International Journal Geology and Mining Vol. 4(1), pp , March, ISSN: XXXX-XXXX

Size: px
Start display at page:

Download "International Journal Geology and Mining Vol. 4(1), pp , March, ISSN: XXXX-XXXX"

Transcription

1 International Journal Geology and Mining Vol. 4(1), pp , March, ISSN: XXXX-XXXX IJGM Research Article A Study of Anomalous Value of Free-Air Vertical Gradient for Density Determination Used in a Mine at Barberton City of Ohio, United States BAUMGRATZ, Leonardo Lucas Fundação Agência das Bacias Hidrográficas dos Rios Piracicaba, Capivari e Jundiaí expansaoescalar@gmail.com; Tel: Underground Gravity Vertical Gradient is an important practice for prospecting underground densities, although in most cases it does not match the densities obtained directly in the laboratory from rock samples representative of the location. The densities of the laboratory samples were systematically lower when compared to the densities calculated by gravimetric determination suggesting some kind of systematic error. Several researchers propose different sources to explain these systematic errors including an anomalous value of the free-air vertical gradient. The anomalous value was admitted for the free-air vertical gradient in this paper to reinterpret the densities determination research made in a mine at Barberton, Ohio, in 1950, by gravimetric measurements and by laboratory rock samples. The results of both approaches reached similar densities agreeing with the free-air vertical gradient proposed. Keywords: Gravimetry, Underground gravity, Free-air vertical gradient, Anomalous vertical gradient. INTRODUCTION Gravimetric prospecting methods depend fundamentally on the density of the adjacent underground, which can be achieved by two different processes. It can be measured directly in the laboratory using a set of samples representing the region of interest, or it can be calculated by the variation of gravity on a vertical profile, which is the method for determining density by the Underground Gravity Vertical Gradient (UGVG). A lot of practical works done in deep mines show that in most cases the densities obtained by the two processes are discordant, as mentioned by Hammer (1950) whose research investigated carefully the underground densities in a mine 2, feet deep by means of gravimetric methods. To check the results, measurements of the density of several rock samples representing the profile in the laboratory were made. Each sample was selected carefully to be as representative as possible of the 5-foot interval depth. The densities of the samples presented a large discordance with the gravimeter results. He reported that the laboratory samples have a clear and systematic tendency to have low-density values when compared to densities determined by gravimetry, and the conclusion was that "...the main suspect of causing this systematic error could be an anomalous value of the free-air vertical gradient caused by local or regional anomalies of gravity in the mine vicinity. Later, he studied local and regional maps of Bouguer anomalies trying to explain this anomaly but did not find any evidence that could justify it. It is interesting to note that Hammer (1950) suggested as the main cause of the error an anomalous value of the free-air vertical gradient. His work was so precise and highlighted an issue so important that several authors such as Rogers (1952) and Fajklewicz et al. (1982) cited him. Problems with the free-air vertical gradient are very old. They were detected in the nineteenth century according to the list of researchers cited by Thyssen-Bornemisza and Stachler (1956), shown in Table 1.

2 Baumgratz LL. 152 Table 1: Experimental values of the free-air vertical gradient and its deviation from the standard value of mgal, according to Thyssen-Bornemisza and Stachler (1956). Authors Year Height (ft) Free-air vertical gradient observed Deviation from normal (mgal/m) value Jolly M.Thiesen Scheel and Diesselhorst Richarz and Kriegar-Menzel By studying this list of authors, it is possible to see that the mean gradient value is mgal/m. According to the concepts proposed by Baumgratz (2003), the free-air vertical gradient could be mgal. MATERIALS AND METHODS Gravimetric determination of underground densities is based on the correct interpretation of the gravimetric variations. It is the methodology normally used in UGVG studies. In this context, the free-air vertical gradient is of fundamental importance. Hammer (1950) investigated the underground densities in a mine by laboratory measurements of a set of samples representing the region and by UGVG method. The laboratory samples mean density was g/cm and standard deviation of This author admitted for F the standard value of mgal. Using this new value of F= is the main change to reinterpret Hammer (1950) in the calculations of the underground density by gravimetric determination. The method for calculating the underground density applied in this paper is the same that was used by Hammer (1950) in his work. The only modification made here was in relation to the free-air vertical gradient that became mgal. RESULTS Determination of the Mean Density by Regression Analysis The data gathered by Hammer (1950), which are respectively depth (H) and gravity observed ( g 0) are in Column 1 and 2 of Table 2. The regression function is the Eq. (1): g H Equation (1) The angular coefficient dg 0/dH expresses gravity variation per unit of depth. The correlation coefficient is 0.999, so is valid the relation: g / H g0 / H Equation (2) It is known that in an underground vertical profile the difference in gravity between two stations makes it possible to calculate the density through the well-known expressions (Hammer, 1950): g F 4 G H Equation (3) Eq. (3) may be solved directly for the density giving: F ( g ) 4 G 4 G. H Equation (4) The density σ can be calculated by Eq. 4 where F is the free-air vertical gradient, G is the gravitational constant, and Δg/ΔH is the angular coefficient dg 0/dH obtained by regression analysis. The term ΔT represents the variation of the Terrain Correction over the elevation interval ΔH, and this term is ordinarily so small that no appreciate error is introduced by using an assumed value of the density for it (Hammer, 1950). This author admitted for F the standard value of , and then Eq. (4) resulted in: ( g ) / H Equation (5) For H given in foot, which explains the value The solution showed a high density of 2.75 g/cm 3, diverging from the mean density of the laboratory samples that was g/cm 3 (Hammer, 1950). When adjusting F = the solution for Eq. (4) is: ( g ) / H Equation (6) In this case, the regression analysis shows a profile's mean density of g/cm³ compatible with laboratory samples (2.562 g/cm³) obtained by Hammer (1950). If density was calculated by Eq. 4 adopting F= (this value was obtained from Table 1), the result would be g/cm³; it is very close to the laboratory samples density. Determination of Density for Each Depth Based on the Bouguer Anomaly These equations above apply to determine the profile's mean density. These cannot be used to highlight the small variations in density that occur naturally underground because to do this it would be necessary to consider Bouguer anomalies. The normal gravity ( gn) is a theoretical value calculated by regression analyses and its correct interpretation depends on field studies. According to Hammer (1950), there are no external gravity anomalies interfering in the system under study; it can be assumed that the difference between the observed and normal gravity is caused by local variations of densities. Table 2

