Introduction to the use of gravity measurements in Ge111A

Size: px
Start display at page:

Download "Introduction to the use of gravity measurements in Ge111A"

Transcription

1 Introduction to the use of gravity measurements in Ge111A Background & basic intuition Data reduction Use of the instrument See Reynolds for detailed quantitative discussion

2 What and Why Gravity measures the distribution of mass Variations in density Variations in interface locations Very non-unique => use in conjunction with other constraints (geologic, seismic, ) Targets include: Topographic compensation - the crustal root (long λ) Fault structures/offsets (best for dip-slip faults or large offset strike-slip) Aquifers Tunnels Buried objects (tunnels, ore deposits, ) Basin sediment fill depth (together with magnetic field variations)

3 Data Availability Regional: Carry the gravimeter around Land, boat, plane Arbitrary resolution Global: Satellite tracking/altimetry (over water)/other ~2 km resolution over oceans ~100 km resolution from harmonic models None of these useful for our purposes

4 Basic intuition Everything we need can be worked out from basic potential field theory (see Reynolds or Turcotte & Schubert): 2 A = where A is the gravitational potential 0 g z A = z where g z is the vertical component of the gravity field Units: 1 mgal = 10-5 m/s 2 1 Gal = 1 cm/s 2 (named after Galileo) 1 g.u. = 0.1 mgal = 10-6 m/s 2

5 Attraction from harmonic distribution of mass I Z ρh k cos( kx)= σ k cos( kx) Why? Intuition Decompose any mass distribution into individual harmonic (Fourier) contributions and sum linearly Example: Topography, density variations on a 2D or 3D grid X

6 Attraction from harmonic distribution of mass II We won t derive solutions today, but you can imagine integrating over our given harmonic mass distribution. The vertical component is: where k = 2π/λ, h<<λ δg = Gδm ˆ r r 2 g z = 2πG ρh k cos( kx)e kz = 2πG σ k cos( kx)e kz The e -kz term corresponds to the 1/r 2 decay with distance (the peaks and troughs tend to cancel when viewed from increasingly large distances) Z ρh k cos( kx)= σ k cos( kx) X

7 Attraction from harmonic distribution of mass III At long λ, k 0 g z = 2πG ρh = 2πG σ No z-dependence Attraction from an infinite sheet of mass Will be used in making the Bouguer correction For z 0 If z increases (or k increases λ decreases): e -kz 0 Upward continuation: e.g., Z=λ, e -2π =0.002 (faint signals) Downward continuation: e.g., Z=-λ, e 2π =500 (amplification of short λ noise)

8 Standard gravity corrections earth tide correction, which corrects for tidal effects of moon & sun instrument drift correction to compensate for drift in the instrument's spring; the latitude correction, which incorporates the variation of the Earth's gravity with latitude; the free-air correction, which accounts for the variation in gravity due to elevation relative to sea level; the Bouguer correction, which corrects for the attraction of material between the station and sea level; the curvature correction, which corrects the Bouguer correction for the effect of the Earth's curvature; the terrain correction, which removes the effect of topography to a radial distance of km; the isostatic correction, which removes long-wavelength variations in the gravity field inversely related to topography. The Eötvös correction for a moving platform

9 Free Air Correction Bring all observations to a common horizontal reference surface (E.g., a datum or geoid) Effect of distance not mass Results in Free Air Gravity Commonly used for airborne and marine data g 0 = Gm R 2 ; g h = Gm (R+ h) 2 δg FA h = g h g 0 h 2g 0 = mgals/m R The L&R gravimeter has a sensitivity of ~3µGal h = δg FAR 1cm 2g 0 Careful with surveying (know your target)

10 Bouguer Correction Effect of mass (not distance) - Assume λ>>h, ignores dh/dx + g B = 2πG ρh ρ h h x What density to use? Standard is 2670 kg/m 3 You can also use this to estimate density Nettleton s Approach - assume all variations are due to topography Clever differencing of gravity profiles is sometimes useful More sophisticated approaches Terrain corrections (graphical) Talwani (2D and 2.5D prisms - Matlab) Parker s Method (finite amplitude harmonic summation) Common Shapes (see textbook)

11 The LaCoste & Romberg Model G Gravimeter Read Reynolds p for how this works. Needs power to keep isothermal - keep plugged in somewhere Highly sensitive spring and mass system (read Reynolds) - Do not move it without clamping the mass Getting data Level gravimeter (you want all of g z ) Unclamp Get a reading by adjusting the spring s.t. mass is in the right place - can be tedious if you have changed location a lot A manual raw data point is also derived by reading off the counts and converting to mgals using a calibrated table (or Matlab) Typically, take a manual reading at a base station, then lock the beam and use the feedback system to record values relative to the base station reading Reclamp Return to base station every hour for tide/drift correction.

12 The next 3 figures relate to the problem of a terrain correction. The circular chart (hammer chart) is used to assess the effect of mass at different distances from the measurement point. See Reynolds p for more details.

