WMO Aeronautical Meteorology Scientific Conference 2017

Size: px
Start display at page:

Download "WMO Aeronautical Meteorology Scientific Conference 2017"

Transcription

1 Session 1 Science underpinning meteorological observations, forecasts, advisories and warnings 1.5 Atmospheric aerosols, volcanic ash research Development of an ensemble-based volcanic ash dispersion model for operations at the Darwin VAAC Rodney Potts, Bureau of Meteorology rodney.potts@bom.gov.au co-authors: Chris Lucas, Richard Dare, Mey Manickam, Alan Wain, Meelis Zidikheri and Adele Bear-Crozier speaker: Rodney Potts Introduction Airborne volcanic ash presents a significant safety risk to aviation. International arrangements have been developed to mitigate this risk through the activities of the ICAO International Airways Volcano Watch program and operations at associated Volcanic Ash Advisory Centres (VAAC). Warnings for volcanic ash clouds are based on reports of an eruption, observations of the ash cloud, including satellite observations, and forecasts of the movement of the ash based on dispersion model guidance. Following the Eyjafjallajökull eruption in 2010 there has been a need for more information on the spatial variation in ash concentration and the associated uncertainties to enable airlines to better manage operational risk. There are significant challenges with this objective. The Australian Bureau of Meteorology operates the Darwin VAAC with an area of responsibility that includes the volcanically active region of Indonesia and Papua New Guinea. There has been ongoing development to improve available guidance for the preparation of warnings. The improved spatial, temporal and spectral resolution of the new Japanese Himawari-8 satellite data (Bessho, et al 2016) has greatly improved the detection and tracking of volcanic ash. Moreover these data are processed with the Spectrally Enhanced Cloud Objects (SECO) algorithm developed by NOAA NESDIS to provide quantitative estimates of cloud parameters including cloud top and the mass load (Pavolonis et al 2015a; Pavolonis et al 2015b). Forecast guidance is provided using the HYSPLIT dispersion model (Draxler and Hess, 1995; Stein et al, 2015) which is coupled with the Australian Community Climate and Earth System Simulator (ACCESS) model suite (Puri et al, 2013, Dare et al, 2016b). For operations this is generally the deterministic regional ACCESS-R model. In HYSPLIT there has been work to better represent the particle size distribution of ash and improve the parameterisation for the particle fall speed (Dare, 2015). It has also been shown that wet deposition processes can have a very significant impact on the dispersion of ash in the Maritime Continent region which is both volcanically and convectively active (Dare et al, 2016a).

2 There are significant uncertainties in forecasting the dispersion of volcanic ash associated with uncertainties in the NWP model forecast fields and the source term for the volcanic ash. The use of dispersion model guidance based on an ensemble NWP model can help to quantify the uncertainties associated with the meteorology as demonstrated by Dare et al (2016b). Following from this work the Bureau has recently developed a Dispersion Ensemble Prediction System (DEPS) for volcanic ash which allows for running the HYSPLIT dispersion model coupled to the Bureau s 24 member global ensemble model ACCESS-GE and other deterministic NWP models. Work to implement this for operational use in the VAAC is currently in progress. In this paper we briefly describe the DEPS system and present preliminary results using the 13 Feb 2014 Kelut eruption as a case study. Kelut volcano eruption of 13 Feb 2014 The Kelut volcano (7.930 S, E), is located in Java, Indonesia. approximately 4 hours from UTC, 13 February It erupted for Available observations suggest most of the ash was ejected in a spreading plume or umbrella with a top near the tropopause around 19 km together with an overshooting core extending as high as 26 km (Kristiansen, et al 2015; Lucas and Majewski, 2015). The local wind field at low altitudes (0-5 km) was a light south-westerly. This shifted to a relatively light southeast to easterly flow at 5-10 km with a stronger easterly flow above 10 km. There was significant disruption to aircraft operations in the area and one reported case of a commercial jet aircraft accidentally encountering ash from the volcano (Kristiansen, et al, 2015). Figure 1. MTSAT2 satellite IR images for 0130 UTC, 14 Feb 2014 with overlay of (a) ash probability and (b) estimate of mass load (g/m2).

3 Conditions at the time of the eruption were relatively clear and most of the ash plume was clearly evident in satellite imagery as a cold and optically thick cloud for a number of hours as it moved to the west. Figure 1 shows the 11 µm IR image from the Japanese geostationary satellite, MTSAT2, for 0130 UTC 14 Feb 2014, around 9 hr after the start of the eruption. This is overlain with the ash probability (Figure 1a) and the estimated mass load with a maximum around 50 g/m 2 (Figure 1b) derived from the SECO algorithm (Pavolonis et al 2015a,b). The Dispersion Ensemble Prediction System (DEPS) The DEPS has been developed to enable forecasters to initialize an ensemble run based on output from the Bureau s 24 member global ensemble model (ACCESS-GE) together with the Bureau s deterministic models ACCESS-G (global) and ACCESS-R (regional) along with the NOAA s GFS model. The system is run with defined eruption source parameters, including the height, duration of the eruption, mass emission rate and particle size distribution. The source can be defined as a single vertically uniform column or a simple umbrella shaped plume. The total ash emission rate (M in kg/s) is derived, following Mastin et al (2009) and Webster et al (2012), from the relation M = H 4.15, where H is the plume rise height above the vent (km). To account for the fact that a large fraction of the ash will fall out in the near field a factor ε is applied such that M = ε.m, where ε represents the fine ash fraction. The system provides output guidance on the mass load from each of the ensemble members at defined forecast time steps and the probability of exceeding defined thresholds for the mass load. Default values of the ash emission rate and fine ash fractions (Mastin et al, 2009) are provided but these can be changed manually based on other guidance that may be available. It is anticipated the output will enable a better assessment of the uncertainties associated with the meteorology and facilitate the provision of improved guidance to airlines for the safety risk assessment. For the purposes of this study we present the model output valid at 0100 UTC, 14 Feb 2014 assuming a uniform column source and a simple umbrella source as presented in Table 1. For the column source there is a uniform fine ash emission rate of 7.88 x10 6 kg.s -1 and for the umbrella source the total fine ash emission rate is also 7.88 x10 6 kg.s -1 but 60% of the mass is emitted in the layer km. Figures 2a and 2b show the dispersion model output valid for 0100 UTC 14 Feb 2014 based on the deterministic ACCESS-R NWP model with a uniform column source and the simple umbrella source respectively. For the column source the mass load is concentrated relatively close to the volcano with a maximum around 3.3 kg.m -2 while for the umbrella source the mass load is distributed more widely in space with a maximum around 2.2 kg.m -2. Both are around 2 orders of magnitude greater than the estimated maximum in Figure 1b. Figures 2c and 2d show the same output for one member of the ensemble ACCESS-GE. For the column source the result is similar to that for ACCESS-R (Fig 2a) but for the umbrella source (Figure 2d) the maximum in the mass load is well to the west of the volcano and is more consistent with the spatial distribution in the satellite image (Figure 1b). As with Figures 2a and 2b the maximum in the mass load is around 2 orders of magnitude greater than observed.

