F A Q N N G V V A M T R T F A Q N N G V V A M T R 2.Rhoba1_1_172 {Rhodotorula graminis} I F A Q N N G V I S V T R I F A Q N N G V I S V T R 527.um.2 {Ustilago maydis} V F A Q N N G V I A I T K V F A Q N N G V I A I T K 536.Phchr11215 {Phanerochaete chrysosporium} I F A Q N N G V I A I T R I F A Q N N G V I A I T R 5346.CC1G_ {Coprinopsis cinerea} T F A Q N N G V I A I T R T F A Q N N G V I A I T R Ganpr1_157 {Gonapodya prolifera} T F S Q N T S V I A L S N T F S Q N T S V I A L S N 2.Rhoba1_1_561 {Rhodotorula graminis} T F S Q N V S V I A L S N T F S Q N V S V I A L S N 527.um36 {Ustilago maydis} T F S Q N S G V I S L T R T F S Q N S G V I S L T R 2146.Q5KHM2 {Cryptococcus neoformans var. neoformans JEC21} T F S Q N S G V I A L T R T F S Q N S G V I A L T R GSTUMT2261 {Tuber melanosporum Mel28} C F A Q N N G V I A L T G C F A Q N N G V I A L T G 516.CocheC5_13 {Bipolaris maydis} S Q A G N N G V I V L T G S Q A G N N G V I V L T G 5516.Botdo1_6 {Botryosphaeria dothidea} G Q A G N N G V I V L T G G Q A G N N G V I V L T G 561.A2QBM4 {Aspergillus niger} S Q A G N N G V I S L T G S Q A G N N G V I S L T G 441.PMAA_124.t1 {Talaromyces marneffei ATCC 124} S Q A G N N G V I S L T G S Q A G N N G V I S L T G 2812.SPAC13.1c.1 {Schizosaccharomyces pombe 2h-} 566.Saico1_634 {Saitoella complicata} C F A Q N N G V I A L T R C F A Q N N G V I A L T R 22.Lipst1_1_55 {Lipomyces starkeyi} 1165.Ascim {Ascobolus immersus RN} GSTUMT2651 {Tuber melanosporum Mel28} GSTUMT28181 {Tuber melanosporum Mel28} 2221.Q7 {Aspergillus nidulans FGSC A4} 557.Fusox1_5 {Fusarium oxysporum} V F A Q N N G V I V L T R V F A Q N N G V I V L T R 635.Triat153 {Trichoderma atroviride} 257.MGG_856T {Magnaporthe oryzae 7-15} PAAG_3721T {Paracoccidioides brasiliensis} 5141.Q7S3D5 {Neurospora crassa} 5145.Pa_5_818 {Podospora anserina} G1XCI1 {Arthrobotrys oligospora ATCC 247} 516.CocheC5_11127 {Bipolaris maydis} T F A Q N C G V V A L T R T F A Q N C G V V A L T R 1435.Aurpu_var_sub {Aureobasidium subglaciale EXF-2481} V F A Q N N G I I A L T R V F A Q N N G I I A L T R 5516.Botdo1_17 {Botryosphaeria dothidea} BC1T_11657 {Botrytis cinerea} 42.YALIE252g {Yarrowia lipolytica} T F A Q N N G V I A L T K T F A Q N N G V I A L T K 42.YALIE7g {Yarrowia lipolytica} 285.KLLAD4356g {Kluyveromyces lactis} T F A Q N N G V I S I T K T F A Q N N G V I S I T K 2811.AGOS_AFR622W {Eremothecium gossypii ATCC 18} T F A Q N N G V I A I T R T F A Q N N G V I A I T R 361.CLUG_16.1 {Clavispora lusitaniae} T F A Q N N G V I S I T K T F A Q N N G V I S I T K 54.C4_653C_A {Candida albicans} V F A Q N N G V I S I T K V F A Q N N G V I S I T K 537.HCAG_7147T {Histoplasma capsulatum} V F A Q N N G V I S L T R V F A Q N N G V I S L T R Oidma1_1 {Oidiodendron maius} 441.PMAA_41.t1 {Talaromyces marneffei ATCC 124} 557.A1CDS4 {Aspergillus clavatus} 2221.P4 {Aspergillus nidulans FGSC A4} V F A Q N N G V I A L T R V F A Q N N G V I A L T R 561.A2QMF8 {Aspergillus niger} 5.Pc2g1.t1 {Penicillium chrysogenum} 62.A8X8V6 {Caenorhabditis briggsae} T H T E N I G V I G V T R T H T E N I G V I G V T R 623.C51E3.6 {Caenorhabditis elegans} T H T E N I G V I G V T R T H T E N I G V I G V T R 623.Y5EAL.4.2 {Caenorhabditis elegans} T Y A E N I A L I H I T K T Y A E N I A L I H I T K 62.A8XX35 {Caenorhabditis briggsae} T Y A E N I A L I H I T K T Y A E N I A L I H I T K 623.T7G12.2 {Caenorhabditis elegans} T Y S E N I A I M Q V T K T Y S E N I A I M Q V T K 62.A8X6C5 {Caenorhabditis briggsae} T Y S E N I A I M Q V T K T Y S E N I A I M Q V T K 62.A8WQX8 {Caenorhabditis briggsae} 623.R11E3.2 {Caenorhabditis elegans} 62.A8X6E3 {Caenorhabditis briggsae} C Y A E N I A I M S V T K C Y A E N I A I M S V T K 623.T7G12.5a {Caenorhabditis elegans} 62.A8X6E {Caenorhabditis briggsae} ENSCSAVP12 {Ciona savignyi} S F S E N I G A I G I T R S F S E N I G A I G I T R 1.ENSCINP {Ciona intestinalis} S F S E N I G A I G I T R S F S E N I G A I G I T R ENSCSAVP132 {Ciona savignyi} S F S E N I A A I G V T R S F S E N I A A I G V T R 1.ENSCINP225 {Ciona intestinalis} 1.ENSCINP16143 {Ciona intestinalis} S F S Q N V A A I G I T R S F S Q N V A A I G I T R 1.ENSCINP11752 {Ciona intestinalis} S F S Q N V A A I G I T R S F S Q N V A A I G I T R 55.F1RM3 {Danio rerio} S Y S Q N I A A L G I T R S Y S Q N I A A L G I T R 71 8.ENSORLP246 {Oryzias latipes} 6.ENSGACP1234 {Gasterosteus aculeatus}.enstnip16716 {Tetraodon nigroviridis} 31.ENSTRUP13 {Takifugu rubripes} 55.B8JIT8 {Danio rerio} 6.ENSGACP16 {Gasterosteus aculeatus} 8.ENSORLP215 {Oryzias latipes}.enstnip11637 {Tetraodon nigroviridis} 31.ENSTRUP15116 {Takifugu rubripes} 8.ENSORLP124 {Oryzias latipes} S F S E N V A A L G I T K S F S E N V A A L G I T K 63 6.ENSGACP16471 {Gasterosteus aculeatus} S F S E N V A A L G I T K S F S E N V A A L G I T K.ENSTNIP671 {Tetraodon nigroviridis}.enstnip2317 {Tetraodon nigroviridis} S F S E N V A I L G I T K S F S E N V A I L G I T K 31.ENSTRUP16667 {Takifugu rubripes}.enstnip13643 {Tetraodon nigroviridis} 31.ENSTRUP17126 {Takifugu rubripes} 31.ENSTRUP4545 {Takifugu rubripes} 64.F6UZZ5 {Xenopus tropicalis} 2.ENSACAP14 {Anolis carolinensis} 31.GALT146 {Gallus gallus} 52.ENSTGUT58 {Taeniopygia guttata} ENSMODP11 {Monodelphis domestica}.ensecap1362 {Equus caballus} S F S Q N I A A L S I T K S F S Q N I A A L S I T K.ENSECAP15216 {Equus caballus} S Y S Q N I A A L S I T R S Y S Q N I A A L S I T R.ENSECAP155 {Equus caballus}.ensecap154 {Equus caballus} 563.ENSMLUP17132 {Myotis lucifugus} 85.ENSFCAP21447 {Felis catus} S S V P H V G A E G G H Q S S V P H V G A E G G H Q 23.ENSSSCP27 {Sus scrofa} S Y S E N V G A L S I T R S Y S E N V G A L S I T R 15.ENSCAFP {Canis lupus familiaris} 85.ENSLAFP1 {Loxodonta africana} S Y S E N V G V L G I T Q S Y S E N V G V L G I T Q ENSSSCP2655 {Sus scrofa}.ensbtap1 {Bos taurus}.ensbtap55 {Bos taurus}.ensbtap51345 {Bos taurus}.ensmusp41436 {Mus musculus} 1116.ENSRNOP31 {Rattus norvegicus} 1141.ENSCPOP15281 {Cavia porcellus} S Y S E N I G A L G I T R S Y S E N I G A L G I T R.ENSOCUP25 {Oryctolagus cuniculus} 55.F6NS11 {Danio rerio}.enstnip14 {Tetraodon nigroviridis} 31.ENSTRUP236 {Takifugu rubripes} 8.ENSORLP156 {Oryzias latipes} 6.ENSGACP258 {Gasterosteus aculeatus} F7DHZ {Xenopus tropicalis} 2.ENSACAP1616 {Anolis carolinensis} 52.ENSTGUT15224 {Taeniopygia guttata} 31.ENSGALT32 {Gallus gallus} ENSMODP148 {Monodelphis domestica} 15.ENSMEUP68 {Macropus eugenii} 65.ENSEEUP115 {Erinaceus europaeus} 23.ENSSSCP2185 {Sus scrofa} 35.ENSVPAP58 {Vicugna pacos} 15.ENSCAFP8511 {Canis lupus familiaris} 85.ENSFCAP247 {Felis catus} 85.ENSFCAP15 {Felis catus} 24 3.ENSTTRP351 {Tursiops truncatus}.ensbtap13 {Bos taurus} 1328.ENSPVAP14553 {Pteropus vampyrus}.ensecap184 {Equus caballus} 563.ENSMLUP25 {Myotis lucifugus} ENSPCAP655 {Procavia capensis} 85.ENSLAFP {Loxodonta africana} 347.ENSTBEP5 {Tupaia belangeri} 61.ENSDNOP4166 {Dasypus novemcinctus}.enscjat135 {Callithrix jacchus} 44.ENSMMUT1 {Macaca mulatta}.ensppyp1 {Pongo pygmaeus} 8.ENSPTRP46 {Pan troglodytes} 6.ENSP32851 {Homo sapiens}.ensggot16 {Gorilla gorilla gorilla} ENSETEP47 {Echinops telfairi} ENSOGAT1618 {Otolemur garnettii} 368.ENSMICT1246 {Microcebus murinus} 2.ENSDORP2131 {Dipodomys ordii}.ensmusp25212 {Mus musculus} 1116.ENSRNOP28 {Rattus norvegicus} ENSCPOP12685 {Cavia porcellus} 431.ENSSTOP13225 {Ictidomys tridecemlineatus}.ensocup5 {Oryctolagus cuniculus} 8.ENSOPRP23 {Ochotona princeps}.enstnip116 {Tetraodon nigroviridis} 31.ENSTRUP628 {Takifugu rubripes} 6.ENSGACP758 {Gasterosteus aculeatus} S S S P N I G V M G I T K S S S P N I G V M G I T K 8.ENSORLP361 {Oryzias latipes} 64.G1K3I1 {Xenopus tropicalis} 47 2.ENSACAP5 {Anolis carolinensis} 52.ENSTGUT63 {Taeniopygia guttata} 52.ENSTGUT1 {Taeniopygia guttata} 31.GALT261 {Gallus gallus} 15.ENSMEUP3547 {Macropus eugenii} 58.ENSOANP2183 {Ornithorhynchus anatinus} ENSMODP14568 {Monodelphis domestica} 85.ENSFCAP252 {Felis catus} 3.ENSTTRP51 {Tursiops truncatus} 23.ENSSSCP2 {Sus scrofa} 15.ENSCAFP3 {Canis lupus familiaris} 563.ENSMLUP31 {Myotis lucifugus} 1328.ENSPVAP5 {Pteropus vampyrus}.ensbtap351 {Bos taurus} 35.ENSVPAP135 {Vicugna pacos} S S C P N I G V L G I T K S S C P N I G V L G I T K 23.ENSSSCP262 {Sus scrofa} 8.ENSECAP121 {Equus caballus} 65.ENSEEUP12857 {Erinaceus europaeus} 254.ENSSARP36 {Sorex araneus} 431.ENSSTOP135 {Ictidomys tridecemlineatus} 1141.ENSCPOP {Cavia porcellus} 1116.ENSRNOP285 {Rattus norvegicus}.ensmusp215 {Mus musculus} 2.ENSDORP14356 {Dipodomys ordii} 37 8.ENSOPRP1567 {Ochotona princeps}.ensocup57 {Oryctolagus cuniculus} 61.ENSDNOP1718 {Dasypus novemcinctus} 347.ENSTBEP17 {Tupaia belangeri}.enstsyt1461 {Tarsius syrichta} 58.ENSCHOP18 {Choloepus hoffmanni} 13.ENSPCAP46 {Procavia capensis} 71.ENSETEP1314 {Echinops telfairi} 85.ENSLAFP117 {Loxodonta africana} 368.ENSMICT14355 {Microcebus murinus} 23.ENSSSCP2554 {Sus scrofa} 44.ENSMMUT44526 {Macaca mulatta} 6.ENSP {Homo sapiens}.ensggot {Gorilla gorilla gorilla}.ensptrp2266 {Pan troglodytes}.ensppyp1262 {Pongo pygmaeus} 3611.ENSOGAT2 {Otolemur garnettii}.enscjat54 {Callithrix jacchus} 72.ACYPI23-PA {Acyrthosiphon pisum} S S S E N V G N I G I T R S S S E N V G N I G I T R PHUM46-PA {Pediculus humanus corporis} S F S E N I G A I G V T R S F S E N I G A I G V T R EFX31 {Daphnia pulex} S Y S E N I G A I G V T K S Y S E N I G A I G V T K 666.EFX564 {Daphnia pulex} 666.EFX255 {Daphnia pulex} S Y S E N I G A I G V T K S Y S E N I G A I G V T K 666.EFX618 {Daphnia pulex} 72.ACYPI7-PA {Acyrthosiphon pisum} 72.ACYPI81-PA {Acyrthosiphon pisum} NV11256-PA {Nasonia vitripennis} T F G E N V G T I G V T K T F G E N V G T I G V T K 75 7.BGIBMGA3-TA {Bombyx mori} 7175.CpipJ_CPIJ32-RA {Culex pipiens} AGAP31-PA {Anopheles gambiae} 715.AAEL167-PA {Aedes aegypti} 7175.CpipJ_CPIJ4614-RA {Culex pipiens} 726.FBtr24.2.homologue {Drosophila willistoni} FBtr24.1.homologue {Drosophila persimilis} FBpp211 {Drosophila pseudoobscura pseudoobscura} 7222.FBtr24.1.homologue {Drosophila grimshawi} 7244.FBtr24.2.homologue {Drosophila virilis} 723.FBtr24.2.homologue {Drosophila mojavensis} 7217.FBtr24.1.homologue {Drosophila ananassae} FBtr24.1.homologue {Drosophila yakuba} FBpp1356 {Drosophila erecta} 724.FBpp2126 {Drosophila simulans} 72.FBpp252 {Drosophila sechellia} 7227.FBpp81718 {Drosophila melanogaster} 1.ENSCINP12358 {Ciona intestinalis} ENSCSAVP4 {Ciona savignyi} 1.ENSCINP1236 {Ciona intestinalis} A7RY {Nematostella vectensis} A7RXI6 {Nematostella vectensis} A7SXJ6 {Nematostella vectensis} A7RHH1 {Nematostella vectensis} A7RHH2 {Nematostella vectensis} A7T1W {Nematostella vectensis} A7RGN3 {Nematostella vectensis} S Y S E N I G A L G I T K S Y S E N I G A L G I T K A7RIC4 {Nematostella vectensis} S Y S Q N I G A L G I T K S Y S Q N I G A L G I T K A7RGN5 {Nematostella vectensis} S Y S E N I G A L G I T K S Y S E N I G A L G I T K A7SRV {Nematostella vectensis} S Y S Q N I G A I G I T K S Y S Q N I G A I G I T K A7RGN4 {Nematostella vectensis} S Y S Q N I G A I G I T K S Y S Q N I G A I G I T K 55.E7FEY {Danio rerio} S S A S N A C V I G L S Q S S A S N A C V I G L S Q 64.F6WZA7 {Xenopus tropicalis} S S I P N A G L A G L T Q S S I P N A G L A G L T Q 5 2.ENSACAP365 {Anolis carolinensis} S S M S N T C A A H L T K S S M S N T C A A H L T K 31.GALT1851 {Gallus gallus} A S I A N A C A G G L T Q A S I A N A C A G G L T Q 52.ENSTGUT57 {Taeniopygia guttata} S S I A N T C A T G F T Q S S I A N T C A T G F T Q 15.ENSMEUP256 {Macropus eugenii} ENSMODP148 {Monodelphis domestica} S S F P N V A T T S L T Q S S F P N V A T T S L T Q 85.ENSLAFP68 {Loxodonta africana} S S F P N V G T L S L T Q S S F P N V G T L S L T Q 3.ENSTTRP4 {Tursiops truncatus} 35.ENSVPAP663 {Vicugna pacos} 13.ENSPCAP348 {Procavia capensis} 71.ENSETEP87 {Echinops telfairi} L T P L T P 1328.ENSPVAP1163 {Pteropus vampyrus} 65.ENSEEUP75 {Erinaceus europaeus} 254.ENSSARP6352 {Sorex araneus} L I Q L I Q 3611.ENSOGAT1554 {Otolemur garnettii} 368.ENSMICT5 {Microcebus murinus} 47.ENSTSYT8134 {Tarsius syrichta} 431.ENSSTOP1 {Ictidomys tridecemlineatus} 2.ENSDORP {Dipodomys ordii} 62.ENSBTAP16751 {Bos taurus} S S F P N V G T V G L L Q S S F P N V G T V G L L Q 23.ENSSSCP21632 {Sus scrofa} S S F P N V G T M S L F Q S S F P N V G T M S L F Q 563.ENSMLUP14 {Myotis lucifugus} 28.ENSECAP53 {Equus caballus} S S F P N V G T V S L V Q S S F P N V G T V S L V Q 15.ENSCAFP22144 {Canis lupus familiaris} 85.ENSFCAP6 {Felis catus} 1141.ENSCPOP {Cavia porcellus}.ensmusp25 {Mus musculus} 1116.ENSRNOP24667 {Rattus norvegicus}.enscjat2232 {Callithrix jacchus}.ensppyp143 {Pongo pygmaeus} 44.ENSMMUT1137 {Macaca mulatta}.ensptrp2218 {Pan troglodytes}.ensggot1 {Gorilla gorilla gorilla} 6.ENSP46546 {Homo sapiens} 355.Cre17.g7168.t1.1 {Chlamydomonas reinhardtii} S Y A E N I G A I G L T G S Y A E N I G A I G L T G {Phaeodactylum tricornutum CCAP 155/1} S Y S E N I G A I S L T R S Y S E N I G A I S L T R BRADI1G271.1 {Brachypodium distachyon} T L T E N I H T L D I T K T L T E N I H T L D I T K 37.OS7T45-1 {Oryza sativa Japonica Group} T L T E N I H T L E N T K T L T E N I H T L E N T K 45.GRMZM2G171_P1 {Zea mays} Sb2g65.1 {Sorghum bicolor} 45.GRMZM5G1_P1 {Zea mays} 45.GRMZM2G1362_P1 {Zea mays} 45.GRMZM2G85_P3 {Zea mays} 26.VIT_s813g1.t1 {Vitis vinifera} T L T E N V H T I N I T K T L T E N V H T I N I T K 372.AT4G5.1 {Arabidopsis thaliana} T L T E N I H T I N I T K T L T E N I H T I N I T K {Arabidopsis lyrata} T L T E N I H T I N I T K T L T E N I H T I N I T K 5 36.POPTR_7s13.1 {Populus trichocarpa} T L T E N V H T V N I T K T L T E N V H T V