13

14

15

16 Isostatic residual gravity map (Langenheim & Jachens, 2002, BSSA v. 92(4) p ).

17 Magnetic anomaly map (Langenheim & Jachens 2002)

18 Remember from last week: magnetic anomaly strength goes as 1/r 3 ; gravity anomaly goes as 1/r 2. Magnetic potential goes as 1/r 2 ; gravitational potential goes as 1/r. Therefore the magnetic potential and the gravity anomaly have similar form (if they arise from an object of uniform density & magnetization). See figure to the left showing that the magnetic anomaly looks like the derivative of the gravity anomaly. If you integrate the magnetic anomaly you can make a pseudogravity anomaly which can help with your 3-E structural interpretation. Read about this and see Fig. 6 in the Langenheim & Jachens paper. Figures at left from Langenheim & Jachens 2002

19 Homework 1. The measurements listed at right were made sequentially in the Caltech library building during the course of one hour. Base is outside the door at ground level. What is distance between each floor? How high is the library? Show your work. Explain what assumptions you are making. Millikan library, Caltech Floor Gravity (mgal) Base Third Sixth Ninth Roof Base Look up the coordinates (lat-long-elevation) of Caltech and Bombay Beach, on the E side of the Salton Sea. How will the gravity change between Caltech and our field area? Again, show your work.

Introduction to the use of gravity measurements

Introduction to the use of gravity measurements Introduction to the use of gravity measurements Background & basic intuition Data reduction Use of the instrument See Reynolds, Chpt 2, for detailed quantitative discussion What and Why Gravity measures

More information

r 1 r 2 r 3 Dr is what matters!

r 1 r 2 r 3 Dr is what matters! Today s Agenda Gravity - Background & basic intuition - Data reduction - Use of the instrument - See textbook for detailed quantitative discussion - Measure height of Millikan or S. Mudd What and Why Gravity

More information

Gravity data reduction

Gravity data reduction Gravity data reduction REDUCTION: raw data à gravity anomaly data Temporal corrections tides and instrument drift Spatial corrections latitude and elevation GRS67 = gravity variation with latitude at sea

More information

GRAVITY EXPLORATION (Gph 301) Chokri Jallouli 2014/2015

GRAVITY EXPLORATION (Gph 301) Chokri Jallouli 2014/2015 KING SAUD UNIVERSITY FACULTY OF SCIENCES Department of Geology and Geophysics GRAVITY EXPLORATION (Gph 301) Chokri Jallouli 2014/2015 INTRODUCTION Definition Gravity method consists of measuring, studying

More information

2.2 Gravity surveys. Gravity survey

2.2 Gravity surveys. Gravity survey 2.2 Gravity surveys Gravity survey The effect of latitude The effect of elevation The Bouguer effect Topographic effect The effect of tides Summary of corrections Gravity in boreholes Gravity survey In

More information

Lab 8: Gravity and Isostasy (35 points)

Lab 8: Gravity and Isostasy (35 points) it's not the most important thing in your life right now. But what is important is gravity. Arnold Schwarzenegger as Colonel John Matrix, Commando (Check out this classic of American cinema!) Lab 8: Gravity

More information

Total gravitational field is sum of contributions from all masses.

Total gravitational field is sum of contributions from all masses. Gravity force (acceleration) vs potential (energy) acceleration (g) => GM/r 2 Potential => - GM/r G is Newton s gravitational constant 6.67x10-11 (S.I. units) you should determine what the S.I. units are

More information

http://foundation.aapg.org/students/undergraduate/weeks.cfm Tim Carr - West Virginia University 3 Potential Fields Indirect Visualization Density and Magnetization Gravity and Magnetic Exploration Locate

More information

mdu G = Fdr = mgdr Dr. Clint Conrad POST 804 Gravity, the Geoid, and Mantle Dynamics Lecture: Gravity and the Geoid U G = G M r

mdu G = Fdr = mgdr Dr. Clint Conrad POST 804 Gravity, the Geoid, and Mantle Dynamics Lecture: Gravity and the Geoid U G = G M r GG 611 Big Gulp Fall 2014 Gravity, the Geoid, and Mantle Dynamics Lecture: Gravity and the Geoid Dr. Clint Conrad POST 804 clintc@hawaii.edu Gravitational Potential For a point mass: Newton s law of gravitation:

More information

Note that gravity exploration is different to seismic exploration in the following way:

Note that gravity exploration is different to seismic exploration in the following way: 224B3 Other factors that cause changes in g and need to be corrected Note that gravity exploration is different to seismic exploration in the following way: In a seismic survey, the travel time depends

More information

Determination of Subsurface Bulk Density Distribution for Geotechnical Investigation using Gravity Technique

Determination of Subsurface Bulk Density Distribution for Geotechnical Investigation using Gravity Technique Journal of Earth Sciences and Geotechnical Engineering, vol. 7, no.2, 2017, 63-69 ISSN: 1792-9040 (print), 1792-9660 (online) Scienpress Ltd, 2017 Determination of Subsurface Bulk Density Distribution

More information

Last week we obtained a general solution: 1 cos αdv

Last week we obtained a general solution: 1 cos αdv GRAVITY II Surface Gravity Anomalies Due to Buried Bodies Simple analytical solution may be derived for bodies with uniform density contrast simple shape, such as: Sphere Horizontal/vertical cylinders

More information

SURVEI GRAVITI (Gravity Surveying)

SURVEI GRAVITI (Gravity Surveying) Introduction SURVEI GRAVITI (Gravity Surveying) Gravity surveys measure the acceleration due to gravity, g. Average value of g at Earth s surface is 9.80 ms -2. Gravitational attraction depends on density

