LIETUVOS UGNINIS LANKAS

Size: px
Start display at page:

Download "LIETUVOS UGNINIS LANKAS"

Transcription

1 33 Gediminas Motuza, Vilniaus universitetas LIETUVOS UGNINIS LANKAS Prologas Lietuvos kristalinio pamato kernà pirmà kartà pamaèiau prieð daugelá metø, kai tuometinës Lietuvos geologijos valdybos vyriausias geologas Vytautas Vonsavièius man, kà tik pradëjusiam dirbti Kompleksinës geologinës ekspedicijos giluminio geologinio kartografavimo bûryje, rodë bûsimø darbø plotus. Tuo metu ten vyko parametrinis græþimas. Pagal ðá projektà ávairiose Pietø Lietuvos vietose buvo numatyta iðgræþti 6 græþinius, ásigræþiant á kristaliná pamatà po 200 m. Ðie nauji duomenys turëjo padëti pasiruoðti tolesniam ilgalaikiam kristalinio pamato tyrimø etapui giluminiam geologiniam kartografavimui. Ðis projektas jau ëjo á pabaigà, buvo græþiamas prieðpaskutinis græþinys Jaskonys-269 ir liko tik græþ. Raigardas-302. Man ir teko uþbaigti parametriná græþimà ir pradëti giluminá geologiná kartografavimà, kuris truko beveik 20 metø. Kaip tik prie Jaskoniø græþinio netoli Ratnyèios mes su V.Vonsavièiumi ir nuvykome. Geologë Zubelytë kaip tik tvarkë eilinio reiso kernà, kuris atrodë kaip chaotiðkas margumynas iðskydusiø tamsiø dëmiø ir rausvø gysluèiø raizgalynë. Gerai prisimenu pirmà mintá kaip toje koðëje susigaudyti, kà èia galima suprasti ir apraðyti? Vëliau teko perþiûrëti ne vienà kilometrà kerno, ir tos senosios uolienos pasidarë aiðkesnës ir simpatiðkesnës. Bet ir tada, sëdëdamas ant eilinës dëþës, ne kartà pagalvodavau ar kada nors ateis toks laikas, kai þinosime, kaip ir kada susidarë tos margos uolienos ir visas mûsø kristalinis pamatas, kurá jos sudaro? Tuomet mes beveik nieko neþinojome apie litosferos plokðèiø tektonikos teorijà, mums buvo dar neprieinama ðiuolaikinë geocheminë analizë, kurios duomenys leidþia nustatyti, kokiomis tektoninëmis sàlygomis susidarë uolienos, ir radiologinis datavimas. O svarbiausia, nebuvo praktinës patirties, kuri padëtø bent ásivaizduoti, kaip ið tikrøjø keliø ðimtø metrø gylyje atrodo tas paslaptingas pavirðius, kurio tegalime pamatyti atskirus gabaliukus, iðkeltus ið græþiniø, nutolusiø vienas nuo kito per kilometrus. Praëjo daug metø, kol atsirado faktø, ið kuriø tarsi ið plyteliø galima sudëlioti pastatà-modelá, ir ðioks toks supratimas apie tai, kaip tai daroma. O kiek toks statinys pastovës, parodys laikas. Kiekviena hipotezë turi teisæ gyvuoti tol, kol ji paaiðkina esamus faktus, kol atsiranda naujø duomenø arba kol kas nors tuos paèius faktus-plyteles sudëlioja kitaip. Dvi Lietuvos dalys Jau pirmieji Lietuvos kristalinio pamato tyrëjai (Viktoras Vasiljevas, Rimantas Gailius ir kiti) pastebëjo, kad rytinë ir vakarinë Lietuvos kristalinës plutos dalys skiriasi savo sandara, uolienø rinkiniu kristalinës plutos pavirðiuje ir jø metamorfizmo laipsniu. Tai gerai atspindi gravitacinis ir magnetinis laukai. Todël ir buvo iðskirtos dvi sritys (domeinai) Vakarø Lietuvos sritis (VLS) ir Rytø Lietuvos sritis (RLS). Jos, tiesa, neapsiriboja vien Lietuva, tæsiasi ir kaimyniniuose kraðtuose, todël jas tiksliau bûtø vadinti atitinkamai Lenkijos-Lietuvos ir Lietuvos-Baltarusijos sritimis, arba tereinais (Bogdanova ir kt., 2006). Anksèiau, kol nebuvo radiologinio datavimo duomenø, buvo manoma, kad abi sritys yra skirtingo amþiaus: VLS archëjaus, RLS gal ir proterozojaus. Tiesa, tai buvo grindþiama tik tuo, kad VLS uolienos labiau metamorfizuotos, todël galbût ir senesnës. Vëliau, gavus pirmuosius datavimo duomenis U-Pb ir Sm-Nd metodais (Mansfeld, 2001) paaiðkëjo, kad abiejø srièiø kontinentinë pluta susidarë paleoproterozojuje, svekofeniðkosios kalnodaros metu kaip ir kaimyniø kraðtø Ðvedijos, Pietinës Suomijos, Rytø Lenkijos, Baltarusijos, Latvijos ir Estijos pluta. Archëjaus plutos visame ðiame plote nerasta. Tik metamorfizuotose pirminëse nuosëdinëse uolienose randama pavieniø archëjaus laikotarpio cirkono grûdeliø. Bet tai detritiniai grûdeliai kaþkada buvusios smiltelës, susidariusios ardant kaþkoká þemynà su archëjaus pluta, ir tai nerodo smëlio amþiaus. Juk ir dabartiniame kvartero smëlyje gali bûti ávairaus amþiaus smilteliø. Jie tik patvirtina, kad tai tikrai pirminës nuosëdinës uolienos m. atlikus giluminá seisminá zondavimà pagal projektus EUROBRIDGE ir Baltijskoje more paaiðkëjo, kad abiejø srièiø plutos ið esmës skiriasi ir gilumine sandara. VLS pluta

2 34 plona (apie km), palyginti vienalytë ir lengva, ypaè virðutinë, kur vyrauja uolienos, pagal sudëtá artimos granitui. RLS pluta gerokai storesnë (50-55 km), labai nevienalytës sandaros. Joje iðsiskiria keli skirtingo tankio ir atitinkamai sudëties sluoksniai, suskaidyti blokais, kuriuos skiria vertikalûs lûþiai (Motuza ir kt., 2002; Motuza, 2004). Paaiðkëjo, kad abiejø srièiø giluminë riba gana staigi plutos storis ir sandara pasikeièia 3040 km ruoþe. Ði riba yra kaip tik Lietuvos viduryje ir tæsiasi ðiaurës-pietø kryptimi. Tai reiðkia, kad 1 pav. Lietuvos kristalinio pamato geologinis þemëlapis (G.Motuza, 2004): 1 Grt-Qtz-Kfs-PI gneisai ±Sil, Crd, Mag, Hz pirminiai pelitai (a) ir psamitai (b); 2 Bt-Qtz-PI gneisai ±Kfs, Sil, Grt pirminiai psamitai; 3 amfibolitai pirminiai bazaltai ir diabazai; 4 baziniai granulitai (Hbl-CpxHyp-PI) pirminiai bazaltai ir diabazai; 5 Cpx-Hyp-BtQtz-PI gneisai ±Kfs, Hbl pirminiai felziniai vulkanitai; 6 smulkûs baziniø granulitø kûnai; 7 granulitinës facijos su metapelitø paleosoma; 8 granulitinës facijos su metapelitø ir metabazitø paleosoma; 9 granulitinës facijos su baziniø granulitø ir metapsamitø paleosoma; 10 granulitinës facijos su baziniø granulitø paleosoma; 11 amfibolitinës facijos su amfibolito ir metapsamito paleosoma; 12 amfibolitinës facijos su amfibolito paleosoma; 13 amfibolitinës facijos su amfibolito paleosoma ir tonalito GEOLOGIJOS PAÞANGA abiejø srièiø skiriasi ne tik uolienos, esanèios kristalinës plutos pavirðiuje, bet ir kad tai yra skirtingos giluminës sandaros blokai, kuriø ir amþius, ir geologinë istorija gali bûti skirtingi. Todël ði ribinë juosta buvo pavadinta Vidurio Lietuvos sandûros zona (VLSZ), suprantant jà kaip geologinæ ribà, skirianèià du skirtingos sandaros plutos blokus. Geriau iðtyrus græþiniø ið ðios zonos kernà paaiðkëjo, kad VLSZ sudaro ir uolienos, besiskirianèios tiek nuo Vakarø Lietuvos, tiek nuo Rytø Lietuvos srities (1 pav.). VLSZ rytinæ dalá daugiausia sudaro amfibo- Fig. 1. Geological map of the crystalline basement of Lithuania (G.Motuza, 2004): 1 Grt-Qtz-Kfs-Pl gneisses ±Sil, Crd, Mag, Hz primary pelites (a) and psammites (b); 2 Bt-Qtz-Pl gneisses ±Kfs, Sil, Grt primary psammites; 3 Amphibolite primary basalt and diabase; 4 Mafic granulites (Hbl-CpxHyp-Pl) primary basalt and diabase; 5 Cpx-Hyp-Bt-Qtz-Pl gneisses ±Kfs, Hbl primary felsic volcanics; 6 Minor bodies of mafic granulites; 7 Granulite facies with metapelitic palaeosome; 8 Granulite facies with metapelitc and metabasitic palaeosome; 9 Granulite facies with palaeosome of mafic granulite and metapsammite; 10 Granulite facies with palaeosome of mafic granulites; 11 Amphibolite facies with palaeosome of amphibolite and metapsammite; 12 Amphibolite facies with palaeosome of amphibolite; 13 Amphibolite facies with palaeosome of amphibolite and