4 Table 1. Source term parameters for initiation of HYSPLIT dispersion model for Kelut eruption. Column Umbrella Source a Source b Base (km) Top (km) Diameter (km) Fine ash fraction M (kg/s) 7.88 x x x 10 6 Figure 2. Dispersion model forecast for 0100 UTC, 14 Feb 2014 for a uniform column source (left most images) and an umbrella source (right most images). The forecast mass load (kg/m 2 ) for ACCESS-R is shown in (a) and (b) and ACCESS-GE11 is shown in (c) and (d).

5 Based on output from all ensemble members the percentage of members (or probability) that exceed a defined column load threshold at each grid point is calculated and output is provided. Thresholds at 2 and 4 g.m -2 have been identified as appropriate for management of risk by airlines. As the mass loads calculated here are much greater than indicated by the satellite data the results have relatively little value and are not presented. Regardless the results do show that representation of the ash plume as an umbrella for a large eruption like Kelut provides a better representation of the dispersion of ash compared with satellite observations. Conclusions and Future Developments The ensemble output shows a spread of possible outcomes for dispersion of the ash and provides guidance on the uncertainties when compared to the deterministic ACCESS-R output with a uniform column source term. Based on a qualitative assessment the simple umbrella source term provides an improved representation of the dispersion of ash for a large eruption that reaches the tropopause when compared with satellite observations. The mass load forecast by DEPS is too high by around 2 orders of magnitude when compared to the satellite estimate and this is largely due to uncertainties in the source term. These uncertainties may arise from: The MER based on Mastin et al (2009) for initialization of DEPS is too high for the observed height of the eruption column. Tupper et al, (2009) has reported this is a particular issue across the Maritime Continent where the latent instability is high Large uncertainties in the fine ash fraction appropriate for initialisation of dispersion models. Poor representation of cloud and precipitation in the tropics in NWP models that can have a significant impact on wet deposition processes in dispersion models. Future development of DEPS aims to integrate satellite based observations with the dispersion modelling, using inverse modelling techniques to better represent the source term (Zidikheri et al, 2017a,b). This should improve the calibration of the ensemble model and further improve available guidance. References Bessho, K., and coauthors, 2016: An Introduction to Himawari-8/9, Japan s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Japan. Ser. II, 94, , doi: /jmsj Dare, R., 2015: Sedimentation of volcanic ash in the HYSPLIT dispersion model. Bureau of Meteorology, Melbourne, Australia, Dare, R. A., R. J. Potts, and A. G. Wain, 2016a: Modelling wet deposition in simulations of volcanic ash dispersion from hypothetical eruptions of Merapi, Indonesia. Atmos. Environ., 143, , doi: /j.atmosenv Dare, R. A., D. H. Smith, and M. J. Naughton, 2016b: Ensemble prediction of the dispersion of volcanic ash from the 13 February 2014 eruption of Kelut, Indonesia. J. Appl. Meteorol. Climatol., 55, , doi: /jamc-d

6 Draxler, R. R., and G. D. Hess, 1998: An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition. Aust. Meteorol. Mag., 47, Lucas, C., and L. Majewski, 2015: Evaluation of GEOCAT Volcanic Ash Algorithm for use in BoM. Bureau of Meteorology, Melbourne, Australia, 1-51 pp. Pavolonis, M. J., J. Sieglaff, and J. Cintineo, 2015a: Spectrally Enhanced Cloud Objects A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis. J. Geophys. Res. Atmos., 120, , doi:doi: /2014jd Pavolonis, M. J., J. Sieglaff, and J. Cintineo, 2015b: Spectrally Enhanced Cloud Objects A generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 2. Cloud object analysis and global application. J. Geophys. Res. Atmos., 120, , doi:doi: /2014JD Puri, K., and Coauthors, 2013: Implementation of the initial ACCESS numerical weather prediction system. Aust. Meteorol. Oceanogr. J., 63, Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc., , doi: /bams-d Tupper, A., S. Carn, J. Davey, Y. Kamada, R. Potts, F. Prata, and M. Tokuno, 2004: An evaluation of volcanic cloud detection techniques during recent significant eruptions in the western Ring of Fire. Remote Sens. Environ., 91, 27 46, doi: /j.rse Tupper, A., C. Textor, M. Herzog, H. F. Graf, and M. S. Richards, 2009: Tall clouds from small eruptions: The sensitivity of eruption height and fine ash content to tropospheric instability. Nat. Hazards, 51, , doi: /s Webster, H. N., and Coauthors, 2012: Operational prediction of ash concentrations in the distal volcanic cloud from the 2010 Eyjafjallajkull eruption. J. Geophys. Res. Atmos., 117, 1 17, doi: /2011jd Zidikheri, M. J., C. Lucas, and R. J. Potts, 2017: Towards quantitative forecasts of volcanic ash dispersal: using satellite retrievals for optimal estimation of source terms. J. Geophys. Res. Atmos., doi:doi: /2017jd Zidikheri, M. J., C. Lucas, and R. J. Potts, 2017: Estimation of optimal dispersion model source parameters using satellite detections of volcanic ash. J. Geophys. Res. Atmos., doi:doi: /2017JD

Development of an ensemble-based volcanic ash dispersion model for operations at Darwin VAAC

Development of an ensemble-based volcanic ash dispersion model for operations at Darwin VAAC Development of an ensemble-based volcanic ash dispersion model for operations at Darwin VAAC Rodney Potts Bureau of Meteorology Australia [C Lucas, R Dare, M Manickam, A Wain, M Zidikheri, A Bear-Crozier]

More information

Use of inverse and ensemble modelling techniques for improved volcanic ash forecasts

Use of inverse and ensemble modelling techniques for improved volcanic ash forecasts Use of inverse and ensemble modelling techniques for improved volcanic ash forecasts Meelis Zidikheri, Richard Dare, Rodney Potts, and Chris Lucas Australian Bureau of Meteorology Introduction Aim is to

More information

P6.14 ADVANCES IN THE PROVISION OF WARNINGS FOR VOLCANIC ASH FOR AVIATION IN THE AUSTRALIAN REGION

P6.14 ADVANCES IN THE PROVISION OF WARNINGS FOR VOLCANIC ASH FOR AVIATION IN THE AUSTRALIAN REGION P6.14 ADVANCES IN THE PROVISION OF WARNINGS FOR VOLCANIC ASH FOR AVIATION IN THE AUSTRALIAN REGION Rodney Potts* and Mey Manickam Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia 1.