3 Int. J. Geol. Min. 153 (from Column 1 to 11) shows the calculations of the depth densities through the anomalous free-air vertical gradient proposed here. Columns 1, 2 and 5 are the data gathered by Hammer (1950), which are respectively depth, gravity observed and Terrestrial Correction. The normal gravity results are in Column 3. It is noteworthy that these should be the gravity values that the profile would have if its density was constant, it was calculated by Eq. (1). This is a purely theoretical concept and the theory must be confirmed by practice. The results found for gravity observed should be equal to normal gravity, but they are different as shown in Column 4. Terrestrial Correction (TC) (topographical and internal corrections of the mine) was obtained from the tables made by Hammer (1939). The difference between observed and normal gravity summed to TC can be interpreted and studied as a Bouguer Anomaly; their values are in Column 6. The variations presented by the Bouguer anomaly and identified as B make it possible to calculate how much the density varies between two stations. Table 2: Reinterpretation of the Hammer (1950) based on new gravity vertical gradient*. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) H g0 Normal ΔgN TC Bouger Anomaly ΔB ΔH (ΔB/ΔH) x 10 4 ΔϬ Ϭ** (2) - (3) (4) + (5) (7)/(8) Feet mgal mgal mgal mgal mgal feet g/cm³ g/cm³ Surface , *For assumed F= mgal. **For assumed "normal" density g/cm³ Column 7 shows the Bouguer variations and Column 8 the depth variation. These data give the variation of density by Eq. (7) and shown in Column ( B / H ) Equation (7) The density of each station (Column 11) is the mean density of summed to density variation, Eq. (8) Equation (8) DISCUSSION The densities obtained by Hammer (1950) in the laboratory and by gravimetric determination show a significant difference, and most of the density results of gravity determination exceeded the standard deviation of mean laboratory samples, only at 1596 and 2202 feet depth they did not exceed. According to this author, the densities, calculated by the UGVG method, in some depth intervals exceeded the density of all individual laboratory samples in the respective interval. He discussed the sources of errors in his work; errors in the gravity readings; errors in elevation interval; errors in reductions and, lastly, in anomalous vertical gradient. He concluded the main suspect of causing this systematic error would be an anomalous value of the free-air vertical gradient caused by local or regional gravity anomalies in the vicinity of the mine. Table 3 and Figure 1 make it possible to compare the three results of densities, which are the laboratory samples in Column 2, calculated by Hammer (1950) in Column 3 and calculated to free-air anomalous value proposed in Column 4. The density difference between laboratory samples and free-air proposed has never exceeded the standard deviation in all depths. This can be easily seen in Figure 1, its curves practically intertwined and it shows more clearly how these two densities are next to each other. The curve of free-air proposed keeps the same curvature of the free-air standard because the same method was used for the booth. A lot of practical works done in deep mines show that in most cases the densities obtained by the two processes are discordant. So; further studies should be done to investigate this anomalous value of freeair in a vicinity of the mine (i.e Barberton, Ohio, U.S.A.) to

4 Baumgratz LL. 154 Table 3 Underground densities (g/cm3) in a vertical profile calculated by different methods. (1) (2) (3) (4) Density obtained through UGVG Depth Density of laboratory samples Calculated by Hammer (1950) Calculated through Free-air proposed F= F= Mean 2.562* * It is the mean of all laboratory samples in Hammer (1950), and its standard deviation is understand if this anomalous value is only in this place, or whether it is generalized value as proposed by Baumgratz (2003). It needs to consider that value of free-air= mgal is not a mere supposition, it has a mathematical and conceptual basis developed in respect to the principles of mechanics, and it has already been applied to the works of Bullen (1953) and Götze et al. (1988) satisfactorily explaining the anomalies they pointed out according to Baumgratz (2003, 2013). If the anomalous value of free-air will be correct in this specific case, the densities determination of a finite interval of underground rocks in a place with the gravimeter is so accuracy like as laboratory measurements of rock samples. Anomalous value of the free-air vertical gradient can be the main cause of systematic error found by Hammer (1950). CONCLUSION In this specific case, the anomalous value of free-air vertical gradient of mgal justifies the density results found by Hammer (1950) at Barberton, Ohio, United States. REFERENCES Baumgratz LL (2003). Os Padrões em um Universo Surrealista: Uma introdução à teoria da expansão. Piracicaba, Br: Editora Degaspari Ltda, 162 p. Baumgratz LL (2013) Scalar Expansion the universe in inflation. Available in: _The_Universe_in_Inflation Accessed: October 7, Bullen KE (1953). An Introduction to the Theory of Seismology. Cambridge at the University Press, Cambridge, 499 p.

5 Int. J. Geol. Min. 155 Fajklewicz Z, Glinski A & Sliz J (1982). Some applications of the underground tower gravity vertical gradient. Geophysics 47: Götze HJ, Lahmeyer B, Schmidt S. Strunk S (1988). Aplicaciones de gravimetria en geología: curso de postgrado. Universidad Nacional de Salta, Argentina, pp Hammer S (1939). Terrain corrections for gravimeter stations. Geophysics, 4: Hammer S (1950) Density determinations by underground gravity measurements. Geophysics, 15: Rogers GR (1952). Subsurface gravity measurements. Geophysics, 17: Thyssen-Bornemisza S, Stackler WF (1956). Observation of the vertical gradient of gravity in the field. Geophysics, 21: Accepted 23 February 2018 Citation: Baumgratz LL (2018). A Study of Anomalous Value of Free-Air Vertical Gradient for Density Determination Used in a Mine at Barberton City of Ohio, United States. International Journal Geology and Mining 4(1): Copyright: Baumgratz LL. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Gravity data reduction

Gravity data reduction Gravity data reduction REDUCTION: raw data à gravity anomaly data Temporal corrections tides and instrument drift Spatial corrections latitude and elevation GRS67 = gravity variation with latitude at sea

More information

2.2 Gravity surveys. Gravity survey

2.2 Gravity surveys. Gravity survey 2.2 Gravity surveys Gravity survey The effect of latitude The effect of elevation The Bouguer effect Topographic effect The effect of tides Summary of corrections Gravity in boreholes Gravity survey In

More information

a z41. COMMONWEALTH OF AUSTRALIA DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS RECORD 1961 No.

a z41. COMMONWEALTH OF AUSTRALIA DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS RECORD 1961 No. a z41. COMMONWEALTH OF AUSTRALIA ff..4 *.re /Veis DEPARTMENT OF NATIONAL DEVELOPMENT BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS RECORD 1961 No. 66 RED TANK BORE GRAVITY SURVEY, PLENTY RIVER, N.T.