3 neosoma; 14 anatektiniai granitoidai; 15 èarnokitoidai, granitoidai; 16 Cpx grandioritas; 17 gabroidai; 18 dioritoidai-grandioritai; 19 granitoidai; 20 granitas; 21 moncodioritas; 22 anortozitas; 23 gabras, anortozitas; 24 magnetitiniø uolienø (Fe rûdos) kûnai; 25 milonitø juostos; 26 lûþiai. litai pirminës vulkaninës uolienos bazaltas ar diabazas, tik aiðku metamorfizuotas. Tokias uolienas rodo ir geofiziniai duomenys. VLSZ rytinëje dalyje tæsiasi aukðtø gravitacinio lauko reikðmiø juosta. Uolienos gana tankios (apie 3000 kg/m 3 ), todël ir iðsiskiria didesniø svorio jëgos reikðmiø juosta. Tai patvirtina ir græþiniai. Tiesa, jø daugiau pietinëje dalyje, kur vadinamame Lazdijø plote buvo atliktas giluminis geologinis kartografavimas. Ðiauriau græþiniø maþiau ir jie daugiausia sutelkti atskiruose ploteliuose, nes buvo græþti dujø saugyklø paieðkoms Þieþmariø, Vepriø ir kituose plotuose. Amfibolito yra ir kai kuriose RLS vietose, bet ðioje juostoje amfibolito geocheminës ypatybës labiau bûdingos vadinamajai kalcio ðarminei serijai, be to, yra ir kitø poþymiø, kurie rodo, kad jos lydësi subdukcijos zonoje, vulkaniniø lankø tektoninëje aplinkoje. Ðiuose græþiniuose, be amfibolito, nustatyti nedideli gabro ir diorito kûnai, pirminiø smiltainiø sluoksniai, kuriuose iðliko net pirminës sandaros poþymiø (2 pav.). 35 neosome of tonalite; 14 Anatectic granites; 15 Charnockitic rocks and granites; 16 Cpx granodiorite; 17 Gabbro; 18 Dioritic-granodioritic rocks; 19 Granites; 20 Granite; 21 Monzodiorite; 22 Anorthosite; 23 Gabbro, anorthosite; 24 Bodies of magnetite rocks (Fe ores); 25 Milonite belts; 26 Faults. A B C 2 pav. Metamorfizuotas pirminis smiltainis ið græþ. Þieþmariai-5 (K.Èiûraitës nuotr.). Fig. 2. Metamorphosed primary sandstone from the well Þieþmariai-5 (Photo by K.Èiûraitë). Vakariniu Vidurio Lietuvos sandûros zonos pakraðèiu tæsiasi visai kitokios sudëties juosta. Beveik visuose èia iðgræþtuose græþiniuose (Akmenynai, Sasnava, Virbaliðkis-434, Kybartai-15; Pilviðkiai-140, 141, 142, Sutkai) surasta uolienø, pasiþyminèiø aiðkia porfyriðka struktûra (3 pav.). Jà sudaro keliø milimetrø dydþio taisyklingi plagioklazo kristalai smulkiagrûdëje pagrindinëje 3 pav. Metaporfyritas (hipersteno-amfibolo-biotito gneisas) ið græþ. Virbaliðkis-434 (A, B) ir græþ. Sasnava-7 (C), pietinë VLSZ dalis. Fig. 3. Metaporphyry (hyersthene-amphibole-biotite gneisse) from wells Virbaliðkis-343 (A, B) and Sanava-7 (C) in the Southern part of Middle Lithuanian Suture Zone. masëje. Ðie plagioklazo kristalai daþnai yra ryðkiai zoniðkos sandaros arba taisyklingos iðtæstos

4 36 formos su paprastais dvynukais. Dabartiniame metamorfizuotame pavidale tai amfibolo-biotito feldðpatiniai-kvarciniai gneisai, daþnai su hiperstenu. Uolienos gerokai pakitusios, kai kur net pradëjusios lydytis (migmatizuotis), bet iðlikusios pirminës sandaros ypatybës rodo, kad tai galëjo bûti vulkaninës uolienos, kurioms labai bûdinga porfyrinë sandara ir taisyklingi zoniðki plagioklazo fenokristai. Jø sudëtis atitinka bazaltiná andezità, andezità ir dacità vidutinës ir rûgðèios sudëties vulkanitus. Beje, tokiø uolienø yra ir rytinëje metabazaltø juostoje. Jø rasta Vepriø ir Vaðkø græþiniuose, kur taip pat iðliko pirminës vulkaninës struktûros liekanø (4 pav.). Matyt ðios uolienos sudaro tik atskirus sluoksnius tarp vyraujanèiø bazaltø. 4 pav. Mataporphyras (muskovito-biotito plagiogneisas) ið græþ. Vaðkai-1, ðiaurinë Vidurio Lietuvos sandûros zonos dalis. Fig. 4. Metaporphyry (moscovite-biotite plagiogneisse) from the well Vaðkai-1 in the Northern part of the Middle Lithuanian Suture Zone. Taigi Vidurio Lietuvos sandûros zonoje turime dvi skirtingos sudëties vulkaniniø uolienø juostas: rytuose tæsiasi pirminio bazalto ar diabazo su smiltainiø ir rûgðèiø vulkanitø sluoksniais juosta, vakariau andezito ir dacito sudëties vulkaniniø uolienø juosta. VLSZ vulkaniniø arba efuziniø uolienø rinkiná papildo ir intruzinës uolienos gabras, dioritas, granodioritas, kuriø kûnai iðskirti pagal geofizinius duomenis, o kai kurie patvirtinti ir græþimu. Èia yra nemaþø kûnø, pavyzdþiui, Randamoniø plutonas, kuris tæsiasi nuo Druskininkø beveik iki Puvoèiø kaimo. Pagal ðià intruzijà, kuri yra ne tik viena didþiausiø, bet ir neblogai iðtirta keliais græþiniais, visas panaðios sudëties intruzijø kompleksas pavadintas Randamoniø vardu. Dioritas ir granodioritas yra atitinkamai andezito ir dacito giluminiai analogai, taigi vulkanai ir intruzijos gali bûti giminingi ne tik pagal sudëtá, bet ir pagal susidarymo tektoninæ aplinkà, kuri veikia uolienø sudëties ypatybes. Vidurio Lietuva tektoniniø plokðèiø sandûroje GEOLOGIJOS PAÞANGA Tiek vulkaniniø, tiek giluminiø uolienø cheminë sudëtis, ypaè mikroelementø kiekiai rodo, kad tos uolienos greièiausiai susidarë lydantis plutai subdukcijos zonoje, t.y. ten, kur susiduria dvi litosferos plokðtës ir viena jø nyra po kita. Andezitas apskritai yra bûdinga ugnikalniø, iðaugusiø virð nyranèios plokðtës, uoliena. Galima sakyti, kad kitokioje tektoninëje padëtyje jis ir nesusidaro. Dabar andezito ir dacito lavos iðplitæ vadinamame Ugnies þiede, kuris juosia Ramøjá vandenynà ir apima Andus, Ðiaurës Amerikos Kordiljerus, Kamèiatkà, Japonijà, Aleutø, Kurilø ir kitus vulkaninius lankus. Beje, nuo Andø kalnø kilæs ir andezito pavadinimas. Visi tie ugnikalniø lankai susidaro virð nyranèiø litosferos plokðèiø. Ávairaus amþiaus ðios uolienos daþnos ir þemynuose, kuriø pluta susidarë susidûrus litosferos plokðtëms. Kartografuojant Ringvasojos þaliøjø skalûnø juostà Norvegijoje, pavyko iðskirti beveik 3 mlrd. metø senumo andezito-dacito storymæ, kuri rodo, kad litosferos plokðèiø tektonika veikë jau tada. Vidurio Lietuvos sandûros zonoje tektoninë aplinka buvo panaði èia taip pat vyko litosferos plokðèiø susidûrimas, viena niro po kita, lydësi, o magma, prasimuðusi á virðø, sudarë ugnikalniø grandines ir lavø bei piroklastø klodus. Taèiau kyla klausimas, kada visa tai vyko, kaip judëjo tos plokðtës ir kuri plokðtë po kuria niro? Duomenø apie VLSZ uolienø amþiø nëra daug, bet keli datavimai U-Pb metodu padaryti. Bendradarbiaujant su Rusijos MA Prekambro geologijos ir geochronologijos instituto mokslininkais J.Salnikova ir A.Kotovu buvo nustatytas dacitinio metaporfyro ið græþ. Virbaliðkis-434 amþius 1842±6 mln. metø. A. Rimða nustatë panaðø granodiorito ið Randamoniø plutono amþiø apie 1837 mln. metø (Rimsa ir kt., 2003). Lenkijoje nustatytas panaðus metavulkanitø ið græþinio Monki amþius (Wiszniewska ir kt., 2005). Ðis græþinys, atrodo, yra Vidurio Lietuvos sandûros zonos tæsinyje Lenkijoje. Ðie duomenys leidþia manyti, kad subdukcija ir su ja susijæs magmatizmas VLSZ vyko prieð 1,84 mlrd. metø. Tiesa, tokie procesai trunka bent deðimtis milijonø metø, todël gautos datos greièiausiai rodo ðio proceso pabaigà arba intensyvià fazæ. Kitas klausimas kuri plokðtë niro po kuria