More information

Dispersion modelling and warnings for volcanic ash in the Australian Region

Dispersion modelling and warnings for volcanic ash in the Australian Region Dispersion modelling and warnings for volcanic ash in the Australian Region R Potts, R Dare, E Jansons, C Lucas, A Tupper, M Zidikheri The Centre for Australian Weather and Climate Research A partnership

More information

IVATF/4-WP/11 Revision 1 07/06/12. International WORKING PAPER IVATF TASK. (Presented SUMMARY 1.1. (5 pages)

IVATF/4-WP/11 Revision 1 07/06/12. International WORKING PAPER IVATF TASK. (Presented SUMMARY 1.1. (5 pages) International Civil Aviation Organization WORKING PAPER Revision 1 07/06/12 INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF) FOURTH MEETING Montréal, 13 to 15 June 2012 Agenda Item 2: Report of the science

More information

INTERNATIONAL AIRWAYS VOLCANO WATCH OPERATIONS GROUP (IAVWOPSG)

INTERNATIONAL AIRWAYS VOLCANO WATCH OPERATIONS GROUP (IAVWOPSG) International Civil Aviation Organization IAVWOPSG/8-WP/39 13/1/14 WORKING PAPER INTERNATIONAL AIRWAYS VOLCANO WATCH OPERATIONS GROUP (IAVWOPSG) EIGHTH MEETING Melbourne, Australia, 17 to 20 February 2014

More information

VAAC Operational Dispersion Model Configuration Snap Shot Version 2. March 2016

VAAC Operational Dispersion Model Configuration Snap Shot Version 2. March 2016 VAAC Operational Dispersion Model Configuration Snap Shot Version 2 March 2016 Introduction The VAACs are responsible for producing volcanic ash cloud analysis and forecasts to assist the aviation community

More information

WMO Aeronautical Meteorology Scientific Conference 2017

WMO Aeronautical Meteorology Scientific Conference 2017 Session 1 Science underpinning meteorological observations, forecasts, advisories and warnings 1.6 Observation, nowcast and forecast of future needs 1.6.1 Advances in observing methods and use of observations

More information

Applying Mass Eruption Rates in an Operational Dispersion Model

Applying Mass Eruption Rates in an Operational Dispersion Model Applying Mass Eruption Rates in an Operational Dispersion Model Frances Beckett, ADAQ, Met Office frances.beckett@metoffice.gov.uk MeMoVolc Workshop, University of Iceland, May 2016 The London Volcanic

More information

Volcanic Sulphur Dioxide

Volcanic Sulphur Dioxide Volcanic Sulphur Dioxide Overview Background & context Claire Witham VAAC SO 2 forecast demonstration Dov Bensimon Rolls Royce work on SO2 Rory Clarkson New capabilities to remotely sense SO2 - Marcel

More information

Development of volcanic ash product for the next-generation Japanese Geostationary Meteorological Satellite Himawari-8

Development of volcanic ash product for the next-generation Japanese Geostationary Meteorological Satellite Himawari-8 Development of volcanic ash product for the next-generation Japanese Geostationary Meteorological Satellite Himawari-8 Hiroaki Tsuchiyama 1, Yukio Kurihara 1, Kazuhiko Masuda 2 (1) Japan Meteorological

More information

Volcanic Ash Guidance Material Docs. 9766, 9691 and 9974

Volcanic Ash Guidance Material Docs. 9766, 9691 and 9974 International Civil Aviation Organization Raul Romero ICAO IAVWOPSG Secretary 2 Section 1 Scientific background Chapter 1. Volcanic eruptions 1.1 Classification 1.2 Mechanism of volcanic eruptions 1.3

More information

Monitoring Sand and Dust Storms from Space

Monitoring Sand and Dust Storms from Space Monitoring Sand and Dust Storms from Space for Expert Consultation on Disaster Information and Knowledge, Session 2 ICC 21 for ESCAP s RESAP and CDRR 5 9 12 October, 2017 Toshiyuki KURINO WMO Space Programme

More information

Operations of VAAC. before/after Eyjafjalla2010. ESA / EUMESAT Workshop on Eyjafjalla eruption and ash monitoring from space.

Operations of VAAC. before/after Eyjafjalla2010. ESA / EUMESAT Workshop on Eyjafjalla eruption and ash monitoring from space. Operations of VAAC before/after Eyjafjalla2010 ESA / EUMESAT Workshop on Eyjafjalla eruption and ash monitoring from space Philippe Husson IAVW : 9 V A A C T.J Casadevall,., T. B Thompson,., and T. Fox

More information

Response of the London Volcanic Ash Advisory Centre to the Eyjafjallajökull Eruption

Response of the London Volcanic Ash Advisory Centre to the Eyjafjallajökull Eruption Paper 1B.3 Response of the London Volcanic Ash Advisory Centre to the Eyjafjallajökull Eruption Ian Lisk, Volcanic Ash Programme Manager, Met Office, UK 1. INTRODUCTION The Met Office is home to the London

More information

INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF)

INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF) International Civil Aviation Organization 16/7/10 WORKING PAPER INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF) FIRST MEETING Montréal, 27 to 30 July 2010 Agenda Item 7: Improvement and harmonization of

More information

INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF)

INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF) IVATF/1-IP/19 22/7/10 INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF) FIRST MEETING Montréal, 27 to 30 July 2010 Agenda Item 3: Results of the EUR/NAT VATF Meeting (Plenary) 3.1: Evaluation of the Eyjafjallajokul

More information

Explosive volcanic eruptions in the North Pacific: Interactions between the Alaska Volcano Observatory and Volcanic Ash Advisory Centers

Explosive volcanic eruptions in the North Pacific: Interactions between the Alaska Volcano Observatory and Volcanic Ash Advisory Centers Explosive volcanic eruptions in the North Pacific: Interactions between the Alaska Volcano Observatory and Volcanic Ash Advisory Centers David Schneider U.S. Geological Survey Alaska Volcano Observatory

More information

the issue of for Aviation

the issue of for Aviation 2/3/12 INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF) SECOND MEETING Montréal, 11 to 15 July 2011 List of Recommendations The second meeting of the International Volcanic Ash Task Force (IVATF/2), held

More information

Satellite techniques for timely detection and near real-time monitoring of volcanic ash clouds for aviation safety

Satellite techniques for timely detection and near real-time monitoring of volcanic ash clouds for aviation safety Satellite techniques for timely detection and near real-time monitoring of volcanic ash clouds for aviation safety N. Pergola A. Falconieri F. Marchese V. Tramutoli Consiglio Nazionale delle Ricerche Istituto