N I T K VIT_s4g1.t1 {Vitis vinifera} 47.GLYMA8G21.1 {Glycine max} T L T E N V Q T I D T T K T L T E N V Q T I D T T K 47.GLYMA18G24.1 {Glycine max} T L T E N V H T I D T T K T L T E N V H T I D T T K 47.GLYMA1G2.1 {Glycine max} T L T E N M H T I D V T K T L T E N M H T I D V T K 47.GLYMAG22.1 {Glycine max} T L T E N T H T I D I T K T L T E N T H T I D I T K {Selaginella moellendorffii} T L T E N V H T I A V T R T L T E N V H T I A V T R {Selaginella moellendorffii} AS4J {Physcomitrella patens} ASZ {Physcomitrella patens} ARF1 {Physcomitrella patens} 37.OS1T {Oryza sativa Japonica Group} BRADI2G {Brachypodium distachyon} 45.GRMZM2G611_P3 {Zea mays} 4558.Sb3g43.1 {Sorghum bicolor} 372.AT2G21.1 {Arabidopsis thaliana} {Arabidopsis lyrata} 36.POPTR_s158.1 {Populus trichocarpa} 36.POPTR_4s1.1 {Populus trichocarpa} 26.VIT_6s61g131.t1 {Vitis vinifera} 47.GLYMA11G12.1 {Glycine max} 47.GLYMA12G6.1 {Glycine max} 47.GLYMA17G528.1 {Glycine max} 47.GLYMA12G367.1 {Glycine max} ASKP {Physcomitrella patens} T S A E T I G L I G L T K T S A E T I G L I G L T K ATGX2 {Physcomitrella patens} V A P E N A G L I G L T R V A P E N A G L I G L T R ATRH {Physcomitrella patens} AT18 {Physcomitrella patens} AT17 {Physcomitrella patens} AT2 {Physcomitrella patens} {Selaginella moellendorffii} A L V E N A G L I G L T R A L V E N A G L I G L T R {Selaginella moellendorffii} I S V E N A G L V G I T R I S V E N A G L V G I T R {Selaginella moellendorffii} I S V E N P G L V G T S Q I S V E N P G L V G T S Q {Selaginella moellendorffii} I S P E N A G L V G I T R I S P E N A G L V G I T R {Selaginella moellendorffii} V S V E N A G L V G L T R V S V E N A G L V G L T R {Selaginella moellendorffii} V S V E N A G L V G L T R V S V E N A G L V G L T R 37.OS12T5-2 {Oryza sativa Japonica Group} BRADI4G3.1 {Brachypodium distachyon} 4558.Sb8g18.2 {Sorghum bicolor} 45.GRMZM2G415_P1 {Zea mays} 372.AT2G {Arabidopsis thaliana} A S V E N V G L L G L T R A S V E N V G L L G L T R {Arabidopsis lyrata} A S V E N V G L L G L T R A S V E N V G L L G L T R 36.POPTR_2s138.1 {Populus trichocarpa} 36.POPTR_14s351.1 {Populus trichocarpa} VIT_18s1g1126.t1 {Vitis vinifera} 47.GLYMA14G.1 {Glycine max} V S V E N V G L L G L T H V S V E N V G L L G L T H 47.GLYMA17G {Glycine max} V S V E N V G L L G L T H V S V E N V G L L G L T H 36.POPTR_14s {Populus trichocarpa} 6 26.VIT_12s5g128.t1 {Vitis vinifera} 372.AT2G5.1 {Arabidopsis thaliana} V L V E N V G L L G L T R V L V E N V G L L G L T R {Arabidopsis lyrata} V L V E N V G L L G L T R V L V E N V G L L G L T R 47.GLYMA13G {Glycine max} 47.GLYMA2G {Glycine max} 47.GLYMA2G {Glycine max} 47.GLYMA14G522.1 {Glycine max} I S V E N V G L L G L T R I S V E N V G L L G L T R {Arabidopsis lyrata} 372.AT2G341.1 {Arabidopsis thaliana} 8 47.GLYMA8G {Glycine max} V S V E N V G L L G S N R V S V E N V G L L G S N R 47.GLYMA4G675.1 {Glycine max} 47.GLYMA6G6.1 {Glycine max} 26.VIT_1s3g146.t1 {Vitis vinifera} 36.POPTR_4s575.1 {Populus trichocarpa} 36.POPTR_11s717.1 {Populus trichocarpa} 37.OS1T75-1 {Oryza sativa Japonica Group} BRADI2G546.1 {Brachypodium distachyon} 4558.Sb3g351.1 {Sorghum bicolor} 45.GRMZM2G435_P4 {Zea mays} BRADI4G27.1 {Brachypodium distachyon} 4558.Sb2g {Sorghum bicolor} 45.GRMZM2G4_P1 {Zea mays} BRADI3G {Brachypodium distachyon} V S V E N V G F L G S T R V S V E N V G F L G S T R 4 37.OS8T36-1 {Oryza sativa Japonica Group} 4558.Sb8g165.1 {Sorghum bicolor} 4558.Sb7g14.1 {Sorghum bicolor} 45.GRMZM2G83_P1 {Zea mays} 45.GRMZM5G8517_P1 {Zea mays} A S V E N A G L L A V T R A S V E N A G L L A V T R 4558.Sb1g {Sorghum bicolor} A S V E N A G L L A V T R A S V E N A G L L A V T R BRADI1G11.1 {Brachypodium distachyon} A S V E N S G L L A I T R A S V E N S G L L A I T R 37.OS3T65-1 {Oryza sativa Japonica Group} A S V E N A G L L A L T R A S V E N A G L L A L T R 26.VIT_3sg15.t1 {Vitis vinifera} A S V E N T G L L G L T R A S V E N T G L L G L T R {Arabidopsis lyrata} A L V E N T G L L G L T K A L V E N T G L L G L T K 372.AT1G4.1 {Arabidopsis thaliana} A L V E N T G L L G L T K A L V E N T G L L G L T K 8 47.GLYMA1G424.2 {Glycine max} A S V E N A G L L G L K R A S V E N A G L L G L K R 47.GLYMA2G {Glycine max} A S V E N A G L L G L T R A S V E N A G L L G L T R 36.POPTR_1s2.1 {Populus trichocarpa} - - L E N S G L L E N S G L POPTR_s.1 {Populus trichocarpa} A S V E N A G L V G L T R A S V E N A G L V G L T R 26.VIT_18s1g8.t1 {Vitis vinifera} I S V E N V G L L A V T R I S V E N V G L L A V T R 47.GLYMA14G.1 {Glycine max} 47.GLYMA17G {Glycine max} 47.GLYMA4G48.1 {Glycine max} 47.GLYMA6G4.1 {Glycine max} POPTR_14s154.1 {Populus trichocarpa} 372.AT5G25.1 {Arabidopsis thaliana} K N V G L L A M T K K N V G L L A M T K {Arabidopsis lyrata} {Arabidopsis lyrata} 372.AT1G {Arabidopsis thaliana} 37.OST1-1 {Oryza sativa Japonica Group} V S V E N V G L L A L T H V S V E N V G L L A L T H BRADI4G24.1 {Brachypodium distachyon} V S V E N V G L L A V T H V S V E N V G L L A V T H 4558.Sb2g {Sorghum bicolor} V S V E N I G L L A L T R V S V E N I G L L A L T R 45.GRMZM2G414813_P2 {Zea mays} V S V E N I G L L A L T R V S V E N I G L L A L T R BRADI3G361.1 {Brachypodium distachyon} 37.OS8T6-1 {Oryza sativa Japonica Group} 4558.Sb7g251.1 {Sorghum bicolor} I C S E N A G L L A L T H I C S E N A G L L A L T H 45.GRMZM2G115635_P1 {Zea mays} 37.OS2T18-1 {Oryza sativa Japonica Group} BRADI3G5.1 {Brachypodium distachyon} V S I E N A G L L A L T R V S I E N A G L L A L T R 45.GRMZM5G812555_P1 {Zea mays} 4558.Sb4g2.1 {Sorghum bicolor} 37.OS3T-1 {Oryza sativa Japonica Group} BRADI1G348.1 {Brachypodium distachyon} 45.GRMZM2G451_P2 {Zea mays} 45.GRMZM2G3_P2 {Zea mays} 45.GRMZM2G8546_P1 {Zea mays} V H D R W K Y I W G S D K V H D R W K Y I W G S D K 4558.Sb1g2.1 {Sorghum bicolor} V S V E N A G L L G L S R V S V E N A G L L G L S R 58.5 {Arabidopsis lyrata} V S V E N A G L L A V T R V S V E N A G L L A V T R 372.AT1G154.1 {Arabidopsis thaliana} V S V E N A G L L A V T R V S V E N A G L L A V T R {Arabidopsis lyrata} 372.AT1G63.1 {Arabidopsis thaliana} 1 26.VIT_1s26g.t1 {Vitis vinifera} 36.POPTR_8s {Populus trichocarpa} 36.POPTR_1s155.1 {Populus trichocarpa} 47.GLYMA18G186.2 {Glycine max} 47.GLYMA8G4.2 {Glycine max} 47.GLYMA2G355.5 {Glycine max} V S V E N A G L L A L T Q V S V E N A G L L A L T Q 47.GLYMA1G416.2 {Glycine max} 47.GLYMA4G358.3 {Glycine max} 47.GLYMA6G16.4 {Glycine max} 47.GLYMA17G.1 {Glycine max} 47.GLYMA5G1.1 {Glycine max} 26.VIT_17sg5.t1 {Vitis vinifera} 36.POPTR_15s8.1 {Populus trichocarpa} 36.POPTR_12s.1 {Populus trichocarpa} {Arabidopsis lyrata} 372.AT5G628.1 {Arabidopsis thaliana} 372.AT5G4.1 {Arabidopsis thaliana} V S V E N A G L L A L T K V S V E N A G L L A L T K {Arabidopsis lyrata} V S V E N A G L L A L T K V S V E N A G L L A L T K.5