5 ir kokia kryptimi vyko subdukcija? Jau minëjome, kad Vakarø Lietuvos srityje palyginti daug intruziniø uolienø. Tai èarnokitoidai ir granitoidai, sudarantys stambius kûnus. Didþiausio Kurðiø èarnokitoidø plutono plotas apie 15 tûkst. km 2. Jo amþius yra apibûdintas dviem datom: èarnokito ið græþ. Macuièiai-1 amþius, nustatytas U-Pb metodu, 1,846±12 mln. metø (G.Motuza, 2005), o èarnokito ið græþ. Vydmantai-1 1,815 mln. metø (Claesson, 2001). Datø skirtumas tokio dydþio kûnams nëra didelis. Stambûs batolitai susidaro pamaþu ásiskverbiant magmos porcijoms per kelias deðimtis milijonø metø. Mums svarbesnë senesnë data, rodanti magmatizmo pradþià, nes panaðaus amþiaus yra ir granitoidai ið græþ. Kuþiai-65 ir Grauþai-105 atitinkamai 1840±2 ir 1837±6 mln. metø (Motuza, 2004). Visos trys datos labai artimos ir rodo intensyvaus giluminio magmatizmo Vakarø Lietuvos srityje laikà, kuris paklaidos ribose yra toks pat, kaip ir VLSZ subdukcijos zonos andezito-dacito lavø bei Randamoniø komplekso intruzijø. Èarnokitai yra savitos uolienos, kuriø ypatybë kvarco ar/ir kalio feldðpato derinys su hiperstenu. Jos susidaro aukðtoje temperatûroje, bevandenëje aplinkoje ir dideliame gylyje. Tokios sàlygos galimos tik kontinentinëje plutoje, nes okeaninë yra pernelyg plona ir ðalta. Èarnokitoidø ir to paties amþiaus granitoidø mineraloginës ir geocheminës ypatybës rodo, kad magma, ið kurios jie kristalizavosi, iðsilydë ið metanuosëdiniø uolienø. Tai patvirtino jø bendras aliuminingumas ir daug kitø geocheminiø rodikliø, pagal kuriuos ðios uolienos priskiriamos vadinamajam S tipui (angl. sedimentary, reiðkianèio magmos ðaltiná). Èia daþnai randama granatø, pasitaiko kordierito. Ðie mineralai rodo aliuminio pertekliø uolienose. Be to, magminiuose cirkono grûdeliuose, pagal kuriuos ir buvo nustatytas uolienø amþius, surasti gerokai senesni branduoliai, kurie greièiausiai yra liekanos smilteliø, buvusiø nuosëdinëje uolienoje. Toks detritinis cirkonas daþnai randamas magminëse uolienose, nes jo lydimosi temperatûra labai aukðta. Taigi visos ðios plutoninës magminës uolienos susidarë kontinentinëje plutoje, o tai reiðkia, kad tokia pluta jau buvo Vakarø Lietuvoje, ir Vidurio Lietuvos sandûros zonoje vyko subdukcija. Litosfera, kurià sudaro kontinentinë pluta, yra lengva, todël negali subdukuoti. Reiðkia niro kita, Rytø Lietuvos plokðtë. Tai patvirtina ir dar keli faktai. Kaip minëta, metabazaltø juosta yra rytinëje VLSZ dalyje, o andezito ir dacito 37 sudëties metavulkanitø vakarinëje. Paprastai vulkaniniuose lankuose bazaltai sudaro juostas iðorinëje, o felziniai vulkanitai vidinëse lankø dalyse. Taigi vulkaninio lanko iðorë buvo dabartiniuose rytuose. Be to, susidûrusiø plokðèiø pakraðèiai deformuojasi sueiþëja lûþiais, kurie atskiria pleiðto pavidalo blokus, o ðie spaudþiami slenka aukðtyn. Tuo pat metu blokai yra ardomi, o jø uolienos iðsidësto juostomis lygiagreèiai sandûros zonai. Toks darinys vadinamas akrecine prizme. Rytø Lietuvoje yra ryðkus juostinis uolienø iðsidëstymas. Juostos, kuriose vyrauja amfibolitai, kaitaliojasi su juostomis, kuriose yra daugiau nuosëdiniø uolienø, o jø tása yra ðiaurësðiaurës rytø krypties, t.y. kaip tik lygiagreti VLSZ. Tai labai gerai atsispindi ir geofiziniuose þemëlapiuose, ypaè magnetinio lauko, ir primena akrecinës prizmës sandarà. Be to, subdukcija po kontinentine Vakarø Lietuvos pluta gali paaiðkinti ir èia nustatytà intensyvø plutoniná magmatizmà, vienalaiká su subdukcija. Virð nyranèios plokðtës mantijoje gali susidaryti vietinë konvekcija, kai karðta mantijos medþiaga kyla aukðtyn ir sukelia lydimàsi aukðtesnëse mantijos dalyse bei plutoje (Kearey, Vine, 1996). Tiesa, kol kas tai tik prielaida. Jà paremia tai, kad intruzijø susidarymas ir subdukcija vyko vienu metu. Bet gali bûti ir kitø Vakarø Lietuvos giluminio magmatizmo prieþasèiø. Tai gali bûti susijæ ir su pirminës VLS kontinentinës plutos susidarymu, apie kurá maþai þinoma. Stiprus metamorfizmas, lydymasis ir plataus masto giluminis magmatizmas apnaikino pirmines nuosëdines ir vulkanines uolienas, kurios geriausiai prisimena VLS susidarymo istorijà. Greièiausiai VLS susidarë litosferos plokðtëms slenkant ir akrituojant ðiaurës-ðiaurës rytø kryptimi, ta paèia kaip ir susidarant Ðvedijos bei Suomijos plutai (5 pav.). Tai rodo ir geofiziniø laukø anomalijos, kurios vakarinëje Lietuvos dalyje ir ypaè Baltijos jûroje tæsiasi á ðiaurës vakarus, kaip ir kaimyninëje Ðvedijoje, ir atspindi kristalinës plutos uolienø kompleksø padëtá. Ðiø geofiziniø lineamentø tæsinyje, jau Ðvedijos pusëje, kontinentinë pluta susidarë prieð 1,88-1,86 mlrd. metø (Sultan, Claesson ir kt., 2005). Greièiausiai ir VLS kontinentinë plutos amþius yra panaðus. Truputis fantazijos Apibendrinant turimus duomenis susidaro vaizdas, kad Lietuvos kristalinë pluta susidarë

