Soft Matter Studies with X-rays

Size: px
Start display at page:

Download "Soft Matter Studies with X-rays"

Transcription

1 Soft Matter Studies with X-rays Theyencheri Narayanan European Synchrotron Radiation Facility Structure from Diffraction Methods, Eds. D.W. Bruce, D. O Hare & R.I. Walton, (Wiley, 2014) Soft-Matter Characterization, Eds. R. Borsali & R. Pecora (Springer, 2008) Slide: 1

2 Outline What is Soft Matter? Some general features Different X-ray techniques employed Self-assembly & complexity Out-of-equilibrium phenomena Summary and outlook Slide: 2

3 What is Soft Matter? Soft matter is a subfield of condensed matter comprising a variety of physical states that are easily deformed by thermal stresses or thermal fluctuations. They include liquids, colloids, polymers, foams, gels, granular materials, and a number of biological materials. These materials share an important common feature in that predominant physical behaviors occur at an energy scale comparable with room temperature thermal energy. At these temperatures, quantum aspects are generally unimportant. Pierre-Gilles de Gennes, who has been called the "founding father of soft matter," [1] received the Nobel Prize in physics in 1991 for discovering that the order parameter from simple thermodynamic systems can be applied to the more complex cases found in soft matter, in particular, to the behaviors of liquid crystals and polymers. Matière molle» Madeleine Veyssié Slide: 3

4 Soft Matter: Encounter in everyday life Sustainable development and supply of consumer products Slide: 4

5 What is Soft Matter? Materials which are soft to touch characterized by a small modulus (energy/characteristic volume), typically times lower than an atomic solid like aluminum. A significant fraction of consumer products fall in this category. Soft matter science is an interdisciplinary field of research where traditional borders between physics and its neighboring sciences such as chemistry, biology, chemical engineering and materials science disappear. Soft Matter studies seek to address the link between microscopic structure/interactions and macroscopic properties. Slide: 5

6 Soft Matter Characteristics Dominance of entropy Strong influence of thermal fluctuations (~ k B T) Characteristic size scale or microstructure ~ nm Shear modulus, G ~ Energy/Free volume» smaller Low shear modulus (G)» soft and viscoelastic Soft implies: (1) high degree of tailorability (2) lack of robustness Multi-scale out-of-equilibrium systems Slide: 6

7 3 main ingredients of soft matter Soft Matter Triangle Flexible side Harder side Selective side Slide: 7

8 Soft Matter: Increasing levels of complexity Elucidating the pathways of self-assembly O. Ikkala and G. Brinke, Chem. Commun., (2004) Slide: 8

9 Impact of Soft Matter in Condensed Matter Physics Over the last 40 years Critical Phenomena (static and dynamic) Freezing, glass transitions, etc. Fractal growth (e.g. colloid aggregation) Self-organized criticality (granular matter) Soft Matter constitutes a significant fraction of modern day Nanoscience/Nanotechnology. Slide: 9

10 Synchrotron Techniques used in Soft Matter Slide: 10

11 Synchrotron Radiation Studies of Soft Matter High spectral brilliance or brightness Real time studies in the millisecond range, micro/nano focusing and high q resolution Time-resolved SAXS, WAXS, micro-saxs, USAXS, etc. High detectivity for studying extremely dilute systems (f < 10-6 ) Partial coherence Equilibrium dynamics using the coherent photon flux (for concentrated systems) Photon correlation spectroscopy (XPCS) Continuous variation of incident energy Contrast variation of certain heavier elements, e.g. Fe, Cu, Se, Br, Rb, Sr, etc. Anomalous SAXS Complementary imaging techniques X-ray microscopy, micro and nano tomography, etc. Slide: 11

12 Small-Angle X-ray Scattering (SAXS) l vacuum q sample beamstop detector 4 q sin( q / l Measured Intensity: 2) I S i 0 T r e DW d dw Differential scattering cross-section i 0 - incident flux T r - transmission e - efficiency DW - solid angle I( q) d dw 1 V Scat d dw Beamline ID02 Slide: 12

13 I(q) (mm -1 ) 10 6 SAXS from dilute spherical particles Guinier region Porod q Silica particles (f ~ 0.01, size ~ 600 nm, p ~ 2%) Model (R Mean =303 nm, R =6.2 nm & Dq=0.001 nm -1 ) q (nm -1 ) Slide: 13

14 SAXS from spherical colloidal particles I( q) N F( q) S( q) N particle number density, F(q) single particle scattering function, S(q) structure factor of interactions Thomson scattering F( q) A( q) A * ( q) sin qr A( q) 4 re [ ( r) m] r 0 qr * r e S 2 dr (r) radial electron density r e classical electron radius =2.82x10-15 m scattering length density for homogeneous particles * D I( q) * * S m * N( D V ) 2 P( q) contrast S( q) V volume of the particle P(q) form factor Calculation of S(q) involves approximations (e.g. Percus-Yevick closure) Slide: 14