More information

GRAVITY EXPLORATION (Gph 301) Chokri Jallouli 2014/2015

GRAVITY EXPLORATION (Gph 301) Chokri Jallouli 2014/2015 KING SAUD UNIVERSITY FACULTY OF SCIENCES Department of Geology and Geophysics GRAVITY EXPLORATION (Gph 301) Chokri Jallouli 2014/2015 INTRODUCTION Definition Gravity method consists of measuring, studying

More information

Near-Surface Correction on Seismic and Gravity Data

Near-Surface Correction on Seismic and Gravity Data Journal of Earth Science, Vol. 26, No. 6, p. 851 857, December 2015 ISSN 1674-487X Printed in China DOI: 10.1007/s12583-015-0546-7 Near-Surface Correction on Seismic and Gravity Data S. Bychkov*, I. Y.

More information

Application of Terrestrial and Aerial Gravimetry in the Pimenta Bueno Graben, Brazil

Application of Terrestrial and Aerial Gravimetry in the Pimenta Bueno Graben, Brazil Open Access Library Journal Application of Terrestrial and Aerial Gravimetry in the Pimenta Bueno Graben, Brazil Hans Schmidt Santos 1, Diego Moreno Monteiro 2, Bruno Leite Teixeira 2 1 Department of Research

More information

GRAVIMETRIC MAP OF CHILE. Services Mining and Engineering Geophysics Instituto Geográfico Militar

GRAVIMETRIC MAP OF CHILE. Services Mining and Engineering Geophysics Instituto Geográfico Militar GRAVIMETRIC MAP OF CHILE Araneda M., Rivas L., Avendaño M, Sottolichio G., Rubio W. Services Mining and Engineering Geophysics segmi@netexpress.cl) Instituto Geográfico Militar (lrivas@igm.cl) Abstract

More information

Lab 8: Gravity and Isostasy (35 points)

Lab 8: Gravity and Isostasy (35 points) it's not the most important thing in your life right now. But what is important is gravity. Arnold Schwarzenegger as Colonel John Matrix, Commando (Check out this classic of American cinema!) Lab 8: Gravity

More information

Determination of Subsurface Bulk Density Distribution for Geotechnical Investigation using Gravity Technique

Determination of Subsurface Bulk Density Distribution for Geotechnical Investigation using Gravity Technique Journal of Earth Sciences and Geotechnical Engineering, vol. 7, no.2, 2017, 63-69 ISSN: 1792-9040 (print), 1792-9660 (online) Scienpress Ltd, 2017 Determination of Subsurface Bulk Density Distribution

More information

Last Time. Today s s Agenda. Geophysics. Geophysics. Geophysics. MAS 603: Geological Oceanography. Lecture 21: Geophysics 1: Gravity

Last Time. Today s s Agenda. Geophysics. Geophysics. Geophysics. MAS 603: Geological Oceanography. Lecture 21: Geophysics 1: Gravity UNIVERSITY OF SOUTH ALABAMA Last Time MAS 603: Geological Oceanography Extinctions Lecture 21: 1: http://www.cartoonstock.com/newscartoons/cartoonists/for/lowres/forn441l.jpg Today s s Agenda Introduction

More information

Note that gravity exploration is different to seismic exploration in the following way:

Note that gravity exploration is different to seismic exploration in the following way: 224B3 Other factors that cause changes in g and need to be corrected Note that gravity exploration is different to seismic exploration in the following way: In a seismic survey, the travel time depends

More information

Research Article Error Analysis in Measured Conductivity under Low Induction Number Approximation for Electromagnetic Methods

Research Article Error Analysis in Measured Conductivity under Low Induction Number Approximation for Electromagnetic Methods ISRN Geophysics Volume 2013, Article ID 720839, 4 pages http://dx.doi.org/10.1155/2013/720839 Research Article Error Analysis in Measured Conductivity under Low Induction Number Approximation for Electromagnetic

More information

ENVI.2030L - Plate Tectonics - Geomagnetism, Earthquakes, and Gravity

ENVI.2030L - Plate Tectonics - Geomagnetism, Earthquakes, and Gravity I. Geomagnetism Name ENVI.2030L - Plate Tectonics - Geomagnetism, Earthquakes, and Gravity The earth's magnetic field can be viewed as a simple bar magnet located near the center of the earth and inclined

More information

OPTIMAL FORWARD CALCULATION METHOD OF THE MARUSSI TENSOR DUE TO A GEOLOGIC STRUCTURE AT GOCE HEIGHT

OPTIMAL FORWARD CALCULATION METHOD OF THE MARUSSI TENSOR DUE TO A GEOLOGIC STRUCTURE AT GOCE HEIGHT OPTIMAL FORWARD CALCULATION METHOD OF THE MARUSSI TENSOR DUE TO A GEOLOGIC STRUCTURE AT GOCE HEIGHT Leonardo Uieda (1), Everton P. Bomfim (,3), Carla Braitenberg (3), and Eder Molina () (1) Observatório

More information

LOCATING AND CHARACTERIZING ABANDONED MINES USING MICROGRAVITY by Richard C. Benson 1, Ronald D. Kaufmann 1, Lynn Yuhr 1, Richard Hopkins 2 ABSTRACT

LOCATING AND CHARACTERIZING ABANDONED MINES USING MICROGRAVITY by Richard C. Benson 1, Ronald D. Kaufmann 1, Lynn Yuhr 1, Richard Hopkins 2 ABSTRACT LOCATING AND CHARACTERIZING ABANDONED MINES USING MICROGRAVITY by Richard C. Benson 1, Ronald D. Kaufmann 1, Lynn Yuhr 1, Richard Hopkins 2 ABSTRACT Surface geophysical methods can be an important part

More information

Gravity Methods (IV)

Gravity Methods (IV) Environmental and Exploration Geophysics II Gravity Methods (IV) tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Possible employment opportunities

More information

Estimation of Subsurface Structure in the Western Fukuoka City fromgravity Data

Estimation of Subsurface Structure in the Western Fukuoka City fromgravity Data Available online at www.sciencedirect.com Procedia Earth and Planetary Science 6 ( 2013 ) 163 168 Estimation of Subsurface Structure in the Western Fukuoka City fromgravity Data 1Taiki ARIMA, 2 Yasuhiro