4 Supplementary Figure S2. Phylogenetic tree of the SVCT clade and the NAT signature motif The same ML phylogenetic tree as in Figure 1a is shown, here extended and with the sequence - followed by the species - names shown. The protein names correspond to the sequence ids as of Ensembl genomes, or the Uniprot name, for those cases that mapping was successful. Red spheres indicate duplication nodes (according to the species overlap algorithm), and the numbers next to the nodes correspond to alrt support values. On the right, the NAT signature motif is shown for each protein sequence. The ETE toolkit was used for tree visualization [66].

5 Supplementary Table S1. List of strain used in this study Strain Genotype wt uapa - uapaδ uapcδ::afpyrg azgaδ UapA UapA-Q48P UapA-A47S/Q48P UapA- F46S/A47S/Q48P UapA- A45S/F46S/A47S FurA uapa-gfp-argb uapaδ uapcδ::afpyrg azgaδ uapa-gfp -Q48P -argb uapaδ uapcδ::afpyrg azgaδ argb2 uapa-gfp -A47S/Q48P -argb uapaδ uapcδ::afpyrg azgaδ argb2 uapa-gfp -F46S/A47S/Q48P -argb uapaδ uapcδ::afpyrg azgaδ argb2 uapa-gfp -T45S/F46S/A47S -argb uapaδ uapcδ::afpyrg azgaδ argb2 gpdap-fura-gfp-panβ uapaδ uapcδ::pyrg azgaδ fcybδ::argb furdδ::ribob FurAΔ::riboBΔ cntaδ::ribob All strains shown possess the vea1 mutation which promotes conidiation. and argb2 are loss of function mutations leading to auxotrophic requirement of para-aminobenzoic acid and arginine respectively. AfpyrG is the Aspergillus fumigatus wild type pyrg gene(pyrimidine biosynthesis) used as a standard selection marker in A. nidulans transformation. panb and ribob are genes involved in pantothenic acid and riboflavin biosynthesis, used as selection markers for targeted gene knock out. All other genes, encoding transporters, are explained in the text. Supplementary Table S2. Oligonucleotides used for the construction of uapa mutants. Name Sequence 1 UapA A47S/Q48P F 5 -CCCCCATGACGACCTTTTCGCCGAACAACGGCGTG-3 2 UapA A47S/Q48P R 5 -CACGCCGTTGTTCGGCGAAAAGGTCGTCATGGGG-3 3 UapA F46S/A47S/Q48P F 5 -GACCCCCATGACGACCTCTTCGCCGAACAACGGCGTG-3 4 UapA F46S/A47S/Q48P R 5 -CACGCCGTTGTTCGGCGAAGAGGTCGTCATGGGGGTC-3 5 UapA T45S/F46S/A47S F 5 -CAATGACCCCCATGACGTCGTCGTCGCAGAACAACGGCGTG-3 6 UapA T45S/F46S/A47S R 5 -CACGCCGTTGTTCTGCGACGACGACGTCATGGGGGTCATTG-3