6 38 GEOLOGIJOS PAÞANGA 5 pav. Svekofeniðkojo orogeno raida prieð 1,9 mlrd. metø. Brûkðniuotas plotas archëjaus kratonas; baltas plotas okeaninë pluta ir nuosëdinës uolienos; uþtaðkuotas plotas vulkaniniø lankø kompleksas; stora dantyta linija subdukcijos ruoþas; didelës rodyklës rodo plokðèiø judëjimo kryptá (Nironen, 1997). Fig. 5. A model of the development of Svecofennian orogen 1.9 Ga ago. Broken lines Archaean craton; the area without overprint oceanic crust and sedimentary rocks; the dotted area is the arc complex; thick black line the subduction zones; big arrows show the direction of plate motion (Nironen, 1997). dviejø litosferos plokðèiø, slenkanèiø skirtingomis kryptimis, sandûroje. Vakarø Lietuvos sritis susidarë slenkant ir akrituojant plokðtei ðiaurës rytø link, kaip ir kitø svekofenidø. Pagrindinio jos kratonizacijos etapo pabaigà þymi èarnokitoidøgranitoidø intruzijos, susidariusios prieð 1,846-1,815 mlrd. metø. Tuo tarpu Rytø Lietuvos srities pluta susidarë kitos plokðtës pakraðtyje, kuri judëjo dabartiniø ðiaurës vakarø link ir susidûrë su VLS plokðte, kai ði jau turëjo kontinentinæ plutà. Kolizijos metu Rytø Lietuvos plokðtë niro po Vakarø Lietuvos plokðte, lydësi pati ir sukëlë lydymàsi dengianèioje plokðtëje. Èia á plutà ásiskverbë gabro, diorito, granodiorito, tonalito intruzijos, o ten, kur lûþiais magma prasimuðë á pavirðiø, iðkilo ugnikalniø grandinë Vidurio Lietuvos vulkaninis lankas. Jis turëjo bûti panaðus á dabartinius Kamèiatkos, Japonijos ar Kurilø vulkaninius lankus (6 pav.). Tokioje tektoninëje aplinkoje ið ugnikalniø daugiausia liejasi andezito, dacito (reèiau bazalto) sudëties lava, kuri, bûdama tirðta, nuo iðsiliejimo vietos tenuteka 6 pav. Kurilø salos dabartinis vulkaniniø salø lankas. Geltona rodyklë Ramiojo vandenyno plokðtës judëjimo kryptis. Apaèioje deðinëje schematiðkas subdukcijos zonos vaizdas; kairëje Vidurio Lietuvos sandûros zonos padëtis, kuri, galbût susidarë panaðioje tektoninëje aplinkoje. Fig. 6. Kurily islands modern volcanic arc. Arrow direction of motion of the Pacific plate. Below right, sketch of subduction zone; left position of the Mid-Lithuanian suture zone presumably formed in similar tectonic setting. netoli. Jos klodai kaitaliojasi su tufais ir kitais piroklastais ir sudaro aukðtus taisyklingo kûgio pavidalo ugnikalnius stratovulkanus. Taigi ásivaizduokime per visà Lietuvà nutásusià virtinæ staèiaðlaièiø ugnikalniø, iðkëlusiø smailas rûkstanèias virðûnes á keliø kilometrø aukðtá. Ið dabartiniø rytø ðá ugnies lankà skalavo vandenynas, o vakarinëje pusëje greièiausiai buvo þemynas arba sekli uþulankio jûra, panaði á dabartinæ Ochotsko ar Japonø (6 pav.). Ir vëlesnëje mûsø kraðto geologinëje istorijoje Vidurio Lietuvos sandûros zona buvo reikðminga geologinë riba. Kaip tik ja vedama (gal kiek sàlyginë) Baltijos sedimentacinio baseino riba (Stirpeika, 1999), iðilgai jos iðsidësèiusios daugelio sistemø litofacijø juostos, èia baigiasi Vakarø Lietuvos geoterminë anomalija. Gal ir daugiau svarbiø geologinës sandaros bei raidos ypatybiø yra susijæ su ðia bene reikðmingiausia mûsø kraðto tektonine siûle?

7 39 Literatûra Bogdanova S., Gorbatchev R., Grad M., Guterch A., Janik T., Kozlovskaja E., Motuza G., Skridlaite G., Starostenko V., Taran L & EUROBRIDGE and POLONAISE Working Groups. EUROBRIDGE: New insight into the geodynamic evolution of the East European Craton // European Lithosphere Geodynamics / eds. D.G. Gee and R. A. Stephenson. Geological Society London Memoirs, Claesson S., Bogdanova S., Bibikova E., Gorbatschev R. Isotopic evidence for Palaeoproterozoic accreation in the basement of the East European Craton // Tectonophysics P Kearey P., Vine F.J. Global tectonics Mansfeld J. Age and end constraints on the Paleoproterozoic tectonic evolution in the Baltic-Sea region // Tectonophysics P Motuza G., Korabliova L., Nasedkin V. Giluminis seisminis zondavimas þvilgsnis á litosferos gelmes // Geologijos akiraèiai, P Motuza G. Litosferos sandara. Lietuvos Þemës gelmiø raida ir iðtekliai // Litosfera P Nironen M. The Svekofennian Orogen: a tectonic model // Precambrian Research, P Ostrovsky A.A., Flueh E.R., Luosto U. Deep seismic structure of the Earth s crust along the Baltic Sea profile // Tectonophysics, P Rimsa A., Bogdanova S., Skridlaite G., Bibikova E. The Randamonys TTG-intrusion in southern Lithuania: Evidence of an 1.84 Ga island arc // EUG XI abstract volume. Strasbourg, Stirpeika A. Tectonic evolution of the Baltic Syneclise and Local Structures in the South Baltic Region with Respect to ther Petroleum Potential Wiszniewska J., Krzeminska E., Skridlaitë G., Motuza G., Williams I., Whitehouse M. Metasedimentary and metavolcanic rocks from NE Poland and Lithuania: implications for Precambrian crustal evolution // 12th Meeting of the Petrology Group of the Mineralogical Society of Poland, Stary Folwark, October 13-16, 2005: Crystalline Rocks of the East-European Craton [Scientific Communications]. Kraków, P Summary Volcanic Arc of Lithuania Two main domains have been recognized in the crystalline basement of Lithuania West Lithuanian (WLD) and East Lithuanian (ELD), which differ essentially in the deep structure and lithological composition of the crust (Fig. 1). The contact zone distinguished as Mid-Lithuanian Suture Zone (MLSZ) is characterized by transitional structure of crust and specific assemblage of rocks. In the eastern part of MLSZ continues the belt of amphibolites primary metabasalts and diabases, interbedding with metapsammitic gneisses (Fig. 2). They reveal geochemical patterns characteristic of calc-alkaline series, and geochemical signatures of volcanic arc tectonic setting. In the western part of MLSZ the pyroxene-hornblende-biotitic gneisses are predominant. They are characterized by andesiticdacitic composition and remarkable porphyry texture (Fig. 3 and 4). Such rocks typically occur in the volcanic arc tectonic setting. Based on these data MLSZ is regarded as former subduction related volcanic arc, formed in course of the collision between two different lithospheric plates. Few U-Pb (zircon) dating suggest formation of the arc around 1.84 Ga. Roughly same ( ) age have large plutonic bodies of charnockitic and granitic rocks in WLD. The mineralogical (presence of garnet and cordierite) and geochemical patterns of these rocks corresponds same time to S- and A-type granite and suggest formation of intrusions in the thick continental crust, presumably on the late stages of orogenic period. These facts implies the following tectonic model. The WLD has been formed in course of plate motion and accretion to recent N-NE along main Svcofennian trend before 1.85 Ga (Fig. 5). East Lithuanian oceanic plate was moving towards recent NW and subducting beneath WLD, which at that time (around 1.84 Ga) was already cratonised. Chain of stratovolcanoes emerged along the edge of WLD above the subduction zone, comparable to recent volcanic arcs as Kamchatka-Kurily (Fig. 6). The Central Lithuanian joint zone was an important geological boundary in further geological history of our land as well. Along it, the Baltic sedimentation basin boundary (Stirpeika, 1999) (slightly relative) is drawn, and there are numerous belts of different lithofacies, here is also the margin of the West Lithuanian geothermal anomaly. Maybe, there are more important peculiarities in geological setup and development related to the most significant tectonic line of Lithuania?