More information

Development of a System for Quantitatively Analyzing Volcanic Clouds

Development of a System for Quantitatively Analyzing Volcanic Clouds Development of a System for Quantitatively Analyzing Volcanic Clouds Michael Pavolonis (NOAA/NESDIS/STAR) Justin Sieglaff and John Cintineo (UW-CIMSS) Marco Fulle - www.stromboli.net 2 nd IUGG-WMO Workshop

More information

Concept of Operations for Volcanic Hazard Information for International Air Navigation

Concept of Operations for Volcanic Hazard Information for International Air Navigation Concept of Operations for Volcanic Hazard Information for International Air Navigation in Support of the Global Air Navigation Plan and the Aviation System Block Upgrades 06 November 2015 draft Version

More information

DISCERNIBLE ASH AND VAA/VAG CONSISTENCY

DISCERNIBLE ASH AND VAA/VAG CONSISTENCY WMO VOLCANIC ASH ADVISORY CENTRE BEST PRACTICE WORKSHOP 2017 DISCERNIBLE ASH AND VAA/VAG CONSISTENCY VAAC DARWIN & VAAC TOKYO Presented By: Dr Adele Crozier (VAAC Darwin Manager) VAAC Darwin Discernible

More information

Volcanic, Weather and Climate Effects on Air Transport

Volcanic, Weather and Climate Effects on Air Transport Volcanic, Weather and Climate Effects on Air Transport Ulrich Schumann German Aerospace Center Institute of Atmospheric Physics Oberpfaffenhofen, Germany Content: - Volcanic ash hazard avoidance by improved

More information

FUTURE PLAN AND RECENT ACTIVITIES FOR THE JAPANESE FOLLOW-ON GEOSTATIONARY METEOROLOGICAL SATELLITE HIMAWARI-8/9

FUTURE PLAN AND RECENT ACTIVITIES FOR THE JAPANESE FOLLOW-ON GEOSTATIONARY METEOROLOGICAL SATELLITE HIMAWARI-8/9 FUTURE PLAN AND RECENT ACTIVITIES FOR THE JAPANESE FOLLOW-ON GEOSTATIONARY METEOROLOGICAL SATELLITE HIMAWARI-8/9 Toshiyuki Kurino Japan Meteorological Agency, 1-3-4 Otemachi Chiyodaku, Tokyo 100-8122,

More information

Meteorological Priorities in Support of a Volcanic Ash Strategy ( )

Meteorological Priorities in Support of a Volcanic Ash Strategy ( ) Meteorological Priorities in Support of a Volcanic Ash Strategy (2010-11) Ian Lisk, Met Office Volcanic Ash Coordination Programme Manager; EUMETNET VA coordinator; WMO CAeM vice-president. Introduction

More information

DIFFERING REGIONAL CAPABILITIES IN SATELLITE-BASED VOLCANIC ASH CLOUD DETECTION

DIFFERING REGIONAL CAPABILITIES IN SATELLITE-BASED VOLCANIC ASH CLOUD DETECTION Prepared by NOAA Agenda Item: II/8 Discussed in WGII DIFFERING REGIONAL CAPABILITIES IN SATELLITE-BASED VOLCANIC ASH CLOUD DETECTION The GOES-R AWG is responsible for the developing the algorithms that

More information

Volcanic Ash Monitoring Claus Zehner, ESA

Volcanic Ash Monitoring Claus Zehner, ESA Volcanic Ash Monitoring Claus Zehner, ESA Slide: 1 Support to Aviation Control Service A global Alert (and Analysis demonstration only) system for volcanic Ash and SO2 emissions using satellite measurements

More information

P3.13 GLOBAL COMPOSITE OF VOLCANIC ASH SPLIT ` WINDOW GEOSTATIONARY SATELLITE IMAGES

P3.13 GLOBAL COMPOSITE OF VOLCANIC ASH SPLIT ` WINDOW GEOSTATIONARY SATELLITE IMAGES P3.13 GLOBAL COMPOSITE OF VOLCANIC ASH SPLIT ` WINDOW GEOSTATIONARY SATELLITE IMAGES Frederick R. Mosher * Embry-Riddle Aeronautical University Daytona Beach, FL 1.0 Introduction Volcanic ash is exceptionally

More information

LATE REQUEST FOR A SPECIAL PROJECT

LATE REQUEST FOR A SPECIAL PROJECT LATE REQUEST FOR A SPECIAL PROJECT 2015 2017 MEMBER STATE: UK... Principal Investigator 1 : Affiliation: Address: Helen Dacre. University of Reading. Department of Meteorology. Earley Gate, PO Box 243

More information

The WMO Satellite-derived Volcanic Ash Intercomparison Activity - Capabilities and Challenges for Operational Applications

The WMO Satellite-derived Volcanic Ash Intercomparison Activity - Capabilities and Challenges for Operational Applications Marco Fulle - www.stromboli.net The WMO Satellite-derived Volcanic Ash Intercomparison Activity - Capabilities and Challenges for Operational Applications Michael Pavolonis NOAA/NESDIS 1 WMO Intercomparison

More information

Improvements on Near Real Time Detection of Volcanic Ash Emissions for Emergency Monitoring with Limited Satellite Bands

Improvements on Near Real Time Detection of Volcanic Ash Emissions for Emergency Monitoring with Limited Satellite Bands ANNALS OF GEOPHYSICS, Fast Track 2, 2014; doi: 10.4401/ag-6598 Improvements on Near Real Time Detection of Volcanic Ash Emissions for Emergency Monitoring with Limited Satellite Bands TORGE STEENSEN 1

More information

Recommendation proposed: CGMS-39 WGII to take note.