More information

Magnetic and Gravity Methods for Geothermal Exploration

Magnetic and Gravity Methods for Geothermal Exploration Magnetic and Gravity Methods for Geothermal Exploration Dr. Hendra Grandis Geophysics - ITB method and survey procedure Aero- or ground magnetic (covers a large area) Schlumberger resistivity mapping and

More information

CENTIMETRE LEVEL OF ACCURACY OF QUASIGEOID MODEL IN POLAND

CENTIMETRE LEVEL OF ACCURACY OF QUASIGEOID MODEL IN POLAND CENTIMETRE LEVEL OF ACCURACY OF QUASIGEOID MODEL IN POLAND Jan Krynski Institute of Geodesy and Cartography, Poland krynski@igik.edu.pl Adam Lyszkowicz University of Warmia and Mazury in Olsztyn, Poland

More information

for detection of subsurface cavities

for detection of subsurface cavities GEOPHYSICS. VOL. 49, NO. 7 (JULY 1984); P. 1084-1096, 23 FIGS. Microgravimetric and gravity gradient techniques for detection of subsurface cavities Dwain K. Butler* - -- _-.._.ABSTRACT Microgravimetric

More information

Deep geological structures as revealed by 3D gravity stripping: western part of the Moesian Platform, Romania

Deep geological structures as revealed by 3D gravity stripping: western part of the Moesian Platform, Romania JOURNAL OF BALKAN GEOPHYSICAL SOCIETY, Vol.8, No 3, August 2005, p.129-138 Deep geological structures as revealed by 3D gravity stripping: western part of the Moesian Platform, Romania D. Ioane*, C. Calota*,

More information

Blind fault Configuration in Osaka, Japan based on 2D gravity inversion

Blind fault Configuration in Osaka, Japan based on 2D gravity inversion Blind fault Configuration in Osaka, Japan based on 2D gravity inversion N. Inoue & N. Kitada Geo-research Institute, Osaka, Japan K. Takemura Institute for Geothermal Sciences, Kyoto University, Beppu,

More information

Gravimetry Applied to Water Resources and Risk Management in Karst Areas: A Case Study in Paraná State, Brazil

Gravimetry Applied to Water Resources and Risk Management in Karst Areas: A Case Study in Paraná State, Brazil Gravimetry Applied to Water Resources and Risk Management in Karst Areas: A Case Study in Paraná State, Jair Silveira da SILVA JUNIOR, Francisco José FONSECA FERREIRA, Key words: gravimetry, resistivity,

More information

Determination of the relative soil compactness in the foundation condition by microgravity data

Determination of the relative soil compactness in the foundation condition by microgravity data Bollettino di Geofisica Teorica ed Applicata Vol. 54, n. 2, pp. 129-143; June 2013 DOI 10.4430/bgta0088 Determination of the relative soil compactness in the foundation condition by microgravity data V.E.

More information

Prof. Giuseppe Mandrone Prof. Cesare Comina dott. Luca Guglielmetti Dept. Earth Science, Univ. Torino (ITA)

Prof. Giuseppe Mandrone Prof. Cesare Comina dott. Luca Guglielmetti Dept. Earth Science, Univ. Torino (ITA) Prof. Giuseppe Mandrone Prof. Cesare Comina dott. Luca Guglielmetti Dept. Earth Science, Univ. Torino (ITA) Multidisciplinary approach of geothermal prospection at Terme di Vinadio/Valdieri (Cuneo - Italy):

More information

Iterative 3D gravity inversion with integration of seismologic data

Iterative 3D gravity inversion with integration of seismologic data BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 3-4, pp. 469-475; SEP.-DEC. 1999 Iterative 3D gravity inversion with integration of seismologic data C. BRAITENBERG and M. ZADRO Department of Earth

More information

GRAVITY AND MAGNETIC METHODS

GRAVITY AND MAGNETIC METHODS Presented at Short Course IX on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Nov. 2-24, 2014. Kenya Electricity Generating Co.,

More information

GM 1.4. SEG/Houston 2005 Annual Meeting 639

GM 1.4. SEG/Houston 2005 Annual Meeting 639 storage recovery project in Leyden, Colorado Kristofer Davis *, Yaoguo Li, Michael Batzle, and Bob Raynolds** Center for Gravity, Electrical, and Magnetic Studies, Department of Geophysics, Colorado School

More information

Gravimetry data validation in Algeria

Gravimetry data validation in Algeria BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 3-4, pp. 205-210; SEP.-DEC. 1999 Gravimetry data validation in Algeria S.A. BENAHMED DAHO and S. KAHLOUCHE National Centre of Spatial Techniques,

More information

Activities in South America: Gravity and Geoid Projects

Activities in South America: Gravity and Geoid Projects Activities in South America: Gravity and Geoid Projects Segundo Taller de Grupo de Trabajo I SIRGAS Montevideo - Uruguay May 26 a 30, 2008 Maria Cristina Pacino Universidade de Rosário CGED - IBGE Denizar

More information

GEOL4714 Final Exam Fall 2005, C. H. Jones instructor

GEOL4714 Final Exam Fall 2005, C. H. Jones instructor GEOL4714 Final Exam Fall 2005 p. 1 GEOL4714 Final Exam Fall 2005, C. H. Jones instructor Name: Student ID #: Feel free to use the back of the sheets for answers needing more space. (1) (10 pts) For each

More information

GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE

GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE Report prepared for the B.C. Ministry of Energy and Mines Resource Development Division New Ventures Branch by Bemex Consulting

More information

The first high-precision gravimetric geoid of Hungary: HGG2013

The first high-precision gravimetric geoid of Hungary: HGG2013 Server on Geodesy, Seismology and Environmental Sciences Published Online 2013 (http://airy.ual.es/) The first high-precision gravimetric geoid of Hungary: HGG2013 Abstract V. Corchete Higher Polytechnic

More information

Intro to magnetic methods

Intro to magnetic methods Environmental and Exploration Geophysics I Intro to magnetic methods tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Items on the list Gravity

More information

Microgravity vertical gradient measurement in the site of VIRGO interferometric antenna (Pisa plain, Italy)

Microgravity vertical gradient measurement in the site of VIRGO interferometric antenna (Pisa plain, Italy) ANNALS OF GEOPHYSICS, VOL. 51, N. 5/6, October/December 2008 Microgravity vertical gradient measurement in the site of VIRGO interferometric antenna (Pisa plain, Italy) Paolo Stefanelli ( 1 ), Cosmo Carmisciano

More information

Development of a Borehole Gravity Meter for Mining Applications

Development of a Borehole Gravity Meter for Mining Applications Ground and Borehole Geophysical Methods Paper 111 Development of a Borehole Gravity Meter for Mining Applications Seigel, H. O. [1], Nind, C. [1], Lachapelle, R. [1], Chouteau, M. [2], Giroux, B. [2] 1.