More information

Getting Started: Using and Understanding Gravity Data

Getting Started: Using and Understanding Gravity Data The University of Texas at El Paso Pan-American Center for Earth and Environmental Studies Thu 13-Sep-2007 ABOUT PACES Mission Newsletter Sponsors RESEARCH Geoinformatics Remote Sensing Geoscience GIS

More information

Gravity Methods (IV)

Gravity Methods (IV) Environmental and Exploration Geophysics II Gravity Methods (IV) tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Possible employment opportunities

More information

OUTLINE. Many of us secretly dream of six months without gravity COURSE DESCRIPTION

OUTLINE. Many of us secretly dream of six months without gravity COURSE DESCRIPTION GEOL 481.3 OUTLINE POTENTIAL FIELD METHODS GEOL 481.3 email: jim.merriam@usask.ca POTENTIAL FIELD METHODS Many of us secretly dream of six months without gravity Allan Fotheringham COURSE DESCRIPTION This

More information

Section 2: Gravity Surveying

Section 2: Gravity Surveying Introduction Section 2: Gravity Surveying Gravity surveys measure the acceleration due to gravity, g. Average value of g at Earth s surface is 9.80 ms -2. Gravitational attraction depends on density of

More information

Magnetic and Gravity Methods for Geothermal Exploration

Magnetic and Gravity Methods for Geothermal Exploration Magnetic and Gravity Methods for Geothermal Exploration Dr. Hendra Grandis Geophysics - ITB method and survey procedure Aero- or ground magnetic (covers a large area) Schlumberger resistivity mapping and

More information

GRAVITY EXPLORATION. subsurface density. (material property) Gravity anomalies of some simple shapes

GRAVITY EXPLORATION. subsurface density. (material property) Gravity anomalies of some simple shapes GRAVITY EXPLORATION g at surface (observation) subsurface density (material property) subsurface geology Gravity anomalies of some simple shapes Reminder: we are working with values about... 0.01-0.001

More information

Isostacy: Compensation of Topography and Isostatic Geoid Anomalies

Isostacy: Compensation of Topography and Isostatic Geoid Anomalies Isostacy: Compensation of Topography and Isostatic Geoid Anomalies November 3, 2016 1 Isostacy One of the major goals of interpreting planetary gravity fields is to understand how topography positive (

More information

HIMALAYAN AIRBORNE GRAVITY AND GEOID OF NEPAL

HIMALAYAN AIRBORNE GRAVITY AND GEOID OF NEPAL Mt. Everest HIMALAYAN AIRBORNE GRAVITY AND GEOID OF NEPAL -Niraj Manandhar Head, Geodetic Survey Branch Survey Department, Geodetic Survey Branch Project Background Air Borne Gravity Survey Project was

More information

Environmental and Exploration Geophysics I Gravity I tom.h.wilson

Environmental and Exploration Geophysics I Gravity I tom.h.wilson Environmental and Exploration Geophysics I Gravity I tom.h.wilson tom.wilson@mail.wvu.edu Department of Geology and Geography West Virginia University Morgantown, WV Discuss mid term exam Objectives for

More information

CHAPTER X. Second Half Review 2017

CHAPTER X. Second Half Review 2017 CHAPTER X Second Half Review 217 Here is a quick overview of what we covered in the second half of the class. Remember that the final covers the whole course but there will naturally be a bias towards

More information

Gravitational constraints

Gravitational constraints Gravitational constraints Reading: Fowler p172 187 Gravity anomalies Free-air anomaly: g F = g g( λ ) + δg obs F Corrected for expected variations due to the spheroid elevation above the spheroid Bouguer

More information

GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE

GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE GRAVITY AND MAGNETIC SURVEY NECHAKO BASIN STUDY ACQUISITION AND PROCESSING PHASE Report prepared for the B.C. Ministry of Energy and Mines Resource Development Division New Ventures Branch by Bemex Consulting

More information

TERRAIN (BOUGUER) DENSITY. One of the largest effects on gravity is the attraction of the topography near the

TERRAIN (BOUGUER) DENSITY. One of the largest effects on gravity is the attraction of the topography near the TERRAIN (BOUGUER) DENSITY One of the largest effects on gravity is the attraction of the topography near the gravity station. This is distinct from the Bouguer correction, which corrects for the attraction

More information

GRAVITY AND MAGNETIC METHODS

GRAVITY AND MAGNETIC METHODS Presented at Short Course IX on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Nov. 2-24, 2014. Kenya Electricity Generating Co.,

More information

HOMEWORK 3 Draft presentations due November 4 Oral presentations of Group problems, November 6, November 8

HOMEWORK 3 Draft presentations due November 4 Oral presentations of Group problems, November 6, November 8 HOMEWORK 3 Draft presentations due November 4 Oral presentations of Group problems, November 6, November 8 Group A1 Modeling marine magnetic anomalies Write a Matlab program to generate marine magnetic

More information

INTRODUCTION TO APPLIED GEOPHYSICS

INTRODUCTION TO APPLIED GEOPHYSICS INTRODUCTION TO APPLIED GEOPHYSICS EXPLORING THE SHALL0W SUBSURFACE H. Robert Burger Anne F. Sheehan Craig H.Jones VERSITY OF COLORADO VERSITY OF COLORADO W. W. NORTON & COMPANY NEW YORK LONDON Contents

More information

(b) What is the amplitude at the altitude of a satellite of 400 km?