Due to the especially interesting geological structure ~280 km 2 territory of Druskininkai area is covered by detail complex geological and

Due to the especially interesting geological structure ~280 km 2 territory of Druskininkai area is covered by detail complex geological and Jonas Satkūnas GOLOGICAL HRITAG OF DRUSKININKAI - FROM DPLY SATD CRYSTALLIN BASMNT TO PRSNT LANDSCAPS Due to the especially interesting geological structure ~280 km 2 territory of Druskininkai area is

More information

2 Britain s oldest rocks: remnants of

2 Britain s oldest rocks: remnants of Britain s oldest rocks: remnants of Archaean crust 15 2 Britain s oldest rocks: remnants of Archaean crust 2.1 Introduction Owing to the complex nature of extremely old deformed rocks, the standard methods

More information

CHAPTER VI CONCLUSIONS

CHAPTER VI CONCLUSIONS CHAPTER VI CONCLUSIONS In this Chapter, salient observations made in understanding the various tectonothermal events, including U-Pb in-situ monazite geochronology of Sargur schists and granulites exposed

More information

Archean Terranes. Archean Rocks. Southeastern Africa. West Greenland. Kaapvaal Craton. Ancient Gneiss Complex

Archean Terranes. Archean Rocks. Southeastern Africa. West Greenland. Kaapvaal Craton. Ancient Gneiss Complex Archean Terranes Archean Rocks Chapter 15A >2.5 Gy old Younger supracrustal sequences Greenstone belts Calc-alkaline metavolcanic rocks Older gneiss complexes Quartzo-feldspathic rocks Tonalites and migmatites

More information

KANARÙ SALOS KARÖTASIS PASAULIO TAÖKAS

KANARÙ SALOS KARÖTASIS PASAULIO TAÖKAS PAÞINIMO ROMANTIKA 73 2006 m. gruodþio 6-13 d. kartu su Ðvedijos ir Suomijos studentais autorë dalyvavo geologinëje ekspedicijoje Kanarø salose. Ekspedicijai vadovavo Lundo universiteto prof. Anders Lindh.

More information

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway The Earth is more than a giant ball made up of dirt, rocks, and minerals. The Earth may look like a giant ball from when looking at it from

More information

Appendix 11. Geology. of the. I60 area

Appendix 11. Geology. of the. I60 area Appendix 11 Geology of the I60 area 1. Locality The locality of the I60 area is as follows; Northwestern corner; UTM_EW 530513, UTM_NS 7345741 Southwestern corner; UTM_EW 530418, UTM_NS 7301454 Northeastern

More information

INTRODUCTION. Basalt, the widespread igneous rock on the earth sur-face. today appear to have been equally important

INTRODUCTION. Basalt, the widespread igneous rock on the earth sur-face. today appear to have been equally important INTRODUCTION Basalt, the widespread igneous rock on the earth sur-face today appear to have been equally important in the geologic past. Basaltic rocks are mostly partial melting products of the upper

More information

HDR/EGS POTENTIAL OF THE VILKYCIAI AREA, WEST LITHUANIA

HDR/EGS POTENTIAL OF THE VILKYCIAI AREA, WEST LITHUANIA HDR/EGS POTENTIAL OF THE VILKYCIAI AREA, WEST LITHUANIA Prepared by Saulius Sliaupa, Dainius Michelevicius, Gediminas Motuza, Larisa Korabliova, Kirstina Ciuraite West Lithuania is situated in the central

More information

predictive iscovery Why is the gold where it is? redictive mineral ineral discovery pmd CRC

predictive iscovery Why is the gold where it is? redictive mineral ineral discovery pmd CRC The Y2 project (2001-2004) Time-space evolution of the Yilgarn Craton: implications for geodynamics Kevin Cassidy and the Y2 team Reduced D Risk through Improved Targeting ineral d Why is the gold where

More information

GY 112 Lecture Notes Archean Geology

GY 112 Lecture Notes Archean Geology GY 112 Lecture Notes D. Haywick (2006) 1 GY 112 Lecture Notes Archean Geology Lecture Goals: A) Time frame (the Archean and earlier) B) Rocks and tectonic elements (shield/platform/craton) C) Tectonics

More information

IMSG Post-conference Field Guide

IMSG Post-conference Field Guide IMSG 2017 - Post-conference Field Guide Jérémie Lehmann, Marlina Elburg and Trishya Owen-Smith The purpose of this short field excursion on Wednesday 18 January is to show a variety of rocks that make

More information

ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017

ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017 ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017 Why is there no oceanic crust older than 200 million years? SUBDUCTION If new oceanic crust is being continuously created along the earth

More information

ÛEMÉS PAVIRÖIAUS POKYÆIAI IR SVYRAVIMAI

ÛEMÉS PAVIRÖIAUS POKYÆIAI IR SVYRAVIMAI 30 GEOLOGIJOS PAÞANGA Jonas Satkûnas, Jolanta Èyþienë, Lietuvos geologijos tarnyba ÛEMÉS PAVIRÖIAUS POKYÆIAI IR SVYRAVIMAI Anotacija Satkûnas J., Èyþienë J. Þemës pavirðiaus pokyèiai ir svyra - vimai //

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

An Introduction of Aleutian Subduction Zone. Chuanmao Yang, Hong Yang, Meng Zhang, Wenzhong Wang 2016/04/29

An Introduction of Aleutian Subduction Zone. Chuanmao Yang, Hong Yang, Meng Zhang, Wenzhong Wang 2016/04/29 An Introduction of Aleutian Subduction Zone Chuanmao Yang, Hong Yang, Meng Zhang, Wenzhong Wang 2016/04/29 Outline General Introduction Formation history Structure from seismic study geochemical features

More information

Struktūrinė geologija

Struktūrinė geologija Pirmadienį pirmą pusdienį Struktūrinė geologija Audrius Čečys audrius.cecys@gf.vu.lt / audrius.cecys@gmail.com + 370 686 96 480 http://web.vu.lt/gf/a.cecys ir Dropbox Struktūrinė geologija yra mokslas

More information

EXISTING GEOLOGICAL INFORMATION

EXISTING GEOLOGICAL INFORMATION CHAPER 3 EXISTING GEOLOGICAL INFORMATION 3-1 General Geology of the Surrounding Area (1) General geology and ore deposits in Mongolia Geographically, Mongolia is a country located between Russia to the

More information

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth.

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth. Global Tectonics Kearey, Philip ISBN-13: 9781405107778 Table of Contents Preface. Acknowledgments. 1. Historical perspective. 1.1 Continental drift. 1.2 Sea floor spreading and the birth of plate tectonics.