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

RC 1.3. SEG/Houston 2005 Annual Meeting 1307

RC 1.3. SEG/Houston 2005 Annual Meeting 1307 from seismic AVO Xin-Gong Li,University of Houston and IntSeis Inc, De-Hua Han, and Jiajin Liu, University of Houston Donn McGuire, Anadarko Petroleum Corp Summary A new inversion method is tested to directly

More information

Last week we obtained a general solution: 1 cos αdv

Last week we obtained a general solution: 1 cos αdv GRAVITY II Surface Gravity Anomalies Due to Buried Bodies Simple analytical solution may be derived for bodies with uniform density contrast simple shape, such as: Sphere Horizontal/vertical cylinders

More information

The generalized Bouguer anomaly

The generalized Bouguer anomaly Earth Planets Space, 58, 287 303, 2006 The generalized Bouguer anomaly Kyozo Nozaki Tsukuba Technical Research and Development Center, OYO Corporation, 43 Miyukigaoka, Tsukuba, Ibaraki 305-0841, Japan

More information

Modern Geodetic Measurement Techniques in Gravimetric Studies on the Example of Gypsum Karst in the Siesławice Region

Modern Geodetic Measurement Techniques in Gravimetric Studies on the Example of Gypsum Karst in the Siesławice Region Modern Geodetic Measurement Techniques in Gravimetric Studies on the Example of Gypsum Karst in the Siesławice Region Sławomir Porzucek 1, *, Monika Łój 1, Karolina Matwij 2, and Wojciech Matwij 2 1 AGH

More information

Geophysical investigation in the Lower Benue trough of Nigeria using gravity method

Geophysical investigation in the Lower Benue trough of Nigeria using gravity method International Journal of the Physical Sciences Vol. 5(), pp. 757-769, 8 September, Available online at http://www.academicjournals.org/ijps ISSN 99-95 Academic Journals Full Length Research Paper Geophysical

More information

FINAL REPORT GEOPHYSICAL INVESTIGATION WATER TOWER NO. 6 SITE PLANT CITY, FL

FINAL REPORT GEOPHYSICAL INVESTIGATION WATER TOWER NO. 6 SITE PLANT CITY, FL APPENDIX B FINAL REPORT GEOPHYSICAL INVESTIGATION WATER TOWER NO. 6 SITE PLANT CITY, FL Prepared for Madrid Engineering Group, Inc. Bartow, FL Prepared by GeoView, Inc. St. Petersburg, FL February 28,

More information

GRAVITY SURVEY TEELS MARSH PROSPECT

GRAVITY SURVEY TEELS MARSH PROSPECT GRAVITY SURVEY over the TEELS MARSH PROSPECT MINERAL COUNTY, NV for Dajin Resources (US) Corp. March 2015 SUBMITTED BY Magee Geophysical Services LLC 465 Leventina Canyon Road Reno, Nevada 89523 USA TEL

More information

Darnley Bay Resources Preliminary Airborne Survey Results

Darnley Bay Resources Preliminary Airborne Survey Results 4 King Street West, Suite 1103 Toronto, Ontario M5H 1B6, Canada Tel:(416) 862-7885 Fax:(416) 862-7889 dbr@darnleybay.com UPDATE Trading Symbol: DBL. TSX Venture Exchange April 19, 2010 Darnley Bay Resources

More information

OUTLINE. Many of us secretly dream of six months without gravity COURSE DESCRIPTION

OUTLINE. Many of us secretly dream of six months without gravity COURSE DESCRIPTION GEOL 481.3 OUTLINE POTENTIAL FIELD METHODS GEOL 481.3 email: jim.merriam@usask.ca POTENTIAL FIELD METHODS Many of us secretly dream of six months without gravity Allan Fotheringham COURSE DESCRIPTION This

More information

Gravity Methods (VII) more wrap up

Gravity Methods (VII) more wrap up Environmental and Exploration Geophysics II Gravity Methods (VII) more wrap up tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV 0.4 0.35

More information

A new technique to determine geoid and orthometric heights from satellite positioning and geopotential numbers

A new technique to determine geoid and orthometric heights from satellite positioning and geopotential numbers J Geod 6 8: 4 1 DOI 1.17/s19-6-57-5 OIGINAL ATICLE L. E. Sjöberg A new technique to determine geoid and orthometric heights from satellite positioning and geopotential numbers eceived: 19 September 5 /

More information

ENV-5004B/ENVK5005B. Figure 6. Student Registration No. ENV-5004B/ENVK5005B Version 2

ENV-5004B/ENVK5005B. Figure 6. Student Registration No. ENV-5004B/ENVK5005B Version 2 ENV-5004B/ENVK5005B Figure 6 Student Registration No UNIVERSITY OF EAST ANGLIA School of Environmental Sciences Main Series UG Examination 014-15 SOLID EARTH GEOPHYSICS SOLID EARTH GEOPHYSICS WITH FIELDCOURSE

More information

GRAVITY SURVEY OF THE SERPENT MOUND AREA, SOUTHERN OHIO 1

GRAVITY SURVEY OF THE SERPENT MOUND AREA, SOUTHERN OHIO 1 No. 6 LOWER SILURIAN INVESTIGATIONS IN OHIO 359 GRAVITY SURVEY OF THE SERPENT MOUND AREA, SOUTHERN OHIO 1 C. BULL, C. E. CORBATO, AND J. C. ZAHN 2 Department of Geology, The Ohio State University, Columbus,

More information

BIOGEOCHEMISTRY Discovery Using Metal Concentrations in Plants

BIOGEOCHEMISTRY Discovery Using Metal Concentrations in Plants 1 BIOGEOCHEMISTRY Discovery Using Metal Concentrations in Plants Shea Clark Smith Minerals Exploration & Environmental Geochemistry P.O. Box 18325 Reno, Nevada 89511 Tel: 775-849-2235 Fax: 775-849-2335

More information

Diophantine Equations. Elementary Methods

Diophantine Equations. Elementary Methods International Mathematical Forum, Vol. 12, 2017, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7223 Diophantine Equations. Elementary Methods Rafael Jakimczuk División Matemática,