(b) What is the amplitude at the altitude of a satellite of 400 km? Practice final quiz 2015 Geodynamics 2015 1 a) Complete the following table. parameter symbol units temperature T C or K thermal conductivity heat capacity density coefficient of thermal expansion volumetric)

More information

3. Magnetic Methods / 62

3. Magnetic Methods / 62 Contents Preface to the Second Edition / xv Excerpts from Preface to the FirstEdition / xvii Mathematical Conventions / xix 1. Introduction / 1 Reference / 5 2. Gravity Methods / 6 2. I. Introduction /

More information

Last Time. Today s s Agenda. Geophysics. Geophysics. Geophysics. MAS 603: Geological Oceanography. Lecture 21: Geophysics 1: Gravity

Last Time. Today s s Agenda. Geophysics. Geophysics. Geophysics. MAS 603: Geological Oceanography. Lecture 21: Geophysics 1: Gravity UNIVERSITY OF SOUTH ALABAMA Last Time MAS 603: Geological Oceanography Extinctions Lecture 21: 1: http://www.cartoonstock.com/newscartoons/cartoonists/for/lowres/forn441l.jpg Today s s Agenda Introduction

More information

PART A: Short-answer questions (50%; each worth 2%)

PART A: Short-answer questions (50%; each worth 2%) PART A: Short-answer questions (50%; each worth 2%) Your answers should be brief (just a few words) and may be written on these pages if you wish. Remember to hand these pages in with your other exam pages!

More information

9. Density Structure. The Australian Continent: A Geophysical Synthesis Density Structure

9. Density Structure. The Australian Continent: A Geophysical Synthesis Density Structure 84 The Australian Continent: A Geophysical Synthesis Density Structure 9. Density Structure Although the primary focus for the development of the AuSREM model was the creation of 3-D seismic wavespeed

More information

Tidal Effects on Earth s Surface

Tidal Effects on Earth s Surface Tidal Effects on Earth s Surface Tom Murphy February, 1 This treatment follows the conventions of F. D. Stacey s Physics of the Earth, and is largely an elaboration on this work. 1 Tidal Potential The

More information

Iterative 3D gravity inversion with integration of seismologic data

Iterative 3D gravity inversion with integration of seismologic data BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 3-4, pp. 469-475; SEP.-DEC. 1999 Iterative 3D gravity inversion with integration of seismologic data C. BRAITENBERG and M. ZADRO Department of Earth

More information

Geothermal Energy Resources Exploration using Gravity and magnetics. By Mariita, N.O. KenGen

Geothermal Energy Resources Exploration using Gravity and magnetics. By Mariita, N.O. KenGen Geothermal Energy Resources Exploration using Gravity and magnetics By Mariita, N.O. KenGen What is Geothermal Energy? Geothermal Energy = heat from the Earth Transmitted by fluids via fractures and pores

More information

GRAVIMETRIC MAP OF CHILE. Services Mining and Engineering Geophysics Instituto Geográfico Militar

GRAVIMETRIC MAP OF CHILE. Services Mining and Engineering Geophysics Instituto Geográfico Militar GRAVIMETRIC MAP OF CHILE Araneda M., Rivas L., Avendaño M, Sottolichio G., Rubio W. Services Mining and Engineering Geophysics segmi@netexpress.cl) Instituto Geográfico Militar (lrivas@igm.cl) Abstract

More information

B6 Isostacy. B6.1 Airy and Pratt hypotheses. Geophysics 210 September 2008

B6 Isostacy. B6.1 Airy and Pratt hypotheses. Geophysics 210 September 2008 B6 Isostacy B6.1 Airy and Pratt hypotheses Himalayan peaks on the Tibet-Bhutan border In the 19 th century surveyors used plumblines and theodolites to map India. A plumb line was used when measuring the

More information

A Mission to Planet Mars Gravity Field Determination

A Mission to Planet Mars Gravity Field Determination A Mission to Planet Mars Gravity Field Determination Department for Theoretical Geodesy Graz University of Technology and Space Research Institute Austrian Academy of Sciences Gravity field CHAMP GRACE

More information

ENVI.2030L - Plate Tectonics - Geomagnetism, Earthquakes, and Gravity

ENVI.2030L - Plate Tectonics - Geomagnetism, Earthquakes, and Gravity I. Geomagnetism Name ENVI.2030L - Plate Tectonics - Geomagnetism, Earthquakes, and Gravity The earth's magnetic field can be viewed as a simple bar magnet located near the center of the earth and inclined

More information

5. Gravity. 5.1 Geoid Variations. The Australian Continent: A Geophysical Synthesis Gravity

5. Gravity. 5.1 Geoid Variations. The Australian Continent: A Geophysical Synthesis Gravity 34 The Australian Continent: A Geophysical Synthesis Gravity 5. Gravity Gravity data map subtle changes in the Earth s gravitational field caused by variations in the density of the underlying materials.