More information

1 Potassic adakite magmas and where they come from: a mystery solved?

1 Potassic adakite magmas and where they come from: a mystery solved? 1 Potassic adakite magmas and where they come from: a mystery solved? 2 3 John Clemens Kingston University (London) Long Xiao China University of Geosciences (Wuhan) 4 Adakites are volcanic and intrusive

More information

Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education

Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education Tibetan Plateau and Himalaya -southern Asia 11.00.a VE 10X

More information

Chapter 8 10/19/2012. Introduction. Metamorphism. and Metamorphic Rocks. Introduction. Introduction. The Agents of Metamorphism

Chapter 8 10/19/2012. Introduction. Metamorphism. and Metamorphic Rocks. Introduction. Introduction. The Agents of Metamorphism Chapter 8 Metamorphism Introduction Metamorphism - The transformation of rocks, usually beneath Earth's surface, as the result of heat, pressure, and/or fluid activity, produces metamorphic rocks During

More information

Introduction. Introduction. Introduction 10/15/2014. The Agents of Metamorphism. Metamorphism. and Metamorphic Rocks

Introduction. Introduction. Introduction 10/15/2014. The Agents of Metamorphism. Metamorphism. and Metamorphic Rocks Introduction Metamorphism The transformation of rocks, usually beneath Earth's surface, as the result of heat, pressure, and/or fluid activity, produces metamorphic rocks Metamorphism and Metamorphic Rocks

More information

Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6

Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6 Topics Laramide Orogeny: Late Cretaceous to Early Eocene Reading: GSA DNAG volume 3, Ch. 6 Late Cretaceous to early Eocene New patterns developed 5 main regions Tectonic interpretations Post-Laramide events

More information

Regional geology of study areas 3

Regional geology of study areas 3 1 Introduction Central part Indonesia geographically is including Kalimantan, Sulawesi and Java islands. Accretionary and metamorphic complexes expose in the Central Java, South Kalimantan and South Central

More information

USU 1360 TECTONICS / PROCESSES

USU 1360 TECTONICS / PROCESSES USU 1360 TECTONICS / PROCESSES Observe the world map and each enlargement Pacific Northwest Tibet South America Japan 03.00.a1 South Atlantic Arabian Peninsula Observe features near the Pacific Northwest

More information

Igneous Rocks. Igneous Rocks. Genetic Classification of

Igneous Rocks. Igneous Rocks. Genetic Classification of Igneous Rocks Fig. 5.1 Genetic Classification of Igneous Rocks Intrusive: crystallized from slowly cooling magma intruded within the Earth s crust; e.g. granite, gabbro 1 Fig. 5.2 Genetic Classification

More information

LATE ARCHAEAN FELSIC ALKALINE MAGMATISM: GEOLOGY, GEOCHEMISTRY, AND TECTONIC SETTING

LATE ARCHAEAN FELSIC ALKALINE MAGMATISM: GEOLOGY, GEOCHEMISTRY, AND TECTONIC SETTING LATE ARCHAEAN FELSIC ALKALINE MAGMATISM: GEOLOGY, GEOCHEMISTRY, AND TECTONIC SETTING ZOZULYA DMITRY 1, EBY NELSON 2 1 - Geological Institute Kola Science Centre RAS, Apatity, Russia 2 - Department of Environmental,

More information

The High Lava Plains Project: Understanding the Causes of Continental Intraplate Tectonomagmatism

The High Lava Plains Project: Understanding the Causes of Continental Intraplate Tectonomagmatism The High Lava Plains Project: Understanding the Causes of Continental Intraplate Tectonomagmatism The High Lava Plains (HLP) of the northwestern USA is one of the most accessible yet least understood examples

More information

Metamorphism. Metamorphic Rocks. Sources of Heat for Metamorphism. Sources of Heat for Metamorphism. in mineral assemblages of a rock, and/or

Metamorphism. Metamorphic Rocks. Sources of Heat for Metamorphism. Sources of Heat for Metamorphism. in mineral assemblages of a rock, and/or Metamorphic Rocks Sources of Heat for Metamorphism Heat from Earth s interior Geothermal gradient is the increase in temperature with depth Typical continental geothermal gradient is 25-30 C/km Volcanically

More information

Earth s Continents and Seafloors. GEOL100 Physical Geology Ray Rector - Instructor

Earth s Continents and Seafloors. GEOL100 Physical Geology Ray Rector - Instructor Earth s Continents and Seafloors GEOL100 Physical Geology Ray Rector - Instructor OCEAN BASINS and CONTINENTAL PLATFORMS Key Concepts I. Earth s rocky surface covered by of two types of crust Dense, thin,

More information

Lecture 25 Subduction Related Magmatism

Lecture 25 Subduction Related Magmatism Lecture 25 Subduction Related Magmatism Monday, May 2 nd 2005 Subduction Related Magmatism Activity along arcuate volcanic chains along subduction zones Distinctly different from the mainly basaltic provinces

More information

6. In the diagram below, letters A and B represent locations near the edge of a continent.

6. In the diagram below, letters A and B represent locations near the edge of a continent. 1. Base your answer to the following question on the cross section below and on your knowledge of Earth science. The cross section represents the distance and age of ocean-floor bedrock found on both sides

More information

Imagine the first rock and the cycles that it has been through.

Imagine the first rock and the cycles that it has been through. A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one type of rocky material gets transformed into another The Rock Cycle Representation

More information

GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli

GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli Chapter 5: Crystal-Melt phase diagrams Effect of water pressure on feldspar stability Hypersolvus vs.

More information

Figure GS-25-1: General geology and domain subdivisions in northwestern Superior Province. 155

Figure GS-25-1: General geology and domain subdivisions in northwestern Superior Province. 155 GS-25 ASSEAN LAKE ANCIENT CRUST: AN UPDATE by M.T. Corkery, Ch.O. Böhm 1 and L.M Heaman 1 Corkery, M.T., Böhm, Ch.O. and Heaman, L.M. 2000: Assean Lake ancient crust: an update; in Report of Activities

More information

Naxos: metamorphism, P-T-t evolution (A)

Naxos: metamorphism, P-T-t evolution (A) Naxos: metamorphism, P-T-t evolution (A) 1. Regional geological setting The Cyclades are an island group in the Aegean Sea southeast of the Greek mainland and located centrally in the Attic Cycladic Metamorphic

More information

Tectonic Framework of New York State

Tectonic Framework of New York State Tectonic Framework of New York State Kurt Hollocher Union College Geology Department Talk given for the UCALL program Union College, Schenectady, NY April 3, 2007 New York State Geological Highway Map.

More information

Evolution of Continents Chapter 20

Evolution of Continents Chapter 20 Evolution of Continents Chapter 20 Does not contain complete lecture notes. Mountain belts Orogenesis the processes that collectively produce a mountain belt Includes folding, thrust faulting, metamorphism,

More information

Lecture 5 Sedimentary rocks Recap+ continued. and Metamorphic rocks!

Lecture 5 Sedimentary rocks Recap+ continued. and Metamorphic rocks! Lecture 5 Sedimentary rocks Recap+ continued and Metamorphic rocks! Metamorphism Process that leads to changes in: Mineralogy Texture Sometimes chemical composition Metamorphic rocks are produced from

More information

Metamorphic Rocks. Metamorphic rocks. Formed by heat, pressure and fluid activity

Metamorphic Rocks. Metamorphic rocks. Formed by heat, pressure and fluid activity Metamorphic Rocks Most figures and tables contained here are from course text: Understanding Earth Fourth Edition by Frank Press, Raymond Siever, John Grotzinger, and Thomas H. Jordan Metamorphic rocks

More information

Plate Tectonics Lab II: Background Information

Plate Tectonics Lab II: Background Information Plate Tectonics Lab II: Background Information This lab is based on a UW ESS101 Lab. Note: Hand in only the Answer Sheet at the back of this guide to your Instructor Introduction One of the more fundamental

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40 GEOL 2312 Igneous and Metamorphic Petrology Name Spring 2009 Sc ore / 40 QUIZ 3 1) Name two geologic features that provide physical evidence for the mineralogy of the earth s mantle (2 pts) Ophiolites,

More information

Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection?

Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection? Chapter 16 Mountains and Plate Tectonics what s the connection? Mountain Building Most crustal deformation occurs along plate margins. S.2 Active Margin Passive Margin Mountain Building Factors Affecting

More information

Late 20 th Century Tests of the Continental Drift Hypothesis

Late 20 th Century Tests of the Continental Drift Hypothesis Late 20 th Century Tests of the Continental Drift Hypothesis 5 Characteristics of the Ocean Trenches Unless otherwise noted the artwork and photographs in this slide show are original and by Burt Carter.