More information

PHASE 1 STUDIES UPDATE EROSION WORKING GROUP

PHASE 1 STUDIES UPDATE EROSION WORKING GROUP PHASE 1 STUDIES UPDATE EROSION WORKING GROUP Presented By MICHAEL WOLFF, PG Erosion Study Area Manager West Valley Demonstration Project Quarterly Public Meeting February 24, 2016 OUTLINE Study 1 Terrain

More information

Mathematical Modeling of Resistivity Probing of Ancient City at Prapathom Chadee, Nakhon Pathom, Thailand

Mathematical Modeling of Resistivity Probing of Ancient City at Prapathom Chadee, Nakhon Pathom, Thailand Applied Mathematical Sciences, Vol. 7, 13, no. 98, 4847-4856 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/ams.13.37353 Mathematical Modeling of Resistivity Probing of Ancient City at Prapathom

More information

QUALITATIVE INTERPRETATION OF POTENTIAL FIELD PROFILES: SOUTHERN NECHAKO BASIN

QUALITATIVE INTERPRETATION OF POTENTIAL FIELD PROFILES: SOUTHERN NECHAKO BASIN QUALITATIVE INTERPRETATION OF POTENTIAL FIELD PROFILES: SOUTHERN NECHAKO BASIN By Melvyn E. Best Bemex Consulting International 5288 Cordova Bay Road Victoria, B.C. V8Y 2L4 KEYWORDS: potential fields,

More information

Total gravitational field is sum of contributions from all masses.

Total gravitational field is sum of contributions from all masses. Gravity force (acceleration) vs potential (energy) acceleration (g) => GM/r 2 Potential => - GM/r G is Newton s gravitational constant 6.67x10-11 (S.I. units) you should determine what the S.I. units are

More information

DETERMINATION OF BEDROCK STRUCTURE OF TOTTORI PLAIN USING SEISMIC EXPLOSION, MICROTREMOR AND GRAVITY SURVEY

DETERMINATION OF BEDROCK STRUCTURE OF TOTTORI PLAIN USING SEISMIC EXPLOSION, MICROTREMOR AND GRAVITY SURVEY 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1760 DETERMINATION OF BEDROCK STRUCTURE OF TOTTORI PLAIN USING SEISMIC EXPLOSION, MICROTREMOR AND GRAVITY

More information

s-generalized Fibonacci Numbers: Some Identities, a Generating Function and Pythagorean Triples

s-generalized Fibonacci Numbers: Some Identities, a Generating Function and Pythagorean Triples International Journal of Mathematical Analysis Vol. 8, 2014, no. 36, 1757-1766 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.47203 s-generalized Fibonacci Numbers: Some Identities,

More information

on the COMINCO LTD. WESTERN DISTRICT EXPLORATION N.T.S. 94L/3E GEOPHYSICAL SURVEYS LATITUDE: 58' 12' N; LONGITUDE: 127' 10' W

on the COMINCO LTD. WESTERN DISTRICT EXPLORATION N.T.S. 94L/3E GEOPHYSICAL SURVEYS LATITUDE: 58' 12' N; LONGITUDE: 127' 10' W COMNCO LTD. EXPLORATON N.T.S. 94L/3E WESTERN DSTRCT GEOPHYSCAL SURVEYS on the WEST GROUP, FROG RVER PROPERTY KECHKA AREA, LARD MNNG DVSON, B.C. LATTUDE: 58' 12' N; LONGTUDE: 127' 10' W WORK PERFORMED:

More information

Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio

Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio Subsurface Investigation and Conceptual Alternatives Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio Presented By: Ohio Department of Transportation CH2M HILL CTL Engineering Technos,

More information

EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS. Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge

EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS. Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge Zonge Engineering and Research Organization, Inc. 3322 East Fort Lowell Road Tucson, Arizona,

More information

Gravity 6. Density. Chuck Connor, Laura Connor. Potential Fields Geophysics: Week 6. Gravity 6. Objectives. Density of Rocks. Density with depth

Gravity 6. Density. Chuck Connor, Laura Connor. Potential Fields Geophysics: Week 6. Gravity 6. Objectives. Density of Rocks. Density with depth of with Chuck Connor, Laura Connor Potential Fields Geophysics: Week 6 for Week 5 of with Bulk, true, and natural density of the Earth s and compounds of with Densities of rocks near the surface of the

More information

Gravity gradient technique to identify fracture zones in Palu Koro strike-slip fault

Gravity gradient technique to identify fracture zones in Palu Koro strike-slip fault Available online at www.sciencedirect.com Procedia Environmental Sciences 17 ( 2013 ) 248 255 The 3 rd International Conference on Sustainable Future for Human Security SUSTAIN 2012 Gravity gradient technique

More information

Depth and shape solutions from residual gravity anomalies due to simple geometric structures using a statistical approach

Depth and shape solutions from residual gravity anomalies due to simple geometric structures using a statistical approach Contributions to Geophysics and Geodesy Vol. 47/2, 2017 (113 132) Depth and shape solutions from residual gravity anomalies due to simple geometric structures using a statistical approach El-Sayed ABDELRAHMAN,

More information

Foundation of Electromagnetic Theory

Foundation of Electromagnetic Theory RESEARCH ARTICLE Foundation of Electromagnetic Theory Constantinos Krikos 1 * 1 E.M Polytechnic University of Athens, Greece *Corresponding author: Costantino Krikos: krikoskostas@yahoo.co.uk Citation:

More information

PART A: Short-answer questions (50%; each worth 2%)

PART A: Short-answer questions (50%; each worth 2%) PART A: Short-answer questions (50%; each worth 2%) Your answers should be brief (just a few words) and may be written on these pages if you wish. Remember to hand these pages in with your other exam pages!