Comparing Genomes! Homologies and Families! Sequence Alignments!

Comparing Genomes! Homologies and Families! Sequence Alignments! Comparing Genomes! Homologies and Families! Sequence Alignments! Allows us to achieve a greater understanding of vertebrate evolution! Tells us what is common and what is unique between different species

More information

Sheet1. Page 1. protein

Sheet1. Page 1. protein build 1 version 1 Ab initio model Ab initio GPIPE/6085/1.1/gnomon_prot build 1 version 1 Build GPIPE/6085/1.1/ Acyrthosiphon pisum build 2 version 1 Build GPIPE/7029/2.1/ Acyrthosiphon pisum build 2.1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1213 Supplementary Table 1. The Taxonomy of the Organisms Used in this Study Organism (acronym) Taxonomy Yeasts Zygosacharomyces rouxii (Zrou) Verterbrates Xenopus tropicalis (Xtro) Gallus

More information

Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin α6β4

Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin α6β4 Acta Cryst. (2015). D71, 969-985, doi:10.1107/s1399004715002485 Supporting information Volume 71 (2015) Supporting information for article: Combination of X-ray crystallography, SAXS and DEER to obtain

More information

Expanded View Figures

Expanded View Figures Marie-Thérèse El-aher et al non-polyq fragments and Huntington s disease The EMO Journal Expanded View Figures HTT-Q TEV rec + + + + αtub 15 5 37 sh-htt cells 167/586 167/586 TEV-Q -Q23 Particle volume

More information

Supporting Information

Supporting Information Supporting Information Systematic analyses reveal uniqueness and origin of the CFEM domain in fungi Zhen-Na Zhang 1,2,, Qin-Yi Wu 1,, Gui-Zhi Zhang 2, Yue-Yan Zhu 1, Robert W. Murphy 3, Zhen Liu 3, * and

More information

Quantitative Measurement of Genome-wide Protein Domain Co-occurrence of Transcription Factors

Quantitative Measurement of Genome-wide Protein Domain Co-occurrence of Transcription Factors Quantitative Measurement of Genome-wide Protein Domain Co-occurrence of Transcription Factors Arli Parikesit, Peter F. Stadler, Sonja J. Prohaska Bioinformatics Group Institute of Computer Science University

More information

TRANSPOSABLE ELEMENTS DYNAMICS IN TAXA WITH DIFFERENT REPRODUCTIVE STRATEGIES OR SPECIATION RATE

TRANSPOSABLE ELEMENTS DYNAMICS IN TAXA WITH DIFFERENT REPRODUCTIVE STRATEGIES OR SPECIATION RATE Alma Mater Studiorum Università di Bologna DOTTORATO DI RICERCA IN BIODIVERSITÀ ED EVOLUZIONE Ciclo XXV Settore scientifico-disciplinare di afferenza: BIO-05 Zoologia Settore concorsuale di afferenza:

More information

Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla

Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla Xiu-Qing Li 1 *, Donglei Du 2 1 Molecular Genetics Laboratory, Potato Research

More information

Bioinformatics Bioinf and E ormatics volu and E tionar volu y Genomics Genom 5/2/2011 1

Bioinformatics Bioinf and E ormatics volu and E tionar volu y Genomics Genom 5/2/2011 1 Bioinformatics and Evolutionary Genomics 5/2/2011 1 Fritz-Laylin et al. cell 2010 Gene Trees, Gene Duplications, and Orthology How to make trees Bootstrap Interpreting trees duplications vs speciations

More information

Mammalogy: the study of the evolution, ecology, physiology, and anatomy of members of the Class Mammalia (Chordata, Vertebrata).

Mammalogy: the study of the evolution, ecology, physiology, and anatomy of members of the Class Mammalia (Chordata, Vertebrata). Mammalogy: the study of the evolution, ecology, physiology, and anatomy of members of the Class Mammalia (Chordata, Vertebrata). Mammalogy has been of practical interest to humans since our ancestors evolved

More information

Phylogenetic analysis of uroporphyrinogen III synthase (UROS) gene

Phylogenetic analysis of uroporphyrinogen III synthase (UROS) gene www.bioinformation.net Hypothesis Volume 8(25) Phylogenetic analysis of uroporphyrinogen III synthase (UROS) gene Abjal Pasha Shaik 1,$, *, Abbas H Alsaeed 1$ & Asma Sultana 2$ 1Department of Clinical

More information

Pathogenic fungi genomics, evolution and epidemiology! John W. Taylor University of California Berkeley, USA

Pathogenic fungi genomics, evolution and epidemiology! John W. Taylor University of California Berkeley, USA Pathogenic fungi genomics, evolution and epidemiology! John W. Taylor University of California Berkeley, USA Adaptation! Divergence Divergence Adaptation Darwin 1859 Mendel 1866 1830 1850 1870 1890 1910

More information

Table S1. Non-NCBI databases Kingdom Animalia databases D. discoideum, E. histolytica, E. tenella, Leishmania http://www.genedb.org/ species, Plasmodium species, Trypanosome species C. intestinalis, L.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11541 Supplementary Figure 1. Genome-wide analysis of the phylogenetic relationships Phylogenetic tree of NDH-2s from Prokaryota, Protista, Plantae, Fungi and Metazoa. The WWW.NATURE.COM/NATURE

More information

Camello, a novel family of Histone Acetyltransferases that acetylate histone H4 and is essential for zebrafish development

Camello, a novel family of Histone Acetyltransferases that acetylate histone H4 and is essential for zebrafish development Supplementary Information: Camello, a novel family of Histone Acetyltransferases that acetylate histone H4 and is essential for zebrafish development Krishanpal Karmodiya 1, Krishanpal Anamika 1,2, Vijaykumar

More information

Quantitative and qualitative analyses. of in-paralogs

Quantitative and qualitative analyses. of in-paralogs Quantitative and qualitative analyses of in-paralogs Dissertation zur Erlangung des naturwissentschaflichen Doktorgrades der Bayerischen Julius-Maximilians Universität Würzburg vorgelegt von Stanislav

More information

Supplementary Figure 3

Supplementary Figure 3 Supplementary Figure 3 7.0 Col Kas-1 Line FTH1A 8.4 F3PII3 8.9 F26H11 ATQ1 T9I22 PLS8 F26B6-B 9.6 F27L4 9.81 F27D4 9.92 9.96 10.12 10.14 10.2 11.1 0.5 Mb T1D16 Col % RGR 83.3 101 227 93.5 75.9 132 90 375

More information

Rapid birth-and-death evolution of the xenobiotic metabolizing NAT gene family in vertebrates with evidence of adaptive selection

Rapid birth-and-death evolution of the xenobiotic metabolizing NAT gene family in vertebrates with evidence of adaptive selection Sabbagh et al. BMC Evolutionary Biology 2013, 13:62 RESEARCH ARTICLE Open Access Rapid birth-and-death evolution of the xenobiotic metabolizing NAT gene family in vertebrates with evidence of adaptive

More information

Biased amino acid composition in warm-blooded animals

Biased amino acid composition in warm-blooded animals Biased amino acid composition in warm-blooded animals Guang-Zhong Wang and Martin J. Lercher Bioinformatics group, Heinrich-Heine-University, Düsseldorf, Germany Among eubacteria and archeabacteria, amino

More information

Inferring Phylogenies from RAD Sequence Data

Inferring Phylogenies from RAD Sequence Data Inferring Phylogenies from RAD Sequence Data Benjamin E. R. Rubin 1,2 *, Richard H. Ree 3, Corrie S. Moreau 2 1 Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, United States

More information

Supplemental Figure 1.

Supplemental Figure 1. Supplemental Material: Annu. Rev. Genet. 2015. 49:213 42 doi: 10.1146/annurev-genet-120213-092023 A Uniform System for the Annotation of Vertebrate microrna Genes and the Evolution of the Human micrornaome

More information

Supplementary Information

Supplementary Information Supplementary Information Systematic characterization of the gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae Albely Afifa Mir 1, Sook-Young Park 1, 2, Md. Abu Sadat 1,3,

More information

Expanded View Figures

Expanded View Figures Eukaryotic kinetochore evolution Jolien JE van Hooff et al Expanded View Figures Opisthokonta moebozoa Excavata Stramenopila-lveolata-hizaria rchaeplastida present absent Homo sapiens Mus musculus enopus

More information

Supplemental data. Vos et al. (2008). The plant TPX2 protein regulates pro-spindle assembly before nuclear envelope breakdown.

Supplemental data. Vos et al. (2008). The plant TPX2 protein regulates pro-spindle assembly before nuclear envelope breakdown. Supplemental data. Vos et al. (2008). The plant TPX2 protein regulates pro-spindle assembly before nuclear envelope breakdown. SUPPLEMENTAL FIGURE 1 ONLINE Xenopus laevis! Xenopus tropicalis! Danio rerio!