More information

REGIONAL GEOPHYSICS RESEARCH GROUP. Technical Report WK/91/2. Regional Geophysics Series

REGIONAL GEOPHYSICS RESEARCH GROUP. Technical Report WK/91/2. Regional Geophysics Series British Geological Survey REGIONAL GEOPHYSICS RESEARCH GROUP Technical Report WK/91/2 Regional Geophysics Series Regional infill gravity survey in north-east Antrim, Northern Ireland J P Busby j Natural

More information

Final Project Teaching Quantitative Skills in Geoscience Context Carleton College: July 24 July 27, 2002

Final Project Teaching Quantitative Skills in Geoscience Context Carleton College: July 24 July 27, 2002 Final Project Teaching Quantitative Skills in Geoscience Context Carleton College: July 24 July 27, 2002 Albert T. Hsui, University of Illinois at Urbana-Champaign Ping Wang, University of South Florida

More information

LOCATING AND CHARACTERIZING ABANDONED MINES USING MICROGRAVITY by Richard C. Benson 1, Ronald D. Kaufmann 1, Lynn Yuhr 1, Richard Hopkins 2 ABSTRACT

LOCATING AND CHARACTERIZING ABANDONED MINES USING MICROGRAVITY by Richard C. Benson 1, Ronald D. Kaufmann 1, Lynn Yuhr 1, Richard Hopkins 2 ABSTRACT LOCATING AND CHARACTERIZING ABANDONED MINES USING MICROGRAVITY by Richard C. Benson 1, Ronald D. Kaufmann 1, Lynn Yuhr 1, Richard Hopkins 2 ABSTRACT Surface geophysical methods can be an important part

More information

GEOPHYSICS AND GEOCHEMISTRY Vol.III - Gravimetric Measurement Techniques - V. A. Childers GRAVIMETRIC MEASUREMENT TECHNIQUES

GEOPHYSICS AND GEOCHEMISTRY Vol.III - Gravimetric Measurement Techniques - V. A. Childers GRAVIMETRIC MEASUREMENT TECHNIQUES GRAVIMETRIC MEASUREMENT TECHNIQUES V. A. Childers Marine Physics Branch, Naval Research Laboratory, USA Keywords:gravity measurement, gravity meter, absolute gravity, relative gravity, microgravity, gravity

More information

Determination of crustal density at the atmosphere-crust interface of western Anatolia by using the fractal method

Determination of crustal density at the atmosphere-crust interface of western Anatolia by using the fractal method JOURNAL OF THE BALKAN GEOPHYSICAL SOCIETY, Vol. 5, No 1, February 2002, p. 3-8, 7 figs. Determination of crustal density at the atmosphere-crust interface of western Anatolia by using the fractal method

More information

Introduction. Matlab output for Problems 1 2. SOLUTIONS (Carl Tape) Ge111, Assignment #3: Gravity April 25, 2006

Introduction. Matlab output for Problems 1 2. SOLUTIONS (Carl Tape) Ge111, Assignment #3: Gravity April 25, 2006 SOLUTIONS (Carl Tape) Ge111, Assignment #3: Gravity April 25, 26 Introduction The point of this solution set is merely to plot the gravity data and show the basic computations. This document contains a

More information

12 Gravity and Topography

12 Gravity and Topography 12. Gravity and Topography 126 12 Gravity and Topography In the limit of perfect hydrostatic equilibrium, there is an exact relationship between gravity and topography... and no new information emerges:

More information

PHYSICS 231 Laws of motion PHY 231

PHYSICS 231 Laws of motion PHY 231 PHYSICS 231 Laws of motion 1 Newton s Laws First Law: If the net force exerted on an object is zero the object continues in its original state of motion; if it was at rest, it remains at rest. If it was

More information

GRAVITY AND ISOSTASY

GRAVITY AND ISOSTASY GRAVITY AND ISOSTASY Gravity The Geoid is the oblate spheroid -- the sea level surface over the entire Earth's surface Physically, the Geoid is an equipotential surface for gravity (i.e. the surface for

More information

10 Least-squares collocation

10 Least-squares collocation 10 Least-squares collocation 10.1 Principles of least-squares collocation The principle of collocation is very simple. The anomalous potential T outside the earth is a harmonic function, that is, it satisfies

More information

Processes that Shape the Earth

Processes that Shape the Earth Grade 8 Science, Quarter 4, Unit 4.1 Processes that Shape the Earth Overview Number of instructional days: 20 (1 day = 45 minutes) Content to be learned Explain the role of differential heating and convection

More information

GRAVITATIONAL FORCE NEAR EARTH

GRAVITATIONAL FORCE NEAR EARTH GRAVITATIONAL FORCE NEAR EARTH Recap: Gravitational Force Field Recall that gravity is an action-at-adistance force that pulls on objects (regardless of their size or mass) without making any contact with

More information

Static Corrections for Seismic Reflection Surveys

Static Corrections for Seismic Reflection Surveys Static Corrections for Seismic Reflection Surveys MIKE COX Volume Editors: Series Editor: Eugene F. Scherrer Roland Chen Eugene F. Scherrer Society of Exploration Geophysicists Tulsa, Oklahoma Contents

More information

The anomalous high transverse ridge developed along a transform fault. Speaker: Yen-Fu Chen