More information

Volume-2, Issue-3, July 2018, Page No: 1-5 ISSN :

Volume-2, Issue-3, July 2018, Page No: 1-5 ISSN : Volume-2, Issue-3, July 2018, Page No: 1-5 ISSN : 2635-3040 FORMULATION OF SOLUTIONS OF TWO SPECIAL CLASSES OF CONGRUENCE OF COMPOSITE MODULUS OF HIGHER DEGREE Prof. B. M. Roy Head, Dept. of Mathematics,

More information

On the Anomalous Oscillation of Newton's Gravitational Constant

On the Anomalous Oscillation of Newton's Gravitational Constant PHYSICS On the Anomalous Oscillation of Newton's Gravitational Constant BRENT JARVIS Periodic oscillations are observed in Newton's gravitational constant G that are contemporaneous with length of day

More information

Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing, China

Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing, China Meteorology Volume 2010, Article ID 412024, 4 pages doi:10.1155/2010/412024 Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing,

More information

Available online Journal of Scientific and Engineering Research, 2016, 3(2):1-7. Research Article

Available online   Journal of Scientific and Engineering Research, 2016, 3(2):1-7. Research Article Available online www.jsaer.com, 2016, 3(2):1-7 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR Assessment of the Reliability of Magnetic Method to Delineate Geologic Features in a Basement Complex:

More information

Measuring integral soil moisture variations using a geoelectrical resistivity meter

Measuring integral soil moisture variations using a geoelectrical resistivity meter Measuring integral soil moisture variations using a geoelectrical resistivity meter Thomas Klügel 1, Günter Harnisch 2 & Martina Harnisch 2 1 Bundesamt für Kartographie und Geodäsie, Fundamentalstation

More information

Geophysical Data Bearing on Hydrocarbon Traps and Resource Potential of the Galisteo Basin, New Mexico

Geophysical Data Bearing on Hydrocarbon Traps and Resource Potential of the Galisteo Basin, New Mexico Open Journal of Geology, 2014, 4, 18-23 Published Online January 2014 (http://www.scirp.org/journal/ojg) http://dx.doi.org/10.4236/ojg.2014.41002 Geophysical Data Bearing on Hydrocarbon Traps and Resource

More information

THE DEAD SEA RIFT VALLEY

THE DEAD SEA RIFT VALLEY JOINT ISRAELI-PALESTINIAN GRAVITY SURVEY IN THE DEAD SEA RIFT VALLEY by M. Rybakov The Geophysical Institute of Israel P.O. Box 182 Lod, 7 1 100 Israel R El-Kelani Earth Sciences and seismic engineering

More information

Gravity Data Analysis and Modelling for Basin Sedimen of Eastern Java Blocks

Gravity Data Analysis and Modelling for Basin Sedimen of Eastern Java Blocks Journal of Physics: Conference Series PAPER OPEN ACCESS Gravity Data Analysis and Modelling for Basin Sedimen of Eastern Java Blocks To cite this article: Luthfia Khoirunnia 2016 J. Phys.: Conf. Ser. 776

More information

LAB 10: GRAVITY ANOMALIES AND CORRECTIONS

LAB 10: GRAVITY ANOMALIES AND CORRECTIONS NAME: LAB TIME: LAB 10: GRAVITY ANOMALIES AND CORRECTIONS The following lab will introduce you to the basic concepts of gravitational forces, accelerations, and using variations in gravity to understand

More information

http://foundation.aapg.org/students/undergraduate/weeks.cfm Tim Carr - West Virginia University 3 Potential Fields Indirect Visualization Density and Magnetization Gravity and Magnetic Exploration Locate

More information

Density structure inferred from gravity anomalies in the eastern area of the Itoigawa-Shizuoka Tectonic Line, central Japan

Density structure inferred from gravity anomalies in the eastern area of the Itoigawa-Shizuoka Tectonic Line, central Japan Earth Planets Space, 56, 1309 1314, 2004 Density structure inferred from gravity anomalies in the eastern area of the Itoigawa-Shizuoka Tectonic Line, central Japan Masao Komazawa National Institute of

More information

Euler Deconvolution Technique for Gravity Survey

Euler Deconvolution Technique for Gravity Survey Journal of Applied Sciences Research, 6(11): 1891-1897, 2010 2010, INSInet Publication Euler Deconvolution Technique for Gravity Survey 12,3 Piyaphong Chenrai, 2 Jayson Meyers, 1,4 Punya Charusiri 1 Earthquake

More information

δh AB = l 1 l 2. (4 1)

δh AB = l 1 l 2. (4 1) 4 Heights 4.1 Spirit leveling The principle of spirit leveling is well known. To measure the height difference δh between two points and, vertical rods are set up at each of these two points and a level

More information

Imaging Reservoir Structure of Mt. Pancar Geothermal Prospect Using Audio-Frequency Magnetotelluric (AMT) and Gravity Technology

Imaging Reservoir Structure of Mt. Pancar Geothermal Prospect Using Audio-Frequency Magnetotelluric (AMT) and Gravity Technology PROCEEDINGS, 42nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 13-15, 2017 SGP-TR-212 Imaging Reservoir Structure of Mt. Pancar Geothermal Prospect Using

More information

RELATIONSHIP BETWEEN GEOTHERMAL ACTIVITY AND GRAVITY ANOMALIES ON VULCANO ISLAND, ITALY

RELATIONSHIP BETWEEN GEOTHERMAL ACTIVITY AND GRAVITY ANOMALIES ON VULCANO ISLAND, ITALY Proceedings NZ Geothermal Workshop 2002 RLATIONSHIP BTWN GOTHRMAL ACTIVITY AND GRAVITY ANOMALIS ON VULCANO ISLAND, ITALY M. S.OKUMA', S.NAKANO', R. FURUKAWA', M. KOMAZAWA' & R. SUPPR 2 'Geological Survey

More information

Vanishing Dimensions in Four Dimensional Cosmology with Nonminimal Derivative Coupling of Scalar Field

Vanishing Dimensions in Four Dimensional Cosmology with Nonminimal Derivative Coupling of Scalar Field Advanced Studies in Theoretical Physics Vol. 9, 2015, no. 9, 423-431 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2015.5234 Vanishing Dimensions in Four Dimensional Cosmology with Nonminimal

More information

Gravity Support for Hydrocarbon Exploration at the Prospect Level

Gravity Support for Hydrocarbon Exploration at the Prospect Level Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 2 (1): 1-6 Scholarlink Research Institute Journals, 2011 (ISSN: 2141-7016) jeteas.scholarlinkresearch.org Journal of Emerging Trends

More information

Classwork 2.4 Trigonometric Ratios- Application Problems. 1. How tall is the building? 2. How far up will the ladder reach?