15 Size scales probed by SAXS & related techniques Nanoworld Microworld m 10-9 m 10-8 m 10-7 m 10-6 m 10-5 m 10-4 m 10-3 m 10-2 m 0.1 nm Soft x-ray 1 nanometer (nm) 0.01 mm 10 nm 2 q Ultraviolet 0.1 mm 100 nm Visible 1,000 nanometers = 1 micrometer (mm) Infrared 0.01 mm 10 mm 0.1 mm 100 mm Microwave 1,000,000 nanometers = 1 millimeter (mm) 1 cm 10 mm Colloids Polymers Surfactants Liquid crystals Etc. Slide: 15

16 Size scales probed by SAXS & related techniques Nanoworld Microworld m 10-9 m 10-8 m 10-7 m 10-6 m 10-5 m 10-4 m 10-3 m 10-2 m 0.1 nm Soft x-ray 1 nanometer (nm) 0.01 mm 10 nm 2 q Ultraviolet 0.1 mm 100 nm Visible 1,000 nanometers = 1 micrometer (mm) Infrared 0.01 mm 10 mm 0.1 mm 100 mm Microwave 1,000,000 nanometers = 1 millimeter (mm) 1 cm 10 mm Colloids Polymers Surfactants Liquid crystals Etc. Slide: 16

17 I(q) (mm -1 ) I(q) (mm -1 ) Differential scattering cross-section per unit volume Form & Structure Factors I( q) * N( D V) 2 P( q) S M ( q) Experimental P(q), polydisperse & S (q) within Percus-Yevick (PY) approximation 10 3 Form Factor Fit f [S(q) PY ] f < q (nm -1 ) f C [I(0)] q (nm -1 ) Slide: 17

18 I(q) (mm -1 ) I(q) (mm -1 ) Differential scattering cross-section per unit volume Form & Structure Factors I( q) * N( D V) 2 P( q) S M ( q) Experimental P(q), polydisperse & S (q) within Percus-Yevick (PY) approximation Crystalline order 10 3 Form Factor Fit f [S(q) PY ] f < q (nm -1 ) f C [I(0)] q (nm -1 ) Slide: 18

19 X-ray Photon Correlation Spectroscopy (XPCS) Beamline ID10 Silica microspheres in water d=0.49±0.02mm, q=0.09 nm -1 1 D C q 0 2 Slide: 19

20 Multi-speckle XPCS Slide: 20

21 Combination with shear flow Couette cell X-ray beam Slide: 21

22 Grazing Incidence Small-Angle X-ray Scattering (GISAXS) q x,y,z cos a f 2 cosa f l cosq cosa cosq sina sina i f sinq cosa sinq f f i i f f z q z a f q f q y a i x y Beamline ID10 Slide: 22

23 Soft Interfaces Scattering - Surface structure of simple and complex fluids (colloid, gel, sol, ) - Morphology and crystalline structure of thin organic and inorganic films - 2D organization of molecules, macromolecules and nanoparticles - Bio-mimetic systems & Bio-mineralization Langmuir Buried films interfaces Z a P, A, T b y b a gas-liquid liquid-liquid b y b liquid-solid Slide: 23

24 Penetration depth, Λ, 1/A Å Varying the penetration depth surface α i 0.1 at 8 kev λ=1.55 Å Soft Interfaces Scattering bulk α / α C Grazing angle, a/a c Dα i < 0.1α i β Λ(ρ, α) (2) d f FILM SUBSTRATE (1) d f α Elements distribution Complex fluids Slide: 24

25 Micro-diffraction (ID13) Skin-core morphology of high performance fibers E.g. Kevlar Correlate the local nanostructure to the fiber mechanical properties. Elucidating the local nanostructure Slide: 25

26 I(q) (m m -1 ) SAXS/WAXS from Semi-crystalline polymers 10 0 SAXS WAXS amorphous crystalline q (nm -1 ) Slide: 26

27 Scanning Micro-diffraction on HDPE spherulites 12.5 kev, 1.5 micron spot high density poly-ethylene spherulites under polarized light banded structures indicating long range order SAXS/WAXS patterns line scans across the center reveal information on crystallite orientation Rosenthal M. et al., Angewandte Chemie, (2011) Slide: 27

28 Micro-diffraction on HDPE spherulites Azimuth/Intensity vs Distance from the center in mm 35 tilt between c-axis and the normal of the base plane of crystalline lamellas orientation of b-axis aligned with growth direction chirality can be determined Slide: 28