The anomalous high transverse ridge developed along a transform fault. Speaker: Yen-Fu Chen The anomalous high transverse ridge developed along a transform fault Speaker: Yen-Fu Chen Reference Anne E. Deschamps, Serge E. Lallemand, and Jean-Yves Collot, 1998, A detailed study of the Gagua Ridge:

More information

Geophysics for Environmental and Geotechnical Applications

Geophysics for Environmental and Geotechnical Applications Geophysics for Environmental and Geotechnical Applications Dr. Katherine Grote University of Wisconsin Eau Claire Why Use Geophysics? Improve the quality of site characterization (higher resolution and

More information

QUALITATIVE INTERPRETATION OF POTENTIAL FIELD PROFILES: SOUTHERN NECHAKO BASIN

QUALITATIVE INTERPRETATION OF POTENTIAL FIELD PROFILES: SOUTHERN NECHAKO BASIN QUALITATIVE INTERPRETATION OF POTENTIAL FIELD PROFILES: SOUTHERN NECHAKO BASIN By Melvyn E. Best Bemex Consulting International 5288 Cordova Bay Road Victoria, B.C. V8Y 2L4 KEYWORDS: potential fields,

More information

The GOCE Geoid in Support to Sea Level Analysis

The GOCE Geoid in Support to Sea Level Analysis The GOCE Geoid in Support to Sea Level Analysis The geoid is a very useful quantity for oceanographers Thomas Gruber Astronomical & Physical Geodesy (IAPG) Technische Universität München 1. Characteristics

More information

Department of Geophysics Faculty of Earth Sciences King Abdulaziz University

Department of Geophysics Faculty of Earth Sciences King Abdulaziz University Department of Geophysics Faculty of Earth Sciences King Abdulaziz University Dr. Mansour A. Al-Garni Office: room 233/Buld. 27 OR Dept. chair office/buld. 55 Introduction to Geophysics EGP 211 Time: 10-10:55

More information

Oscillations. Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance

Oscillations. Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance Oscillations Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance 1 Revision problem Please try problem #31 on page 480 A pendulum

More information

Precise Hong Kong Geoid HKGEOID-2000

Precise Hong Kong Geoid HKGEOID-2000 Yong-Qi Chen 1, Zhicai Luo 1 and Simon Kwok 2 1.Department of Land Surveying and Geo-Informatics, The Hong Kong olytechnic University 2 Geodetic Survey Section, Lands Department, HKSAR Abstract: This paper

More information

ENV-5004B/ENVK5005B. Figure 6. Student Registration No. ENV-5004B/ENVK5005B Version 2

ENV-5004B/ENVK5005B. Figure 6. Student Registration No. ENV-5004B/ENVK5005B Version 2 ENV-5004B/ENVK5005B Figure 6 Student Registration No UNIVERSITY OF EAST ANGLIA School of Environmental Sciences Main Series UG Examination 014-15 SOLID EARTH GEOPHYSICS SOLID EARTH GEOPHYSICS WITH FIELDCOURSE

More information

The earth s gravitational field

The earth s gravitational field The earth s gravitational field T. Ramprasad National Institute of Oceanography, Dona Paula, Goa-403 004 rprasad@nio.org Gravity Gravity is a force that for us is always directed downwards. But to say

More information

Lecture 2: Gravity, Isostasy and Flexure

Lecture 2: Gravity, Isostasy and Flexure Lecture 2: Gravity, Isostasy and Flexure Read pages 42-51 in KK&V You can access all of KK&V through ereserves (password: yf160) Homework 1 is due next Thursday Gravity: theory and measurements Newton:

More information

Gravity 2. Gravity 2. Maps and Profiles. Chuck Connor, Laura Connor. Potential Fields Geophysics: Week 1.5. Gravity 2

Gravity 2. Gravity 2. Maps and Profiles. Chuck Connor, Laura Connor. Potential Fields Geophysics: Week 1.5. Gravity 2 Maps and Profiles Chuck Connor, Laura Connor Potential Fields Geophysics: Week 1.5 Objectives for Week 1 Review the types of gravity maps Learn about the scale of gravity anomalies Make a gravity map Types

More information

C5 Magnetic exploration methods data analysis techniques

C5 Magnetic exploration methods data analysis techniques C5 Magnetic exploration methods data analysis techniques C5.1 Data processing and corrections After magnetic field data have been collected a number of corrections are applied to simplify the interpretation.

More information

scale Three-dimensional Modelling

scale Three-dimensional Modelling Lithospheric-scale scale Three-dimensional Modelling (Application to the EARS and Plateau) Girma Woldetinsae (Geological Survey of Ethiopia) and H.-J. Götze R. Hackney S. Schmidt (Institut für Geowissenschaften

More information

224 D4 Instrumentation and data collection techniques for magnetic exploration

224 D4 Instrumentation and data collection techniques for magnetic exploration 224 D4 Instrumentation and data collection techniques for magnetic exploration D4.1 Instrumentation D4.1.1 Flux gate magnetometer Details of operation are described in Keary and Brooks Measures the component

More information

Welcome back to Physics 215. Review gravity Oscillations Simple harmonic motion

Welcome back to Physics 215. Review gravity Oscillations Simple harmonic motion Welcome back to Physics 215 Review gravity Oscillations Simple harmonic motion Physics 215 Spring 2018 Lecture 14-1 1 Final Exam: Friday May 4 th 5:15-7:15pm Exam will be 2 hours long Have an exam buddy

More information

Course Description. Course Objectives and Standards

Course Description. Course Objectives and Standards Earth and Space Science Curriculum Course Description Earth and Space Science 1 State # 3044 Grades offered: 10-12 Credits: A two credit course Prerequisite: none Counts as a Science Course for the General,

More information

Shape of the Earth. Data Output by the Receiver

Shape of the Earth. Data Output by the Receiver It is quite common for confusion to arise about the process used during a hydrographic survey when GPS-derived water surface elevation is incorporated into the data as an RTK Tide correction. This article

More information

Gravity-Magnetic & Magneto-Telluric surveys in Purnea Onland Basin, India - A case history.