Recommendation proposed: CGMS-39 WGII to take note. Prepared by EUMETSAT Agenda Item: G.II/8 Discussed in WGII EUM REPORT ON CAPABILITIES AND PLANS TO SUPPORT VOLCANIC ASH MONITORING In response to CGMS action WGII 38.31: CGMS satellite operators are invited

More information

Implementation Guidance of Aeronautical Meteorological Observer Competency Standards

Implementation Guidance of Aeronautical Meteorological Observer Competency Standards Implementation Guidance of Aeronautical Meteorological Observer Competency Standards The following guidance is supplementary to the AMP competency Standards endorsed by Cg-16 in Geneva in May 2011. Please

More information

Deutscher Wetterdienst

Deutscher Wetterdienst Deutscher Wetterdienst Modelling the Volcanic Ash Episode: Experiences with COSMO-ART Detlev Majewski (FE1) Bernhard Vogel, Heike Vogel (KIT) Thomas Hanisch, Jochen Förstner (FE13), Ulrich Pflüger (FE15)

More information

WMO Aeronautical Meteorology Scientific Conference 2017

WMO Aeronautical Meteorology Scientific Conference 2017 Session 1 Science underpinning meteorological observations, forecasts, advisories and warnings 1.5 Atmospheric aerosols, volcanic ash research Modelling and data assimilation of hazardous volcanic ash

More information

Your Source for Global Aviation Forecasts

Your Source for Global Aviation Forecasts Your Source for Global Aviation Forecasts (831) 238-5054 100 Sky Park Drive Monterey, CA 93940 Weather4Cast.com Live Weather Data Feeds Weather4Cast.com provides Live Aviation Weather Data Feeds formatted

More information

4.1 New Generation Satellite Data and Nowcasting Products: Himawari

4.1 New Generation Satellite Data and Nowcasting Products: Himawari 4.1 New Generation Satellite Data and Nowcasting Products: Himawari SCOPE-Nowcasting-EP 18-20 September 2017 Koji Yamashita kobo.yamashita@met.kishou.go.jp Meteorological Satellite Center (MSC) Japan Meteorological

More information

HYSPLIT volcanic ash dispersion modeling R&D, NOAA NWS NCEP operations, and transfer to operations

HYSPLIT volcanic ash dispersion modeling R&D, NOAA NWS NCEP operations, and transfer to operations HYSPLIT volcanic ash dispersion modeling R&D, NOAA NWS NCEP operations, and transfer to operations Barbara Stunder 1, Alice Crawford 1,2, Tianfeng Chai 1,2, Michael Pavolonis 3 1 NOAA OAR Air Resources

More information

Current capabilities and limitations of satellite monitoring and modeling forecasting of volcanic clouds: and example of Eyjafjallaj

Current capabilities and limitations of satellite monitoring and modeling forecasting of volcanic clouds: and example of Eyjafjallaj Current capabilities and limitations of satellite monitoring and modeling forecasting of volcanic clouds: and example of Eyjafjallaj fjallajökull eruption (pronounced EYE-a-fyat fyat-la-jo-kotl) N. Krotkov

More information

8.13 A FIRST LOOK AT VOLCANIC ASH DETECTION IN THE GOES-12 ERA. Gary P. Ellrod * Office of Research and Applications (NOAA/NESDIS), Camp Springs, MD

8.13 A FIRST LOOK AT VOLCANIC ASH DETECTION IN THE GOES-12 ERA. Gary P. Ellrod * Office of Research and Applications (NOAA/NESDIS), Camp Springs, MD 8.13 A FIRST LOOK AT VOLCANIC ASH DETECTION IN THE GOES-12 ERA Gary P. Ellrod * Office of Research and Applications (NOAA/NESDIS), Camp Springs, MD Anthony J. Schreiner Cooperative Institute for Meteorological

More information

WMO Global Data-Processing and Forecasting System Operational weather forecast product delivery relevant to SDSWS

WMO Global Data-Processing and Forecasting System Operational weather forecast product delivery relevant to SDSWS WMO Global Data-Processing and Forecasting System Operational weather forecast product delivery relevant to SDSWS Peter Chen World Weather Watch Department, WMO WMO/GEO Expert Meeting for an International

More information

Advances in weather and climate science

Advances in weather and climate science Advances in weather and climate science Second ICAO Global Air Navigation Industry Symposium (GANIS/2) 11 to 13 December 2017, Montreal, Canada GREG BROCK Scientific Officer Aeronautical Meteorology Division

More information

Charts. VAAC Best Practice 5-8 May Crown copyright Met Office

Charts. VAAC Best Practice 5-8 May Crown copyright Met Office Volcanic Ash Contamination Charts VAAC Best Practice 5-8 May 2015 Background to proposal Replace current Volcanic ash concentration charts with Volcanic Ash contamination charts using a total ash-column

More information

University of Bristol - Explore Bristol Research

University of Bristol - Explore Bristol Research Prata, F., Woodhouse, M. J., Huppert, H. E., Prata, A., Thordarson, TH., & Carn, S. A. (2017). Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: Inferences from

More information

Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001

Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001 GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L02305, doi:10.1029/2004gl021651, 2005 Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001 Yingxin Gu, 1 William I. Rose, 1 David

More information

WORLD METEOROLOGICAL ORGANIZATION =====================================

WORLD METEOROLOGICAL ORGANIZATION ===================================== WORLD METEOROLOGICAL ORGANIZATION ===================================== WORLD METEOROLOGICAL ORGANIZATION (WMO) IN CLOSE COLLABORATION WITH THE INTERNATIONAL CIVIL AVIATION ORGANIZATION (ICAO) AND THE

More information

JOINT WMO TECHNICAL PROGRESS REPORT ON THE GLOBAL DATA PROCESSING AND FORECASTING SYSTEM AND NUMERICAL WEATHER PREDICTION RESEARCH ACTIVITIES FOR 2016

JOINT WMO TECHNICAL PROGRESS REPORT ON THE GLOBAL DATA PROCESSING AND FORECASTING SYSTEM AND NUMERICAL WEATHER PREDICTION RESEARCH ACTIVITIES FOR 2016 JOINT WMO TECHNICAL PROGRESS REPORT ON THE GLOBAL DATA PROCESSING AND FORECASTING SYSTEM AND NUMERICAL WEATHER PREDICTION RESEARCH ACTIVITIES FOR 2016 New Zealand / Meteorological Service of New Zealand

More information

The Impacts on Air Traffic of Volcanic Ash from the Okmok and Kasatochi Eruptions During the Summer of 2008

The Impacts on Air Traffic of Volcanic Ash from the Okmok and Kasatochi Eruptions During the Summer of 2008 The Impacts on Air Traffic of Volcanic Ash from the Okmok and Kasatochi Eruptions During the Summer of 2008 Lauren A. Hudnall Christopher Newport University, Newport News, VA A.J. Krueger University of

More information

GLOBAL DEVELOPMENT AND USE OF QUANTITATIVE VOLCANIC ASH CONTAMINATION INFORMATION AND FORECASTS

GLOBAL DEVELOPMENT AND USE OF QUANTITATIVE VOLCANIC ASH CONTAMINATION INFORMATION AND FORECASTS GLOBAL DEVELOPMENT AND USE OF QUANTITATIVE VOLCANIC ASH CONTAMINATION INFORMATION AND FORECASTS Prepared by the World Meteorological Organization/International Union of Geophysics and Geodesy (WMO/IUGG)

More information

Summary report of the EASA/EC Volcanic Ash Cloud workshop

Summary report of the EASA/EC Volcanic Ash Cloud workshop Draft Summary report of the EASA/EC Volcanic Ash Cloud workshop On 21 st of June an EASA/EC workshop was held in Cologne with the aim of bringing all the European expertise in the field of volcanic ash