More information

Master Biomedizin ) UCSC & UniProt 2) Homology 3) MSA 4) Phylogeny. Pablo Mier

Master Biomedizin ) UCSC & UniProt 2) Homology 3) MSA 4) Phylogeny. Pablo Mier Master Biomedizin 2018 1) UCSC & UniProt 2) Homology 3) MSA 4) 1 12 a. All of the sequences in file1.fasta (https://cbdm.uni-mainz.de/mb18/) are homologs. How many groups of orthologs would you say there

More information

Genome-wide discovery of G-quadruplex forming sequences and their functional

Genome-wide discovery of G-quadruplex forming sequences and their functional *Correspondence and requests for materials should be addressed to R.G. (rohini@nipgr.ac.in) Genome-wide discovery of G-quadruplex forming sequences and their functional relevance in plants Rohini Garg*,

More information

Supplementary Information

Supplementary Information Supplementary Information Rice APC/C TE controls tillering through mediating the degradation of MONOCULM 1 Qibing Lin 1*, Dan Wang 1*, Hui Dong 2*, Suhai Gu 1, Zhijun Cheng 1, Jie Gong 2, Ruizhen Qin 1,

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Zn 2+ -binding sites in USP18. (a) The two molecules of USP18 present in the asymmetric unit are shown. Chain A is shown in blue, chain B in green. Bound Zn 2+ ions are shown as

More information

Marine medaka ATP-binding cassette (ABC) superfamily and new insight into teleost Abch nomenclature

Marine medaka ATP-binding cassette (ABC) superfamily and new insight into teleost Abch nomenclature Supplementary file for: Marine medaka ATP-binding cassette (ABC) superfamily and new insight into teleost Abch nomenclature Chang-Bum Jeong a,b,#, Bo-Mi Kim a,#, Hye-Min Kang a, Ik-Young Choi c, Jae-Sung

More information

In Silico Sequence Analysis Reveals New Characteristics of Fungal NADPH Oxidase Genes

In Silico Sequence Analysis Reveals New Characteristics of Fungal NADPH Oxidase Genes Mycobiology Research Article In Silico Sequence Analysis Reveals New Characteristics of Fungal NADPH Oxidase Genes Nicolas Détry 1,, Jaeyoung Choi 2,, Hsiao-Che Kuo 1, Fred O. Asiegbu 1 and Yong-Hwan Lee

More information

High class-imbalance in pre-mirna prediction: a novel approach based on deepsom

High class-imbalance in pre-mirna prediction: a novel approach based on deepsom IEEE/ACM TRANS. ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, APRIL 2016 1 High class-imbalance in pre-mirna prediction: a novel approach based on deepsom G. Stegmayer, Member, IEEE, C. Yones, L. Kamenetzky,

More information

Supplemental Table 1. Primers used for cloning and PCR amplification in this study

Supplemental Table 1. Primers used for cloning and PCR amplification in this study Supplemental Table 1. Primers used for cloning and PCR amplification in this study Target Gene Primer sequence NATA1 (At2g393) forward GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GGC GCC TCC AAC CGC AGC

More information

Protein Coding Regions of Eukaryotes

Protein Coding Regions of Eukaryotes Analyses of Highly Conserved Nucleotide Sequences within Protein Coding Regions of Eukaryotes Rumiko Suzuki Department of Genetics School of life science The Graduate University for Advanced Studies 2010

More information

List of supplementary data

List of supplementary data List of supplementary data Figure S1 Amino acid alignment for GiNT Figure S2Amino acid alignment and phylogenetic analysis for GiGS1 and GiGS2 Figure S3 Amino acid alignment for GiGluS Figure S4 Amino

More information

Neurotransmitter 2014; 1: e388. doi: /nt.388; 2014 by Takashi Hayashi

Neurotransmitter 2014; 1: e388. doi: /nt.388; 2014 by Takashi Hayashi BRIEF REPORT Evolutionarily conserved palmitoylation-dependent regulation of ionotropic glutamate receptors in vertebrates Takashi Hayashi 1, 2 1 Section of Cellular Biochemistry, Department of Biochemistry

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature111 cytosol Model: PILS function in cellular auxin homeostasis ER nucleus IAA degradation? sequestration? conjugation? storage? signalling? PILS IAA ER cytosol Supplemental Figure 1 Model

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/312/5780/1653/dc1 Supporting Online Material for The Xist RNA Gene Evolved in Eutherians by Pseudogenization of a Protein-Coding Gene Laurent Duret,* Corinne Chureau,

More information

Supporting Information

Supporting Information Supporting Information Chen et al. 1.173/pnas.11379113 Fig. S1. Life cycle of the social amoeba D. discoideum. D. discoideum amoebae propagate vegetatively as a unicellular organism when food (naturally

More information

! # % & ( &) &) % + % # % ( &) &) % +!, (./ # % ##0 & ( &) % +, /77 2,

! # % & ( &) &) % + % # % ( &) &) % +!, (./ # % ##0 & ( &) % +, /77 2, MBE Advance Access published November 12, 2008! # % & ( &) &) % + % # % ( &) &) % +!, (./ # % ##0 & ( 1 2 3356733 &) % +, 8 9 37 6./77 2, : ;

More information

Point of View. Incomplete Lineage Sorting in Mammalian Phylogenomics

Point of View. Incomplete Lineage Sorting in Mammalian Phylogenomics Point of View Syst. Biol. 66(1):112 120, 2017 The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email:

More information

Gene mention normalization in full texts using GNAT and LINNAEUS

Gene mention normalization in full texts using GNAT and LINNAEUS Gene mention normalization in full texts using GNAT and LINNAEUS Illés Solt 1,2, Martin Gerner 3, Philippe Thomas 2, Goran Nenadic 4, Casey M. Bergman 3, Ulf Leser 2, Jörg Hakenberg 5 1 Department of Telecommunications

More information

New Universal Rules of Eukaryotic Translation Initiation Fidelity

New Universal Rules of Eukaryotic Translation Initiation Fidelity New Universal Rules of Eukaryotic Translation Initiation Fidelity Hadas Zur 1, Tamir Tuller 2,3 * 1 The Blavatnik School of Computer Science, Tel Aviv University, Tel-Aviv, Israel, 2 Department of Biomedical

More information

Supplemental Figure 1. Comparison of Tiller Bud Formation between the Wild Type and d27. (A) and (B) Longitudinal sections of shoot apex in wild-type

Supplemental Figure 1. Comparison of Tiller Bud Formation between the Wild Type and d27. (A) and (B) Longitudinal sections of shoot apex in wild-type A B 2 3 3 2 1 1 Supplemental Figure 1. Comparison of Tiller Bud Formation between the Wild Type and d27. (A) and (B) Longitudinal sections of shoot apex in wild-type (A) and d27 (B) seedlings at the four

More information

Resolving Conflict in Eutherian Mammal Phylogeny Using Phylogenomics and the Multispecies Coalescent Model

Resolving Conflict in Eutherian Mammal Phylogeny Using Phylogenomics and the Multispecies Coalescent Model Supplementary Information to Resolving Conflict in Eutherian Mammal Phylogeny Using Phylogenomics and the Multispecies Coalescent Model Sen Song a,1, Liang Liu b,1, Scott V. Edwards c, Shaoyuan Wu d,b,2

More information

Evolution of substrate specificity in the Nucleobase- Ascorbate Transporter (NAT) protein family

Evolution of substrate specificity in the Nucleobase- Ascorbate Transporter (NAT) protein family www.microbialcell.com Research Report Evolution of substrate specificity in the Nucleobase- Ascorbate Transporter (NAT) protein family Anezia Kourkoulou 1,#, Alexandros A. Pittis 2,# and George Diallinas

More information

Elements of Bioinformatics 14F01 TP5 -Phylogenetic analysis

Elements of Bioinformatics 14F01 TP5 -Phylogenetic analysis Elements of Bioinformatics 14F01 TP5 -Phylogenetic analysis 10 December 2012 - Corrections - Exercise 1 Non-vertebrate chordates generally possess 2 homologs, vertebrates 3 or more gene copies; a Drosophila

More information

RNase MRP and the RNA Processing Cascade in the Eukaryotic Ancestor

RNase MRP and the RNA Processing Cascade in the Eukaryotic Ancestor Research Article for BMC Evolutionary Biology 11 March 2006 RNase MRP and the RNA Processing Cascade in the Eukaryotic Ancestor Michael D. Woodhams 1 *, Peter F. Stadler 2, David Penny 1, Lesley J. Collins

More information

Bioinformatics Report Branchiostoma lanceolatum dopamine D 1 / receptor protein phylogenetic analysis. Alanna Lewis

Bioinformatics Report Branchiostoma lanceolatum dopamine D 1 / receptor protein phylogenetic analysis. Alanna Lewis Bioinformatics Report Branchiostoma lanceolatum dopamine D 1 / receptor protein phylogenetic analysis Alanna Lewis 0 Abstract: Dopamine is an essential neurotransmitter for many species of chordates. The

More information

GATA family of transcription factors of vertebrates: phylogenetics and chromosomal synteny