Gravity-Magnetic & Magneto-Telluric surveys in Purnea Onland Basin, India - A case history. P-281 Gravity-Magnetic & Magneto-Telluric surveys in Purnea Onland Basin, India - A case history. Summary A.K. Roy, D.P. Paine*, S. Sett, and H.N. Bhattacharya, ONGC This paper describes a case history

More information

Development of a Borehole Gravity Meter for Mining Applications

Development of a Borehole Gravity Meter for Mining Applications Ground and Borehole Geophysical Methods Paper 111 Development of a Borehole Gravity Meter for Mining Applications Seigel, H. O. [1], Nind, C. [1], Lachapelle, R. [1], Chouteau, M. [2], Giroux, B. [2] 1.

More information

7. Post Glacial Rebound. Ge 163 4/16/14-

7. Post Glacial Rebound. Ge 163 4/16/14- 7. Post Glacial Rebound Ge 163 4/16/14- Outline Overview Order of magnitude estimate of mantle viscosity Essentials of fluid mechanics Viscosity Stokes Flow Biharmonic equation Half-space model Channel

More information

THE DEAD SEA RIFT VALLEY

THE DEAD SEA RIFT VALLEY JOINT ISRAELI-PALESTINIAN GRAVITY SURVEY IN THE DEAD SEA RIFT VALLEY by M. Rybakov The Geophysical Institute of Israel P.O. Box 182 Lod, 7 1 100 Israel R El-Kelani Earth Sciences and seismic engineering

More information

CENTIMETRE LEVEL OF ACCURACY OF QUASIGEOID MODEL IN POLAND

CENTIMETRE LEVEL OF ACCURACY OF QUASIGEOID MODEL IN POLAND CENTIMETRE LEVEL OF ACCURACY OF QUASIGEOID MODEL IN POLAND Jan Krynski Institute of Geodesy and Cartography, Poland krynski@igik.edu.pl Adam Lyszkowicz University of Warmia and Mazury in Olsztyn, Poland

More information

PGM2016: A new geoid model for the. Philippines

PGM2016: A new geoid model for the. Philippines PGM2016: A new geoid model for the Philippines United Nations/Nepal Workshop on the Applications of Global Navigation Satellite Systems Kathmandu, Nepal December 12-16, 2016 Ronaldo Gatchalian, Chief Geodesy

More information

Nancy Natek The University of New Mexico

Nancy Natek The University of New Mexico Constraints on the SCEC 3D Velocity Model from Gravity Data: Two-Dimensional Gravity Modeling of the Central and Eastern Transverse Ranges in the Los Angeles Region Nancy Natek The University of New Mexico

More information

Chapter 13: Exploration Techniques

Chapter 13: Exploration Techniques PTRT 1370 - Petroleum Geology Chapter 13: Exploration Techniques - Mapping - Geophysical Techniques - Seismic Exploration Mapping - Topographic Maps - Absolute Positioning - Geologic Maps - Base Maps -

More information

C3: Magnetic anomalies produced by simple geological structures. Remember that objects can acquire both induced and remnant magnetization.

C3: Magnetic anomalies produced by simple geological structures. Remember that objects can acquire both induced and remnant magnetization. Geophysics 3 February 009 C3: Magnetic anomalies produced by simple geological structures Remember that objects can acquire both induced and remnant magnetization. Induced magnetization will disappear

More information

Gravity in the Ryukyu Arc*

Gravity in the Ryukyu Arc* Journal of the Geodetic Society of Japan Vol. 22, No. 1, (1976), pp. 23-39 Gravity in the Ryukyu Arc* Jiro SEGAWA Ocean Research Institute, University of Tokyo (Received March 31, 1976; Revised May 22,

More information

Displacement at very low frequencies produces very low accelerations since:

Displacement at very low frequencies produces very low accelerations since: SEISMOLOGY The ability to do earthquake location and calculate magnitude immediately brings us into two basic requirement of instrumentation: Keeping accurate time and determining the frequency dependent

More information

PH 2213 : Chapter 06 Homework Solutions. Problem 6.08 :

PH 2213 : Chapter 06 Homework Solutions. Problem 6.08 : PH 2213 : Chapter 06 Homework Solutions Problem 6.08 : Every few hundred years most of the planets line up on the same side of the Sun. Calculate the total force on the Earth due to Venus, Jupiter, and

More information

PY205N Spring The vectors a, b, and c. are related by c = a b. The diagram below that best illustrates this relationship is (a) I