More information

Inter-comparison MTSAT-2 & Himawari-8

Inter-comparison MTSAT-2 & Himawari-8 Inter-comparison MTSAT-2 & Himawari-8 WMO Volcanic Ash Advisory Centre Best Practice Workshop 2017 Tokyo Volcanic Ash Advisory Centre Japan Meteorological Agency Outline Introduction Method Case study

More information

Advanced Geostationary Observations for the OzEWEX Community. Leon Majewski Bureau of Meteorology

Advanced Geostationary Observations for the OzEWEX Community. Leon Majewski Bureau of Meteorology Advanced Geostationary Observations for the OzEWEX Community Leon Majewski Bureau of Meteorology Overview Geostationary satellite missions & sensors Meteorological applications Access for OzEWEX researchers

More information

Forecasting Resuspended Volcanic Ash Clouds

Forecasting Resuspended Volcanic Ash Clouds Forecasting Resuspended Volcanic Ash Clouds F. M. Beckett ADAQ: C.S. Witham, S.J. Leadbetter, M.C. Hort University of Bristol: E.J. Liu and K.V. Cashman NILU: A. Kylling frances.beckett@metoffice.gov.uk

More information

Source term determination for volcanic eruptions (and other point-source releases) Andreas Stohl, with the help of many others

Source term determination for volcanic eruptions (and other point-source releases) Andreas Stohl, with the help of many others Source term determination for volcanic eruptions (and other point-source releases) Andreas Stohl, with the help of many others Threat to aviation Potential health hazard Volcanic ash Quantitative predictions

More information

P2.9 Use of the NOAA ARL HYSPLIT Trajectory Model For the Short Range Prediction of Stratus and Fog

P2.9 Use of the NOAA ARL HYSPLIT Trajectory Model For the Short Range Prediction of Stratus and Fog Ellrod, G. P., 2013: Use of the NOAA ARL HYSPLIT Trajectory Model for the Short Range Prediction of Stratus and Fog. Extended Abstract, 38 th National Weather Association Annual Meeting, Charleston, SC,

More information

Forecasting of volcanic ash for the Norwegian airspace

Forecasting of volcanic ash for the Norwegian airspace Forecasting of volcanic ash for the Norwegian airspace Picture courtesy: Magnús Tumi Guðmundsson H. Fagerli, H. Klein, A. Nyiri, B. Steensen, M. Schulz, A. Mortier, A. Lauen Borg, A. Valdebenito, N. Kristiansen,

More information

Modelling and data assimilation of hazardous volcanic ash plumes in the chemical-transport model MOCAGE

Modelling and data assimilation of hazardous volcanic ash plumes in the chemical-transport model MOCAGE Modelling and data assimilation of hazardous volcanic ash plumes in the chemical-transport model MOCAGE Bojan Sic, Laaziz El Amraoui, Matthieu Plu CNRM/Météo-France 2 Introduction Model MOCAGE of Météo-France

More information

RECENT ADVANCES IN THE GENERATION AND ASSIMILATION OF HIGH SPATIAL AND TEMPORAL RESOLUTION SATELLITE WINDS

RECENT ADVANCES IN THE GENERATION AND ASSIMILATION OF HIGH SPATIAL AND TEMPORAL RESOLUTION SATELLITE WINDS RECENT ADVANCES IN THE GENERATION AND ASSIMILATION OF HIGH SPATIAL AND TEMPORAL RESOLUTION SATELLITE WINDS J. Le Marshall 1, N. Pescod 1, R. Seecamp 1, A. Rea 2, C. Tingwell 1, G. Ellis 2 and Hao Shi 3

More information

Satellite Data For Applications: Aviation/Volcanic Ash. Richard Eckman NASA 27 May 2013

Satellite Data For Applications: Aviation/Volcanic Ash. Richard Eckman NASA 27 May 2013 Satellite Data For Applications: Aviation/Volcanic Ash Richard Eckman NASA 27 May 2013 Background Following the unprecedented disruption to aviation by the recent eruptions of Eyjafjallajökull and Grímsvötn

More information

AOMSUC-6 Training Event

AOMSUC-6 Training Event Effective use of high temporal and spatial resolution Himawari-8 data AOMSUC-6 Training Event Bodo Zeschke Australian Bureau of Meteorology Training Centre Australian VLab Centre of Excellence Content

More information

INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF)

INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF) 7/2/12 INTERNATIONAL VOLCANIC ASH TASK FORCE (IVATF) THIRD MEETING Montréal, 15 to 17 February 2012 Agenda Item 2: Progress reports of the science sub-group (SCI SG) 2.6: Quantifying the detectability

More information

Volcanic plume modelling and assimilation with the global MACC system (with emphasis on SO 2 )

Volcanic plume modelling and assimilation with the global MACC system (with emphasis on SO 2 ) Volcanic plume modelling and assimilation with the global MACC system (with emphasis on SO 2 ) Johannes Flemming, Antje Inness, Angela Benedetti & Jean-Jacques Morcrette Introduction How can we use timely

More information

Comparison of methodologies for SO 2 and Ash identification using observations from IASI

Comparison of methodologies for SO 2 and Ash identification using observations from IASI Comparison of methodologies for SO 2 and Ash identification using observations from IASI Maria Athanassiadou, Peter N Francis, Stephan Havemann, Elisa Carboni EGU, 15 Apr., 2015 This talk is about... IASI

More information

Washington Volcanic Ash Advisory Center

Washington Volcanic Ash Advisory Center How a Volcanic Ash Advisory and a Dispersion Forecast is Prepared: Jamie Kibler Washington VAAC Operations Manger/Meteorologist October 25, 2011 ICAO Seminar on Volcanic Ash Products and Communications

More information

SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE AFASES2017

SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE AFASES2017 SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE AFASES2017 PROBABILITY ASSESSMENT OF POSSIBLE VOLCANIC ASH CONTAMINATION FOR THE BULGARIAN AIRSPACE BY DEVELOPING OF EVENT TREE AND RISK MATRIX FOR HYPOTHETICAL

More information

Met Office Volcanic Gas Work Summary. Dr Matthew Hort With thanks for content & slides to: M. Athanassiadou, A. Schmidt, C. Witham, and others

Met Office Volcanic Gas Work Summary. Dr Matthew Hort With thanks for content & slides to: M. Athanassiadou, A. Schmidt, C. Witham, and others Met Office Volcanic Gas Work Summary Dr Matthew Hort With thanks for content & slides to: M. Athanassiadou, A. Schmidt, C. Witham, and others Outline Relevance to VAACS UK Interest UK activities Policy

More information

Characterization of Eruption Source Parameters and Propagation of Errors in Transport and Dispersal Models

Characterization of Eruption Source Parameters and Propagation of Errors in Transport and Dispersal Models Characterization of Eruption Source Parameters and Propagation of Errors in Transport and Dispersal Models M. Bursik, R. Madankan, S. Pouget, E.R. Stefanescu M. Jones, A. Patra, B. Pitman, P. Singla, T.