More information

Geology 101. Reading Guide for Plate Tectonics

Geology 101. Reading Guide for Plate Tectonics Geology 101 Chapter 1: Plate Tectonics (p. 21) Reading Guide for Plate Tectonics Name You should have read this section during the first week of the quarter. You should re-read this section and review

More information

Dynamic Crust Practice

Dynamic Crust Practice 1. Base your answer to the following question on the cross section below and on your knowledge of Earth science. The cross section represents the distance and age of ocean-floor bedrock found on both sides

More information

Lecture 14: A brief review

Lecture 14: A brief review Lecture 14: A brief review A few updates for the remainder of the course Report for the lab on pelite metamorphism - Lab 3 Needs to be handed in before Tuesday the 14 th of March at 17:00. My most important

More information

GSA Data Repository

GSA Data Repository GSA Data Repository 218145 Parolari et al., 218, A balancing act of crust creation and destruction along the western Mexican convergent margin: Geology, https://doi.org/1.113/g39972.1. 218145_Tables DR1-DR4.xls

More information

6 Exhumation of the Grampian

6 Exhumation of the Grampian 73 6 Exhumation of the Grampian mountains 6.1 Introduction Section 5 discussed the collision of an island arc with the margin of Laurentia, which led to the formation of a major mountain belt, the Grampian

More information

Chapter 02 The Sea Floor

Chapter 02 The Sea Floor Chapter 02 The Sea Floor Multiple Choice Questions 1. One of the following is not one of the world's major ocean basins: A. Atlantic Ocean B. Arctic Ocean C. Indian Ocean D. Antarctic Ocean E. Pacific

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

Full file at CHAPTER 2 The Way the Earth Works: Plate Tectonics

Full file at   CHAPTER 2 The Way the Earth Works: Plate Tectonics CHAPTER 2 The Way the Earth Works: Plate Tectonics MULTIPLE CHOICE 1. Wegener proposed continental drift after he observed evidence from fossils, glacial deposits, and the fit of the continents that suggested

More information

Chapter 3. Geology & Tectonics

Chapter 3. Geology & Tectonics Chapter 3 Geology & Tectonics 3.1 Geology The general geological features of Indonesia are shown in Figure 3.1. The basement formation is metamorphic and it is intruded with plutonic formations. They are

More information

New geologic mapping + and associated economic potential on northern Hall Peninsula, Baffin Island, Nunavut

New geologic mapping + and associated economic potential on northern Hall Peninsula, Baffin Island, Nunavut New geologic mapping + and associated economic potential on northern Hall Peninsula, Baffin Island, Nunavut Holly Steenkamp, M.Sc. Regional Mapping Geoscientist David Mate, M.Sc. Chief Geologist November

More information

Questions and Topics

Questions and Topics Plate Tectonics and Continental Drift Questions and Topics 1. What are the theories of Plate Tectonics and Continental Drift? 2. What is the evidence that Continents move? 3. What are the forces that

More information

Parts of the Sevier/ Laramide Orogeny

Parts of the Sevier/ Laramide Orogeny Parts of the Sevier/ Laramide Orogeny AA. Accretionary Prism BB. Forearc Basin Sediment scraped off of subducting plate Sediment derived from the volcanic arc CC. Volcanic Arc Magmatic intrusion into the

More information

Introduction. Introduction. Chapter 7. Important Points: Metamorphism is driven by Earth s s internal heat

Introduction. Introduction. Chapter 7. Important Points: Metamorphism is driven by Earth s s internal heat Chapter 7 Metamorphism and Metamorphic Rocks Introduction Metamorphism - The transformation of rocks, usually beneath Earth's surface, as the result of heat, pressure, and/or fluid activity, produces metamorphic

More information

Physical properties of the Rehoboth Basement inlier

Physical properties of the Rehoboth Basement inlier Physical properties of the Rehoboth Basement inlier P. Ledru*, T. Becker**, D. Hutchins**, J.P. Milesi*, B. Tourlière*, C. Truffert*, R. Wackerle** *BRGM-French Geological Survey, Orleans, France **Geological

More information

Mountain Building. Mountain Building

Mountain Building. Mountain Building Mountain Building Mountain building has occurred during the recent geologic past American Cordillera the western margin of the Americas from Cape Horn to Alaska Includes the Andes and Rocky Mountains Alpine

More information

Bedrock mapping and geological characterization in the northern Glennie domain, west-central Reindeer Zone

Bedrock mapping and geological characterization in the northern Glennie domain, west-central Reindeer Zone Bedrock mapping and geological characterization in the northern Glennie domain, west-central Reindeer Zone Samantha Van De Kerckhove, Ryan Morelli and Dylan Deck Saskatchewan Geological Open House, 2017

More information

Overview of 2016 regional bedrock mapping in the Tehery-Wager area, northwestern Hudson Bay, Nunavut

Overview of 2016 regional bedrock mapping in the Tehery-Wager area, northwestern Hudson Bay, Nunavut Overview of 2016 regional bedrock mapping in the Tehery-Wager area, northwestern Hudson Bay, Nunavut Photo: Baker Lake, Nunavut Holly M. Steenkamp*, Canada-Nunavut Geoscience Office Université Laval Natasha

More information

What Forces Drive Plate Tectonics?

What Forces Drive Plate Tectonics? What Forces Drive Plate Tectonics? The tectonic plates are moving, but with varying rates and directions. What hypotheses have been proposed to explain the plate motion? Convection Cells in the Mantle

More information

7 Sedimentation and tectonics at a mid- Ordovician to Silurian active margin

7 Sedimentation and tectonics at a mid- Ordovician to Silurian active margin 80 Mountain Building in Scotland 7 Sedimentation and tectonics at a mid- Ordovician to Silurian active margin 7.1 Introduction In mid-ordovician to Silurian times, the Grampian mountains underwent exhumation,

More information

Geologic Evolution of Latin America. Plate Tectonics: General Concepts & Applications to Latin America

Geologic Evolution of Latin America. Plate Tectonics: General Concepts & Applications to Latin America Geologic Evolution of Latin America Plate Tectonics: General Concepts & Applications to Latin America Structure of Earth: 3 major divisions of Core, Mantle, and Crust Upper mantle differs in the way that

More information

Proterozoic Granites - Australia

Proterozoic Granites - Australia Jan 2007 PS-T Proterozoic Granites - Australia granites widespread (~145,000 km 2 ) Proterozoic Granites - Australia range from (late Neoarchaean-) early Palaeoproterozoic to Neoproterozoic most ca. 1950-1500

More information

10. Paleomagnetism and Polar Wandering Curves.

10. Paleomagnetism and Polar Wandering Curves. Map of ocean floor Evidence in Support of the Theory of Plate Tectonics 10. Paleomagnetism and Polar Wandering Curves. The Earth's magnetic field behaves as if there were a bar magnet in the center of

More information

The continental lithosphere

The continental lithosphere Simplicity to complexity: The continental lithosphere Reading: Fowler p350-377 Sampling techniques Seismic refraction Bulk crustal properties, thickness velocity profiles Seismic reflection To image specific

More information

Geology 135GESM The Earth The Plate Tectonics

Geology 135GESM The Earth The Plate Tectonics Geology 135GESM The Earth The Plate Tectonics The Earth We do not know a lot The Earth Using seismic waves p wave compression s wave The Earth The Earth s wave s wave shadow zone The Earth p wave p wave

More information

Lietuvos seismologinis monitoringas metais

Lietuvos seismologinis monitoringas metais GILUMINËS ÞEMËS GELMIØ SANDAROS TYRIMAI Lietuvos seismologinis monitoringas 1999 2005 metais A. Paèësa, Lietuvos geologijos tarnyba 1999 metais Ignalinos atominëje elektrinëje (AE) buvo árengta seisminio

More information

Plate tectonics, rock cycle

Plate tectonics, rock cycle Dikes, Antarctica Rock Cycle Plate tectonics, rock cycle The Rock Cycle A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one

More information

Plate Tectonics. Structure of the Earth

Plate Tectonics. Structure of the Earth Plate Tectonics Structure of the Earth The Earth can be considered as being made up of a series of concentric spheres, each made up of materials that differ in terms of composition and mechanical properties.