Classwork 2.4 Trigonometric Ratios- Application Problems. 1. How tall is the building? 2. How far up will the ladder reach? 1. How tall is the building? 2. How far up will the ladder reach? 3. A rock dropped from the top of the Leaning Tower of Pisa falls to a point 14 feet from the base. If the tower is 182 feet tall, at what

More information

Geophysics for Environmental and Geotechnical Applications

Geophysics for Environmental and Geotechnical Applications Geophysics for Environmental and Geotechnical Applications Dr. Katherine Grote University of Wisconsin Eau Claire Why Use Geophysics? Improve the quality of site characterization (higher resolution and

More information

Novel Application in Determining Oil Shale Porosity Using a Borehole Gravimeter

Novel Application in Determining Oil Shale Porosity Using a Borehole Gravimeter Novel Application in Determining Oil Shale Porosity Using a Borehole Gravimeter Shell Exploration & Production Katia Pronina Robert Pimentel Matt Holman (presenter) 3/17/2010 File Title Copyright: SIPC

More information

Geothermal Energy Resources Exploration using Gravity and magnetics. By Mariita, N.O. KenGen

Geothermal Energy Resources Exploration using Gravity and magnetics. By Mariita, N.O. KenGen Geothermal Energy Resources Exploration using Gravity and magnetics By Mariita, N.O. KenGen What is Geothermal Energy? Geothermal Energy = heat from the Earth Transmitted by fluids via fractures and pores

More information

determination of the geoid, interpolation and extrapolation of gravity, investigation of the earth s crust.

determination of the geoid, interpolation and extrapolation of gravity, investigation of the earth s crust. 3 Gravity reduction 3.1 Introduction Gravity g measured on the physical surface of the earth must be distinguished from normal gravity γ referring to the surface of the ellipsoid. To refer g to sea level,

More information

Effective Potential Approach to the Dynamics of the Physical Symmetrical Pendulum

Effective Potential Approach to the Dynamics of the Physical Symmetrical Pendulum Contemporary Engineering Sciences, Vol. 11, 018, no. 104, 5117-515 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ces.018.811593 Effective Potential Approach to the Dynamics of the Physical Symmetrical

More information

Introduction to the use of gravity measurements in Ge111A

Introduction to the use of gravity measurements in Ge111A Introduction to the use of gravity measurements in Ge111A Background & basic intuition Data reduction Use of the instrument See Reynolds for detailed quantitative discussion What and Why Gravity measures

More information

CE 311. Elementary & Higher Surveying

CE 311. Elementary & Higher Surveying CE 311 Elementary & Higher Surveying Surveying Concept What do surveyors do? What do surveyors measure? What distances do surveyors measure? What angles do surveyors measure? What positions do surveyors

More information

Gravity 2. Gravity 2. Maps and Profiles. Chuck Connor, Laura Connor. Potential Fields Geophysics: Week 1.5. Gravity 2

Gravity 2. Gravity 2. Maps and Profiles. Chuck Connor, Laura Connor. Potential Fields Geophysics: Week 1.5. Gravity 2 Maps and Profiles Chuck Connor, Laura Connor Potential Fields Geophysics: Week 1.5 Objectives for Week 1 Review the types of gravity maps Learn about the scale of gravity anomalies Make a gravity map Types

More information

GRAVITY SURVEYS CONTRIBUTION TO GEOTHERMAL EXPLORATION IN EL SALVADOR: THE CASES OF BERLÍN, AHUACHAPÁN AND SAN VICENTE AREAS

GRAVITY SURVEYS CONTRIBUTION TO GEOTHERMAL EXPLORATION IN EL SALVADOR: THE CASES OF BERLÍN, AHUACHAPÁN AND SAN VICENTE AREAS Presented at Short Course on Surface Exploration for Geothermal Resources, organized by UNU-GTP and LaGeo, in Ahuachapan and Santa Tecla, El Salvador, 17-30 October, 2009. GEOTHERMAL TRAINING PROGRAMME

More information

GRAVITY AND GRAVITY ANOMALIES Newtonian Gravitation

GRAVITY AND GRAVITY ANOMALIES Newtonian Gravitation Gravity Exploration GRAVITY AND GRAVITY ANOMALIES Newtonian Gravitation Gravity: force of attraction between objects with mass Consider two objects with mass m 1 and m 2 : m 1 m 2 F g F g distance (r)

More information

CH 15 COMBINING LIKE TERMS

CH 15 COMBINING LIKE TERMS 137 CH 15 COMBINING LIKE TERMS Introduction We ve solved lots of equations so far in this course, but those equations had the variable in just one place. What shall we do if we come across an equation

More information

A Case Study of High-Resolution Gravity and Wenner-Schlumberger Resistivity for Geotechnical Engineering: An Example from North Jordan

A Case Study of High-Resolution Gravity and Wenner-Schlumberger Resistivity for Geotechnical Engineering: An Example from North Jordan Research Journal of Applied Sciences, Engineering and Technology 5(4): 1377-1382-, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: July 09, 2012 Accepted: August

More information

PGM2016: A new geoid model for the. Philippines

PGM2016: A new geoid model for the. Philippines PGM2016: A new geoid model for the Philippines United Nations/Nepal Workshop on the Applications of Global Navigation Satellite Systems Kathmandu, Nepal December 12-16, 2016 Ronaldo Gatchalian, Chief Geodesy

More information

Appendix C Surface Water and Groundwater Interaction Memorandum

Appendix C Surface Water and Groundwater Interaction Memorandum Texas Custodial Trust 2301 West Paisano Drive El Paso, Texas 79922 Appendix C Surface Water and Groundwater Interaction Memorandum 6835001 Malcolm Pirnie, Inc. 410 N. 44 th Street, Suite 1000 Phoenix,

More information

Introduction. Matlab output for Problems 1 2. SOLUTIONS (Carl Tape) Ge111, Assignment #3: Gravity April 25, 2006

Introduction. Matlab output for Problems 1 2. SOLUTIONS (Carl Tape) Ge111, Assignment #3: Gravity April 25, 2006 SOLUTIONS (Carl Tape) Ge111, Assignment #3: Gravity April 25, 26 Introduction The point of this solution set is merely to plot the gravity data and show the basic computations. This document contains a

More information

REDUCING NON-UNIQUENESS IN SATELLITE GRAVITY INVERSION USING SEISMIC TOMOGRAPHY AND 3D OBJECT ORIENTED IMAGE ANALYSIS TECHNIQUES

REDUCING NON-UNIQUENESS IN SATELLITE GRAVITY INVERSION USING SEISMIC TOMOGRAPHY AND 3D OBJECT ORIENTED IMAGE ANALYSIS TECHNIQUES REDUCING NON-UNIQUENESS IN SATELLITE GRAVITY INVERSION USING SEISMIC TOMOGRAPHY AND 3D OBJECT ORIENTED IMAGE ANALYSIS TECHNIQUES ISLAM FADEL MARK VAN DER MEIJDE NORMAN KERLE Research Topic: Reducing the

More information