GATA family of transcription factors of vertebrates: phylogenetics and chromosomal synteny Phylogenetics and chromosomal synteny of the GATAs 1273 GATA family of transcription factors of vertebrates: phylogenetics and chromosomal synteny CHUNJIANG HE, HANHUA CHENG* and RONGJIA ZHOU* Department

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/328/5979/624/dc1 Supporting Online Material for Lateral Transfer of Genes from Fungi Underlies Carotenoid Production in Aphids Nancy A. Moran* and Tyler Jarvik *To whom

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/7/e1602878/dc1 Supplementary Materials for Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades Michael J. Gaudry,

More information

Bayesian models for molecular evolution Rates, rates and traits

Bayesian models for molecular evolution Rates, rates and traits Bayesian models for molecular evolution Rates, rates and traits Nicolas Lartillot March 20, 2012 Nicolas Lartillot (Universite de Montréal) BCM2004: Molecular evolution March 20, 2012 1 / 38 1 Molecular

More information

The evolution of WRKY transcription factors

The evolution of WRKY transcription factors Rinerson et al. BMC Plant Biology (2015) 15:66 DOI 10.1186/s12870-015-0456-y RESEARCH ARTICLE Open Access The evolution of WRKY transcription factors Charles I Rinerson 1, Roel C Rabara 1, Prateek Tripathi

More information

Exploring evolution of brain genes involved in microcephaly through phylogeny and synteny analysis

Exploring evolution of brain genes involved in microcephaly through phylogeny and synteny analysis Rauf and Mir Theoretical Biology and Medical Modelling 2013, 10:61 RESEARCH Open Access Exploring evolution of brain genes involved in microcephaly through phylogeny and synteny analysis Sobiah Rauf and

More information

Cubic Spline Interpolation Reveals Different Evolutionary Trends of Various Species

Cubic Spline Interpolation Reveals Different Evolutionary Trends of Various Species Cubic Spline Interpolation Reveals Different Evolutionary Trends of Various Species Zhiqiang Li 1 and Peter Z. Revesz 1,a 1 Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE,

More information

Application of new distance matrix to phylogenetic tree construction

Application of new distance matrix to phylogenetic tree construction Application of new distance matrix to phylogenetic tree construction P.V.Lakshmi Computer Science & Engg Dept GITAM Institute of Technology GITAM University Andhra Pradesh India Allam Appa Rao Jawaharlal

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature11394 Supplementary Note Our study is based on two different tracriptome indices. Both combine tracriptional information with an important evolutionary parameter. For the tracriptome age

More information

Exceptionally high cumulative percentage of NUMTs originating from linear mitochondrial DNA molecules in the Hydra magnipapillata genome

Exceptionally high cumulative percentage of NUMTs originating from linear mitochondrial DNA molecules in the Hydra magnipapillata genome Song et al. BMC Genomics 2013, 14:447 RESEARCH ARTICLE Open Access Exceptionally high cumulative percentage of NUMTs originating from linear mitochondrial DNA molecules in the Hydra magnipapillata genome

More information

AtTIL-P91V. AtTIL-P92V. AtTIL-P95V. AtTIL-P98V YFP-HPR

AtTIL-P91V. AtTIL-P92V. AtTIL-P95V. AtTIL-P98V YFP-HPR Online Resource 1. Primers used to generate constructs AtTIL-P91V, AtTIL-P92V, AtTIL-P95V and AtTIL-P98V and YFP(HPR) using overlapping PCR. pentr/d- TOPO-AtTIL was used as template to generate the constructs

More information

Towards a Comprehensive Annotation of Structured RNAs in Drosophila

Towards a Comprehensive Annotation of Structured RNAs in Drosophila Towards a Comprehensive Annotation of Structured RNAs in Drosophila Rebecca Kirsch 31st TBI Winterseminar, Bled 20/02/2016 Studying Non-Coding RNAs in Drosophila Why Drosophila? especially for novel molecules

More information

Potato Genome Analysis

Potato Genome Analysis Potato Genome Analysis Xin Liu Deputy director BGI research 2016.1.21 WCRTC 2016 @ Nanning Reference genome construction???????????????????????????????????????? Sequencing HELL RIEND WELCOME BGI ZHEN LLOFRI

More information

Research Article Placenta-Specific Protein 1 Is Conserved throughout the Placentalia under Purifying Selection

Research Article Placenta-Specific Protein 1 Is Conserved throughout the Placentalia under Purifying Selection e Scientific World Journal, Article ID 537356, 5 pages http://dx.doi.org/10.1155/2014/537356 Research Article Placenta-Specific Protein 1 Is Conserved throughout the Placentalia under Purifying Selection

More information

UC Berkeley UC Berkeley Electronic Theses and Dissertations

UC Berkeley UC Berkeley Electronic Theses and Dissertations UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Introns and alternative splicing in choanoflagellates Permalink https://escholarship.org/uc/item/00w3t04k Author WESTBROOK, MARJORIE WRIGHT

More information

Synonymous Codon Substitution Matrices

Synonymous Codon Substitution Matrices Synonymous Codon Substitution Matrices Adrian Schneider, Gaston H. Gonnet, and Gina M. Cannarozzi Computational Biology Research Group, Institute for Computational Science, ETH Zürich, Universitätstrasse

More information

Supplementary Material

Supplementary Material Supplementary Material Supplementary Table S1. Genomes available in build 47 Supplementary Table S2. Counts of putative contiguous gene split models in 39 plant reference genomes in build 47 Supplementary

More information

Emergence of Xin Demarcates a Key Innovation in Heart Evolution

Emergence of Xin Demarcates a Key Innovation in Heart Evolution Emergence of Xin Demarcates a Key Innovation in Heart Evolution Shaun E. Grosskurth, Debashish Bhattacharya, Qinchuan Wang, Jim Jung-Ching Lin* Department of Biology, University of Iowa, Iowa City, Iowa,

More information

Determining the Null Model for Detecting Adaptive Convergence from Genomic Data: A Case Study using Echolocating Mammals

Determining the Null Model for Detecting Adaptive Convergence from Genomic Data: A Case Study using Echolocating Mammals Determining the Null Model for Detecting Adaptive Convergence from Genomic Data: A Case Study using Echolocating Mammals Gregg W.C. Thomas 1 and Matthew W. Hahn*,1,2 1 School of Informatics and Computing,

More information

The evolution of the class A scavenger receptors

The evolution of the class A scavenger receptors Whelan et al. BMC Evolutionary Biology 2012, 12:227 RESEARCH ARTICLE Open Access The evolution of the class A scavenger receptors Fiona J Whelan 1, Conor J Meehan 2, G Brian Golding 3, Brendan J McConkey

More information

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools CAP 5510: to : Tools ECS 254A / EC 2474; Phone x3748; Email: giri@cis.fiu.edu My Homepage: http://www.cs.fiu.edu/~giri http://www.cs.fiu.edu/~giri/teach/bioinfs15.html Office ECS 254 (and EC 2474); Phone:

More information

Genome Visualization in Space

Genome Visualization in Space Genome Visualization in Space Leandro S. Marcolino 1, Brá ulio R. G. M. Couto 2 and Marcos A. dos Santos 1 Departamento de Ciência da Computação, Universidade Federal de Minas Gerais / UFMG 1 ; Programa

More information

CONSTRUCTION OF PHYLOGENETIC TREE FROM MULTIPLE GENE TREES USING PRINCIPAL COMPONENT ANALYSIS

CONSTRUCTION OF PHYLOGENETIC TREE FROM MULTIPLE GENE TREES USING PRINCIPAL COMPONENT ANALYSIS INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976

More information

Uncertainty in phylogenetic tree estimates

Uncertainty in phylogenetic tree estimates Uncertainty in phylogenetic tree estimates Amy Willis Department of Biostatistics, University of Washington and Rayna Bell Smithsonian Institution, National Museum of Natural History October 16, 2017 arxiv:1611.03456v2

More information

How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies

How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies Gagat et al. Biology Direct 2013, 8:18 RESEARCH Open Access How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies Przemysław

More information

This is a provisional PDF comprising this cover note and the manuscript as it was upon acceptance for publication.