More information

Following volcanic ash as a hazard to aviation and as a factor in climate. John Merrill University of Rhode Island Graduate School of Oceanography

Following volcanic ash as a hazard to aviation and as a factor in climate. John Merrill University of Rhode Island Graduate School of Oceanography Following volcanic ash as a hazard to aviation and as a factor in climate John Merrill University of Rhode Island Graduate School of Oceanography Volcanic plumes as hazards to aviation The silicate ash

More information

European Natural Airborne Disaster Information and Coordination System for Aviation

European Natural Airborne Disaster Information and Coordination System for Aviation European Natural Airborne Disaster Information and Coordination System for Aviation Marcus Hirtl (ZAMG) + the EUNADICS-AV Team Background Eyjafjallajökull eruption April May 2010 Aviation is one of the

More information

Guidance on Aeronautical Meteorological Observer Competency Standards

Guidance on Aeronautical Meteorological Observer Competency Standards Guidance on Aeronautical Meteorological Observer Competency Standards The following guidance is supplementary to the AMP competency Standards endorsed by Cg-16 in Geneva in May 2011. Format of the Descriptions

More information

Ongoing Efforts to Make Ash-Cloud Model Forecasts More Accurate

Ongoing Efforts to Make Ash-Cloud Model Forecasts More Accurate Larry G. Mastin U.S. Geological Survey, Cascades Volcano Observatory 1300 Southeast Cardinal Court, Bldg. 10, Suite 100, Vancouver, Washington 98683 USA lgmastin@usgs.gov Alexa R. Van Eaton U.S. Geological

More information

QPE and QPF in the Bureau of Meteorology

QPE and QPF in the Bureau of Meteorology QPE and QPF in the Bureau of Meteorology Current and future real-time rainfall products Carlos Velasco (BoM) Alan Seed (BoM) and Luigi Renzullo (CSIRO) OzEWEX 2016, 14-15 December 2016, Canberra Why do

More information

THE IMPACTS ON AIR TRAFFIC FROM VOLCANIC ASH FROM THE 2009 MT. REDOUBT ERUPTIONS

THE IMPACTS ON AIR TRAFFIC FROM VOLCANIC ASH FROM THE 2009 MT. REDOUBT ERUPTIONS 3.1 THE IMPACTS ON AIR TRAFFIC FROM VOLCANIC ASH FROM THE 2009 MT. REDOUBT ERUPTIONS Alexander Matus a *, L. A. Hudnall a, J. J. Murray b, A. Krueger c a LARSS Program NASA LaRC, Hampton, Virginia b NASA

More information

The 2010 Eyjafjallajökull eruption: overview and OMI observations. Simon A. Carn Michigan Technological University, Houghton, MI, USA

The 2010 Eyjafjallajökull eruption: overview and OMI observations. Simon A. Carn Michigan Technological University, Houghton, MI, USA The 2010 Eyjafjallajökull eruption: overview and OMI observations Simon A. Carn Michigan Technological University, Houghton, MI, USA Global air routes and potentially active volcanoes Map courtesy of F.

More information

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre)

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre) WORLD METEOROLOGICAL ORGANIZATION Distr.: RESTRICTED CBS/OPAG-IOS (ODRRGOS-5)/Doc.5, Add.5 (11.VI.2002) COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS ITEM: 4 EXPERT

More information

Preparation for Himawari 8

Preparation for Himawari 8 Preparation for Himawari 8 Japan Meteorological Agency Meteorological Satellite Center Hidehiko MURATA ET SUP 8, WMO HQ, Geneva, 14 17 April 2014 1/18 Introduction Background The Japan Meteorological Agency

More information

How Tokyo VAAC s forecasters uses RGB products

How Tokyo VAAC s forecasters uses RGB products How Tokyo VAAC s forecasters uses RGB products RGB Experts and Developers Workshop 2017 @ Tokyo, Japan 8 November 2017 Tokyo Volcanic Advisory Center Hiroaki TSUCHIYAMA Areas of Responsibility of the Nine

More information

GPS Radio Occultation for studying extreme events

GPS Radio Occultation for studying extreme events GPS Radio Occultation for studying extreme events Riccardo Biondi (1), A. K. Steiner (1), T. Rieckh (1) and G. Kirchengast (1,2) (1) Wegener Center for Climate and Global Change, University of Graz, Austria

More information

Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now

Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now Strategic Radar Enhancement Project (SREP) Forecast Demonstration Project (FDP) The future is here and now Michael Berechree National Manager Aviation Weather Services Australian Bureau of Meteorology

More information

RSMC WASHINGTON USER'S INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS

RSMC WASHINGTON USER'S INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS RSMC WASHINGTON USER'S INTERPRETATION GUIDELINES ATMOSPHERIC TRANSPORT MODEL OUTPUTS -Version 2.0- (January 2007) 1. Introduction In the context of current agreements between the National Oceanic and Atmospheric

More information

Volcanic Ash. Risk Management. GE Aviation Perspective on Operations in a Volcanic Ash Environment. Roger Dinius Jan. 20, 2011

Volcanic Ash. Risk Management. GE Aviation Perspective on Operations in a Volcanic Ash Environment. Roger Dinius Jan. 20, 2011 Volcanic Ash Risk Management Perspective on Operations in a Volcanic Ash Environment Roger Dinius Jan. 20, 2011 Volcano Eruption Impacts Air Travel & Commerce April 15 th eruption closed a large part of

More information

NOWCASTING PRODUCTS BASED ON MTSAT-1R RAPID SCAN OBSERVATION. In response to CGMS Action 38.33

NOWCASTING PRODUCTS BASED ON MTSAT-1R RAPID SCAN OBSERVATION. In response to CGMS Action 38.33 CGMS-39, JMA-WP-08 Prepared by JMA Agenda Item: G.II/8 Discussed in WG II NOWCASTING PRODUCTS BASED ON MTSAT-1R RAPID SCAN OBSERVATION In response to CGMS Action 38.33 This document reports on JMA s MTSAT-1R

More information

PHEOS - Weather, Climate, Air Quality

PHEOS - Weather, Climate, Air Quality Aerosol & cloud remote sensing over the Arctic : perspectives for the PHEMOS and meteorological imager payloads on the PCW mission Norm O Neill, Auromeet Saha, U. de Sherbrooke Chris E. Sioris, Jack McConnell,