More information

Introduction To Plate Tectonics Evolution. (Continents, Ocean Basins, Mountains and Continental Margins)

Introduction To Plate Tectonics Evolution. (Continents, Ocean Basins, Mountains and Continental Margins) Introduction To Plate Tectonics Evolution (Continents, Ocean Basins, Mountains and Continental Margins) Geo 386 (Arabian Shield Course) Dr. Bassam A. A. Abuamarah Mohanna G E O 3 8 6 A R A B I A N G E

More information

U-Pb zircon geochronology, Hf isotope, latest Neoarchean, magmatic event, Douling Complex, Yangtze craton

U-Pb zircon geochronology, Hf isotope, latest Neoarchean, magmatic event, Douling Complex, Yangtze craton Article Geochemistry October 2013 Vol.58 No.28-29: 3564 3579 doi: 10.1007/s11434-013-5904-1 A ~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope

More information

Discrimination between Archean A-type granitoids and sanukitoid suites using tectonic setting, geochemistry, and fertility type

Discrimination between Archean A-type granitoids and sanukitoid suites using tectonic setting, geochemistry, and fertility type Discrimination between Archean A-type granitoids and sanukitoid suites using tectonic setting, geochemistry, and fertility type ZOZULYA DMITRY 1, EBY NELSON 2 1 - Geological Institute Kola Science Centre

More information

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge?

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge? 1. Crustal formation, which may cause the widening of an ocean, is most likely occurring at the boundary between the A) African Plate and the Eurasian Plate B) Pacific Plate and the Philippine Plate C)

More information

Structure of the Earth and the Origin of Magmas

Structure of the Earth and the Origin of Magmas Page 1 of 12 EENS 2120 Petrology Tulane University Prof. Stephen A. Nelson Structure of the Earth and the Origin of Magmas This document last updated on 23-Jan-2015 Magmas do not form everywhere beneath

More information

L.O: THE CRUST USE REFERENCE TABLE PAGE 10

L.O: THE CRUST USE REFERENCE TABLE PAGE 10 USE REFERENCE TABLE PAGE 10 1. The oceanic crust is thought to be composed mainly of A) granite B) sandstone C) basalt D) rhyolite 2. To get sample material from the mantle, drilling will be done through

More information

Earth s Tectonic Evolution

Earth s Tectonic Evolution Earth s Tectonic Evolution Name: Spring, 19xx Geology 230: Test # 3 Date: Time Begun: Time Ended: Rules for All Lecture Tests Lynn S. Fichter James Madison University ( You have a several day period in

More information

1.4 Notes: Plates Converge or Scrape Past Each Other Think About Tectonic Plates Push Together at Convergent Boundaries

1.4 Notes: Plates Converge or Scrape Past Each Other Think About Tectonic Plates Push Together at Convergent Boundaries 1.4 Notes: Plates Converge or Scrape Past Each Other Think About If new crust is created at divergent boundaries, why does the total amount of crust on Earth stay the same? Tectonic Plates Push Together

More information

GY303 Igneous & Metamorphic Petrology. Lecture 7: Magma Sources and Tectonic Environments

GY303 Igneous & Metamorphic Petrology. Lecture 7: Magma Sources and Tectonic Environments GY303 Igneous & Metamorphic Petrology Lecture 7: Magma Sources and Tectonic Environments Factors controlling Magma production Source rock composition Amount of fluids, especially H 2 O Pressure (Depth)

More information

New insights on the THO-Superior boundary: Tectonic and metallogenic implications

New insights on the THO-Superior boundary: Tectonic and metallogenic implications New insights on the THO-Superior boundary: Tectonic and metallogenic implications John Percival, GSC Nicole Rayner, GSC Herman Zwanzig, MGS Linda Murphy, MGS Joe Whalen, GSC Martha Growdon, Indiana U.

More information

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition Metamorphic Energy Flow Categories of Metamorphism Best, Chapter 10 Metamorphic processes are endothermic They absorb heat and mechanical energy Absorption of heat in orogenic belts Causes growth of mineral

More information

Do NOT open the test until instructed to do so.

Do NOT open the test until instructed to do so. Raw Score: Rank: School: Team Number: Names: Boyceville Invitational, December 2, 2017 Dynamic Planet Plate Tectonics and Geographical Impacts Do NOT open the test until instructed to do so. 2011 Tohoku

More information

PLATE TECTONICS. Continental Drift. Continental Drift. Continental Drift. Continental Drift- Wegener s Evidence

PLATE TECTONICS. Continental Drift. Continental Drift. Continental Drift. Continental Drift- Wegener s Evidence Continental Drift PLATE TECTONICS E.B. Taylor (1910) and Alfred Wegener (1915) published on Continental Drift. Continental Drift Wegener s evidence 1. Fit of the Continents 2. Fossil Evidence 3. Rock Type

More information

Laboratory #7: Plate Tectonics

Laboratory #7: Plate Tectonics Materials Needed: 1. Pencil 2. Colored Pencils 3. Metric/Standard Ruler 4. Calculator 5. Tracing Paper Laboratory #7: Plate Tectonics Plate Tectonics The Earth is composed of layers. At the center is a

More information

Structure of the Earth

Structure of the Earth Structure of the Earth Compositional (Chemical) Layers Crust: Low density Moho: Density boundary between crust and mantle Mantle: Higher density High in Magnesium (Mg) and Iron (Fe) Core: High in Nickel

More information

Convergent plate boundaries. Objective to be able to explain the formation and key features of these zones.

Convergent plate boundaries. Objective to be able to explain the formation and key features of these zones. Convergent plate boundaries Objective to be able to explain the formation and key features of these zones. Destructive plate margins When plates collide due to convection currents/slab pull in the asthenosphere

More information

Plate Tectonics Unit II: Plate Boundaries (3.5 pts)

Plate Tectonics Unit II: Plate Boundaries (3.5 pts) T. James Noyes, El Camino College Plate Tectonics Unit II: The Plate Boundaries (Topic 11A-2) page 1 Name: Section: Plate Tectonics Unit II: Plate Boundaries (3.5 pts) Plate Boundaries We will now discuss

More information

The Sea Floor. Chapter 2

The Sea Floor. Chapter 2 The Sea Floor Chapter 2 Geography of the Ocean Basins World ocean is the predominant feature on the Earth in total area Northern Hemisphere = 61% of the total area is ocean. Southern Hemisphere = about

More information

Continental Drift and Plate Tectonics

Continental Drift and Plate Tectonics Continental Drift and Plate Tectonics Continental Drift Wegener s continental drift hypothesis stated that the continents had once been joined to form a single supercontinent. Wegener proposed that the

More information

"When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka

When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka Metamorphosis "When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka Metamorphism The transformation of rock by temperature

More information

PHYSICAL GEOLOGY AND THE ENVIRONMENT (2 ND CANADIAN EDITION)

PHYSICAL GEOLOGY AND THE ENVIRONMENT (2 ND CANADIAN EDITION) Chapter 2: Plate Tectonics Chapter Summary: Plate tectonics is a theory that suggests Earth's surface is divided into several large plates that change position and size. Intense geologic activity occurs

More information

Summary and Conclusions

Summary and Conclusions Chapter 9 Summary and Conclusions 9.1 Summary The contents of this thesis revolve around the question of what type of geodynamics was active in the Early Earth and other terrestrial planets. The geology

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011 by W. H. Freeman and Company Chapter 4: Igneous Rocks: Solids from Melts 1 About Igneous Rocks Igneous

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 9 Plate Tectonics 9.1 Continental Drift An Idea Before Its Time Wegener s continental drift hypothesis stated that the continents had once been joined

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 9 Plate Tectonics 9.1 Continental Drift An Idea Before Its Time Wegener s continental drift hypothesis stated that the continents had once been joined

More information

Bird River Belt in southeastern Manitoba: a Neoarchean volcanic arc in the Western Superior Province. Paul Gilbert Manitoba Geological Survey

Bird River Belt in southeastern Manitoba: a Neoarchean volcanic arc in the Western Superior Province. Paul Gilbert Manitoba Geological Survey Bird River Belt in southeastern Manitoba: a Neoarchean volcanic arc in the Western Superior Province Paul Gilbert Manitoba Geological Survey Location of Bird River Belt Bird River Belt Winnipeg Bird River

More information

Rare Earth Elements in some representative arc lavas

Rare Earth Elements in some representative arc lavas Rare Earth Elements in some representative arc lavas Low-K (tholeiitic), Medium-K (calc-alkaline), and High-K basaltic andesites and andesites. A typical N-MORB pattern is included for reference Notes:

More information