PY205N Spring The vectors a, b, and c. are related by c = a b. The diagram below that best illustrates this relationship is (a) I PY205N Spring 2013 Final exam, practice version MODIFIED This practice exam is to help students prepare for the final exam to be given at the end of the semester. Please note that while problems on this

More information

Geophysical investigation in the Lower Benue trough of Nigeria using gravity method

Geophysical investigation in the Lower Benue trough of Nigeria using gravity method International Journal of the Physical Sciences Vol. 5(), pp. 757-769, 8 September, Available online at http://www.academicjournals.org/ijps ISSN 99-95 Academic Journals Full Length Research Paper Geophysical

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Gravity surveys. Introduction. Gravity surveys. Historical perspective

Gravity surveys. Introduction. Gravity surveys. Historical perspective Gravity surveys Introduction These pages introduce the fundamentals and practicalities of gravity surveying. They are not exhaustive, and are meant only to serve as an introduction. Note that the examples

More information

4 Tides. What causes tides? How do tides vary?

4 Tides. What causes tides? How do tides vary? CHAPTER 14 4 Tides SECTION The Movement of Ocean Water BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes tides? How do tides vary? National Science

More information

Ocean and Coastal Processes. Ocean Basins. Chapter 20. Ocean Basins and Plates. Ocean Terms. Sea Arch Bay-mouth Bar Spit Tombolo Coast.

Ocean and Coastal Processes. Ocean Basins. Chapter 20. Ocean Basins and Plates. Ocean Terms. Sea Arch Bay-mouth Bar Spit Tombolo Coast. Chapter 20 Ocean Basins and Plates Ocean and Coastal Processes Tide Wave Height Length Period Base Refraction Tsunami Beach Sea stack Ocean Terms Sea Arch Bay-mouth Bar Spit Tombolo Coast Emergent Submergent

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

GRAVITY AND GRAVITY ANOMALIES Newtonian Gravitation

GRAVITY AND GRAVITY ANOMALIES Newtonian Gravitation Gravity Exploration GRAVITY AND GRAVITY ANOMALIES Newtonian Gravitation Gravity: force of attraction between objects with mass Consider two objects with mass m 1 and m 2 : m 1 m 2 F g F g distance (r)

More information

GRAVITY SURVEY TEELS MARSH PROSPECT

GRAVITY SURVEY TEELS MARSH PROSPECT GRAVITY SURVEY over the TEELS MARSH PROSPECT MINERAL COUNTY, NV for Dajin Resources (US) Corp. March 2015 SUBMITTED BY Magee Geophysical Services LLC 465 Leventina Canyon Road Reno, Nevada 89523 USA TEL

More information

Application of Terrestrial and Aerial Gravimetry in the Pimenta Bueno Graben, Brazil

Application of Terrestrial and Aerial Gravimetry in the Pimenta Bueno Graben, Brazil Open Access Library Journal Application of Terrestrial and Aerial Gravimetry in the Pimenta Bueno Graben, Brazil Hans Schmidt Santos 1, Diego Moreno Monteiro 2, Bruno Leite Teixeira 2 1 Department of Research

More information

D DAVID PUBLISHING. Towards a New Geoid Model of Tanzania Using Precise Gravity Data. 1. Introduction. Selassie David Mayunga

D DAVID PUBLISHING. Towards a New Geoid Model of Tanzania Using Precise Gravity Data. 1. Introduction. Selassie David Mayunga Journal of Environmental Science and Engineering A 5 (2016) 267-276 doi:10.17265/2162-5298/2016.05.005 D DAVID PUBLISHING Towards a New Geoid Model of Tanzania Using Precise Gravity Data Selassie David

More information

LOCAL STRESSES FROM THE GEOID

LOCAL STRESSES FROM THE GEOID RESIF - Montpellier 30 January 2018 LOCAL STRESSES FROM THE GEOID Thierry CAMELBEECK Royal Observatory of Belgium, BE-1180 Uccle, Belgium thierry.camelbeeck@oma.be Stresses in Western Europe Classical

More information

Part I Multiple Choice (4 points. ea.)

Part I Multiple Choice (4 points. ea.) ach xam usually consists of 10 ultiple choice questions which are conceptual in nature. They are often based upon the assigned thought questions from the homework. There are also 4 problems in each exam,

More information

FORWARD MODELING OF THE GEOID ANOMALY USING SPHERICAL HARMONICS: APPLICATIONS IN THE SIERRA NEVADA. Alissa C Scire

FORWARD MODELING OF THE GEOID ANOMALY USING SPHERICAL HARMONICS: APPLICATIONS IN THE SIERRA NEVADA. Alissa C Scire FORWARD MODELING OF THE GEOID ANOMALY USING SPHERICAL HARMONICS: APPLICATIONS IN THE SIERRA NEVADA by Alissa C Scire A Prepublication Manuscript Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES

More information

Please pick up your midterms from front of class

Please pick up your midterms from front of class Please pick up your midterms from front of class Average: 70 % Test % score distribution: Top grade: 92 % Make sure you go through your test and the solutions carefully to understand where you went wrong.

More information

Geophysics Departmental Exam: 2004 Part 1

Geophysics Departmental Exam: 2004 Part 1 2004 Geophysics Departmental Exam: 2004 Part 1 This section is 90 minutes, closed book, and consists of questions designed to test your knowledge of facts and figures in the geosciences. The focus will

More information