More information

An overview of Wet Season Forecasting in the Northern Territory

An overview of Wet Season Forecasting in the Northern Territory TWP-ICE Meeting November 2004 An overview of Wet Season Forecasting in the Northern Territory Lori Chappel Northern Territory Regional Forecasting Centre Australian Government Bureau of Meteorology Day

More information

WMO/ICAO Third International Workshop on Volcanic Ash, Toulouse, France, September 29 -October 3, 2003

WMO/ICAO Third International Workshop on Volcanic Ash, Toulouse, France, September 29 -October 3, 2003 Observations of volcanic cloud heights and ash-atmosphere interactions Andrew Tupper 1, Kisei Kinoshita 2, Chikara Kanagaki 2, Naoko Iino 3, Yasuhiro Kamada 4 1 Darwin Volcanic Ash Advisory Centre, Commonwealth

More information

NOAA s National Weather Service VAAC Anchorage. Don Moore

NOAA s National Weather Service VAAC Anchorage. Don Moore NOAA s National Weather Service VAAC Anchorage Don Moore VAAC Best Practices Workshop May 2015 Volcanic Eruptions Volcanic Eruptions Volcanic Eruptions VAAC Anchorage and Alaska Aviation Weather Unit (AAWU)

More information

Incorporating Volcanic Eruptions into Near Real time Aerosol Forecasts

Incorporating Volcanic Eruptions into Near Real time Aerosol Forecasts Incorporating Volcanic Eruptions into Near Real time Aerosol Forecasts Eric Hughes 1 Nick Krotkov 2 Arlindo Da Silva 2 Peter Colarco 2 (1) University of MD Department of Atmospheric and Oceanic Sciences

More information

PREPARATIONS FOR THE GEOSYNCHRONOUS IMAGING FOURIER TRANSFORM SPECTROMETER

PREPARATIONS FOR THE GEOSYNCHRONOUS IMAGING FOURIER TRANSFORM SPECTROMETER PREPARATIONS FOR THE GEOSYNCHRONOUS IMAGING FOURIER TRANSFORM SPECTROMETER J.F. Le Marshall 1, W.L. Smith 2, R.G. Seecamp 1, A. Rea 1, L.M. Leslie 3, M. Dunn 4 and B. Choi 5 1 Bureau of Meteorology, Melbourne,

More information

JMA volcanic ash Test bed. Japan Meteorological Agency Meteorological Satellite Center Hidehiko MURATA

JMA volcanic ash Test bed. Japan Meteorological Agency Meteorological Satellite Center Hidehiko MURATA JMA volcanic ash Test bed Japan Meteorological Agency Meteorological Satellite Center Hidehiko MURATA ET SUP 8, WMO HQ, Geneva, 14 17 April 2014 Background User requirements (from a slide SNWC 1/PP2 by

More information

IAVW. International PAPER WORKING. reports SUMMARY. is in paragraph 1.1. France providing 1.2. (6 pages) (IAVWOPSG))

IAVW. International PAPER WORKING. reports SUMMARY. is in paragraph 1.1. France providing 1.2. (6 pages) (IAVWOPSG)) International Civil Aviation Organization IAVWOPSG/7-WP/25 22/1/ /13 WORKING PAPER INTERNATIONAL AIRWAYS VOLCANO WATCH OPERATIONS GROUP (IAVWOPSG)) SEVENTH MEETING Bangkok, Thailand, 18 to 22 March 2013

More information

Volcanic eruptions: Introduction to remote sensing techniques for fine ash and SO2 detection

Volcanic eruptions: Introduction to remote sensing techniques for fine ash and SO2 detection Volcanic eruptions: Introduction to remote sensing techniques for fine ash and SO2 detection Bernie Connell Cooperative Institute for Research in the Atmosphere Colorado State University USA Ash clouds

More information

Report on the SCOPE-Nowcasting Pilot Projects January 2017

Report on the SCOPE-Nowcasting Pilot Projects January 2017 Report on the SCOPE-Nowcasting Pilot Projects January 2017 The aim of the Sustained, Co-Ordinated Processing of Environmental Satellite Data for Nowcasting (SCOPE-Nowcasting) initiative is to provide consistent

More information

Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia

Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia 15B.1 RADAR RAINFALL ESTIMATES AND NOWCASTS: THE CHALLENGING ROAD FROM RESEARCH TO WARNINGS Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia 1. Introduction Warnings are

More information

How the Bureau of Meteorology contributes to the integrated risk picture. Presented by Michael Berechree

How the Bureau of Meteorology contributes to the integrated risk picture. Presented by Michael Berechree How the Bureau of Meteorology contributes to the integrated risk picture Presented by Michael Berechree Mission Meteorological Service The mission of the Bureau's Aviation Meteorological Service is to

More information

SATELLITE SIGNATURES ASSOCIATED WITH SIGNIFICANT CONVECTIVELY-INDUCED TURBULENCE EVENTS

SATELLITE SIGNATURES ASSOCIATED WITH SIGNIFICANT CONVECTIVELY-INDUCED TURBULENCE EVENTS SATELLITE SIGNATURES ASSOCIATED WITH SIGNIFICANT CONVECTIVELY-INDUCED TURBULENCE EVENTS Kristopher Bedka 1, Wayne Feltz 1, John Mecikalski 2, Robert Sharman 3, Annelise Lenz 1, and Jordan Gerth 1 1 Cooperative

More information

Joint RA II/V Workshop on WIGOS for DRR - The Jakarta Declaration - (12-14 October, Jakarta, Indonesia) NMSC/KMA

Joint RA II/V Workshop on WIGOS for DRR - The Jakarta Declaration - (12-14 October, Jakarta, Indonesia) NMSC/KMA Joint RA II/V Workshop on WIGOS for DRR - The Jakarta Declaration - (12-14 October, Jakarta, Indonesia) /KMA dolong@korea.kr Background Enhancement of Member s capabilities for weather forecasts and warnings

More information

" The usefulness of RGB products: the perspective of the Australian Bureau of Meteorology "

 The usefulness of RGB products: the perspective of the Australian Bureau of Meteorology " The usefulness of RGB products: the perspective of the Australian Bureau of Meteorology " Presenter: Bodo Zeschke. Bureau of Meteorology Training Centre, Australian VLab Centre of Excellence Point of

More information

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation Interpretation of Polar-orbiting Satellite Observations Outline Polar-Orbiting Observations: Review of Polar-Orbiting Satellite Systems Overview of Currently Active Satellites / Sensors Overview of Sensor

More information

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA Advances in Geosciences Vol. 16: Atmospheric Science (2008) Eds. Jai Ho Oh et al. c World Scientific Publishing Company LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING

More information