This is a provisional PDF comprising this cover note and the manuscript as it was upon acceptance for publication. This is a provisional PDF comprising this cover note and the manuscript as it was upon acceptance for publication. A typeset PDF article will be published soon. Dissection of functional residues in Receptor

More information

Multiple Sequence Alignment. Sequences

Multiple Sequence Alignment. Sequences Multiple Sequence Alignment Sequences > YOR020c mstllksaksivplmdrvlvqrikaqaktasglylpe knveklnqaevvavgpgftdangnkvvpqvkvgdqvl ipqfggstiklgnddevilfrdaeilakiakd > crassa mattvrsvksliplldrvlvqrvkaeaktasgiflpe

More information

Cascade Support Vector Machines applied to the Translation Initiation Site prediction problem

Cascade Support Vector Machines applied to the Translation Initiation Site prediction problem Cascade Support Vector Machines applied to the Translation Initiation Site prediction problem Wallison W. Guimarães 1, Cristiano L. N. Pinto 2, Cristiane N. Nobre 1, Luis E. Zárate 1 1 Pontifical Catholic

More information

Presentation by Julie Hudson MAT5313

Presentation by Julie Hudson MAT5313 Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6575-6579, July 1992 Evolution Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome (genomics/algorithm/inversions/edit distance/conserved

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature13082 Supplementary Table 1. Examination of nectar production in wild-type and atsweet9 flowers. No. of flowers with detectable nectar out of the total observed

More information

Chapter # EVOLUTION AND ORIGIN OF NEUROFIBROMIN, THE PRODUCT OF THE NEUROFIBROMATOSIS TYPE 1 (NF1) TUMOR-SUPRESSOR GENE

Chapter # EVOLUTION AND ORIGIN OF NEUROFIBROMIN, THE PRODUCT OF THE NEUROFIBROMATOSIS TYPE 1 (NF1) TUMOR-SUPRESSOR GENE 142 Part 5 Chapter # EVOLUTION AND ORIGIN OF NEUROFIBROMIN, THE PRODUCT OF THE NEUROFIBROMATOSIS TYPE 1 (NF1) TUMOR-SUPRESSOR GENE Golovnina K. *1, Blinov A. 1, Chang L.-S. 2 1 Institute of Cytology and

More information

Inparanoid: a comprehensive database of eukaryotic orthologs

Inparanoid: a comprehensive database of eukaryotic orthologs D476 D480 Nucleic Acids Research, 2005, Vol. 33, Database issue doi:10.1093/nar/gki107 Inparanoid: a comprehensive database of eukaryotic orthologs Kevin P. O Brien, Maido Remm 1 and Erik L. L. Sonnhammer*

More information

PROTEINS: Structure, Function and Bioinformatics. In press (Prot R1)

PROTEINS: Structure, Function and Bioinformatics. In press (Prot R1) PROTEINS: Structure, Function and Bioinformatics In press (Prot-00261-2006.R1) TITLE: Classification and Functional Annotation of Eukaryotic Protein Kinases RUNNING TITLE: Classification and Annotation

More information

Bayesian models for macroevolutionary studies

Bayesian models for macroevolutionary studies Bayesian models for macroevolutionary studies Nicolas Lartillot February 28, 2012 Nicolas Lartillot (Universite de Montréal) Integrative models of macroevolution February 28, 2012 1 / 47 The molecular

More information

Genome Evolution Greg Lang, Department of Biological Sciences

Genome Evolution Greg Lang, Department of Biological Sciences Genome Evolution Greg Lang, Department of Biological Sciences BioS 010: Bioscience in the 21st Century Mechanisms of genome evolution Gene Duplication Genome Rearrangement Whole Genome Duplication Gene

More information

The Tree of Life. Phylogeny

The Tree of Life. Phylogeny The Tree of Life Phylogeny Phylogenetics Phylogenetic trees illustrate the evolutionary relationships among groups of organisms, or among a family of related nucleic acid or protein sequences Each branch

More information

Genome-Wide Computational Prediction and Analysis of Core Promoter Elements across Plant Monocots and Dicots

Genome-Wide Computational Prediction and Analysis of Core Promoter Elements across Plant Monocots and Dicots Genome-Wide Computational Prediction and Analysis of Core Promoter Elements across Plant Monocots and Dicots Sunita Kumari 1, Doreen Ware 1,2 * 1 Cold Spring Harbor Laboratory, Cold Spring Harbor, New

More information

Using Phylogenomics to Predict Novel Fungal Pathogenicity Genes

Using Phylogenomics to Predict Novel Fungal Pathogenicity Genes Using Phylogenomics to Predict Novel Fungal Pathogenicity Genes David DeCaprio, Ying Li, Hung Nguyen (sequenced Ascomycetes genomes courtesy of the Broad Institute) Phylogenomics Combining whole genome

More information

ECOL/MCB 320 and 320H Genetics

ECOL/MCB 320 and 320H Genetics ECOL/MCB 320 and 320H Genetics Instructors Dr. C. William Birky, Jr. Dept. of Ecology and Evolutionary Biology Lecturing on Molecular genetics Transmission genetics Population and evolutionary genetics

More information

Neofunctionalization within the Omp85 protein superfamily during

Neofunctionalization within the Omp85 protein superfamily during Neofunctionalization within the Omp protein superfamily during chloroplast evolution Mats Töpel, Qihua Ling and Paul Jarvis, * Department of Plant and Environmental Sciences; Göteborg University; Göteborg,

More information

Supplementary Figure 1. Number of CC- and TIR- type NBS- LRR genes and presence of mir482/2118 on sequenced plant genomes.

Supplementary Figure 1. Number of CC- and TIR- type NBS- LRR genes and presence of mir482/2118 on sequenced plant genomes. Number of CC- NBS and CC- NBS- LRR R- genes Number of TIR- NBS and TIR- NBS- LRR R- genes 0 50 100 150 200 250 0 50 100 150 200 250 300 350 400 450 mir482 and mir2118 Cajanus cajan Glycine max Hevea brasiliensis

More information

Cao, J, K Schneeberger, S Ossowski, et al Whole genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:

Cao, J, K Schneeberger, S Ossowski, et al Whole genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43: Figure S1. Syntenic map of SAE1B duplication. We have used the nucleotide sequences of Arabidopsis thaliana Col-0 gene tandem duplicates AT5G50580 and AT5G506800 as queries in independent BLASTN searches

More information

Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery

Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery RESEARCH ARTICLE Open Access Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery James R Brown 1, Kurt R Auger 2 Abstract Background:

More information

Genome Sequencing & DNA Sequence Analysis

Genome Sequencing & DNA Sequence Analysis 7.91 / 7.36 / BE.490 Lecture #1 Feb. 24, 2004 Genome Sequencing & DNA Sequence Analysis Chris Burge What is a Genome? A genome is NOT a bag of proteins What s in the Human Genome? Outline of Unit II: DNA/RNA

More information

Procedure to Create NCBI KOGS

Procedure to Create NCBI KOGS Procedure to Create NCBI KOGS full details in: Tatusov et al (2003) BMC Bioinformatics 4:41. 1. Detect and mask typical repetitive domains Reason: masking prevents spurious lumping of non-orthologs based

More information

Reassessing Domain Architecture Evolution of Metazoan Proteins: Major Impact of Gene Prediction Errors

Reassessing Domain Architecture Evolution of Metazoan Proteins: Major Impact of Gene Prediction Errors Genes 2011, 2, 449-501; doi:10.3390/genes2030449 Article OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Reassessing Domain Architecture Evolution of Metazoan Proteins: Major Impact of Gene

More information

Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are:

Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are: Comparative genomics and proteomics Species available Ensembl focuses on metazoan (animal) genomes. The genomes currently available at the Ensembl site are: Vertebrates: human, chimpanzee, mouse, rat,

More information

Bioinformatics tools to analyze complex genomes. Yves Van de Peer Ghent University/VIB

Bioinformatics tools to analyze complex genomes. Yves Van de Peer Ghent University/VIB Bioinformatics tools to analyze complex genomes Yves Van de Peer Ghent University/VIB Detecting colinearity and large-scale gene duplications A 1 2 3 4 5 6 7 8 9 10 11 Speciation/Duplicatio n S1 S2 1

More information

Modern ionotropic glutamate receptor with a K + selectivity signature sequence

Modern ionotropic glutamate receptor with a K + selectivity signature sequence SUPPLEMENTARY INFORMATION Modern ionotropic glutamate receptor with a K + selectivity signature sequence H. Janovjak, G. Sandoz and E.Y. Isacoff * * Correspondence should be addressed to E.Y.I. (ehud@berkeley.edu).

More information

BSC 4934: QʼBIC Capstone Workshop" Giri Narasimhan. ECS 254A; Phone: x3748

BSC 4934: QʼBIC Capstone Workshop Giri Narasimhan. ECS 254A; Phone: x3748 BSC 4934: QʼBIC Capstone Workshop" Giri Narasimhan ECS 254A; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/bsc4934_su10.html July 2010 7/12/10 Q'BIC Bioinformatics 1 Overview of Course"

More information