29 Coherent X-ray Diffractive Imaging (CDI) 2D and 3D imaging of non-crystalline objects, biological samples with nanometers resolution Lensless imaging technique Thick or small samples (single molecules) SEM image Reconstruction pixel 24 nm 3D reconstruction Slide: 29

30 CDI of Biological Specimen Phases encoded by over sampling of the diffraction pattern 3D reconstruction H. Jiang et al., PNAS (2010) Slide: 30

31 Spontaneous self-assembly Slide: 31

32 Motivation: understanding self-assembly in nature Kinetics of self-assembling systems understanding of properties and functionalities material stability, cell trafficking (drug delivery), detergency, etc. Complexity Micelles Vesicles Lipid-DNA complex Cell How are these complexes formed: kinetic pathways to (non-)equilibrium? How can these complexes be tuned and manipulated to new materials (e.g. biomedical/pharmaceutical applications)? Slide: 32

33 Spontaneous self-assembly of micelles and vesicles E.g. surfactants, lipids or block copolymers Large variety of equilibrium structures Dynamics of formation is very little explored Self-assembly of micelles and vesicles monomers micelles anionic vesicle? spherical micelles Rate-limiting steps» predictive capability cationic? Kinetic pathway: stopped-flow rapid mixing & time-resolved SAXS Slide: 33

34 Stopped-Flow Mixing Device Rapid mixing of reactants in turbulent flow through a mixer Solenoid valve at the exit to stop the flow of the mixture Deadtime ~ a few millisecond Beamline ID02@ESRF Slide: 34

35 P I(Q) Spontaneous self-assembly of block copolymer micelles Rapid jump in solvent selectivity / Interfacial tension Q [A -1 ] 14.5 ms 24.5 ms ms ms ms 240 s Unimer Reservoir Model fits» mean aggregation number, P mean Unimer DMF? Micelle Poly(ethylene-propylene) - poly(ethylene oxide) DMF/water time [milli seconds] R. Lund, et al., PRL, 102, (2009) Slide: 35

36 I(q) (mm -1 ) Self-assembly of unilamellar vesicles mm M 1 M 2 < 4ms M 2 M 1 +M M M M < 4 ms q (nm -1 ) disk-like disk-like objects with: R = 7.5nm; H = 4.8nm size of initial disks: x size rod-like micelle T.M. Weiss et al., PRL (2005) Langmuir (2008) Transient disk-like micelles are formed within the mixing time (< 4 ms) Slide: 36

37 I(q) (mm -1 ) Growth of disk-like micelles s s 0.58 s disk area 2 R s 0.06 s s RC 2 1 R 2 C 4 1 C Radius of curvature q (nm -1 ) Bending energy vs Edge energy & - bending moduli L - line tension E bend 4 2 RC At the closing state: R max E edge 4 2LRC 2 L 1 C 2 R 4 2 T.M. Weiss et al., PRL (2005) Langmuir (2008) Slide: 37

38 I(q) (mm -1 ) s Free 10 energy of a bend bilayer s 0.58 s Growth of disk-like micelles 0.24 s 0.06 s 0.01 s disk area 2 R 10-1 ln(f/a [kt/nm 2 ]) Disk, lense Bending energy vs q (nm -1 ) Vesicles Edge energy RC 2 1 R 2 C 4 1 C Radius of curvature & - bending moduli L - line tension E bend 4 2 RC At the closing state: R max E edge 4 2LRC 2 L 1 C 2 R 4 2 T.M. Weiss et al., PRL (2005) Langmuir (2008) Slide: 38

39 Soft matter self-assembly at interfaces α I 0 q X oil q Z water Beam travel path 70 mm I β b b y y b b Z a gas-liquid liquid-liquid a liquid-solid Interfacial cavities for reaction Slide: 39

40 Formation and Ordering of Gold Nanoparticles at the Toluene-Water Interface cluster-cluster separation, d 1 =180 Å particle-particle separation, d 2 = 34 Å Each cluster consists of 13 NPs with Ø 12 Å & 11 Å thick organic layer M.K. Sanyal et al., J. Phys. Chem. C, 112, 1739 (2008) Slide: 40

41 Formation and Ordering of Gold Nanoparticles at the Toluene-Water Interface Each cluster consists of NPs with Ø 12 Å & 11 Å thick organic layer M.K. Sanyal et al., J. Phys. Chem. C, 112, 1739 (2008) Slide: 41

42 Out-of-equilibrium Dynamics Slide: 42

43 Multi-speckle XPCS analysis Dynamics of tracer particles in a glass-forming liquid (b) (a) q Silica particles in propylene glycol 2 q C. Coronna et al., PRL (2008) This type of dynamics studies can be performed in the sub-millisecond range q [nm -1 ] Diffusive to ballistic dynamics near glass transition Slide: 43

44 Soft Matter: out-of-equilibrium dynamics Multi-speckle XPCS Slide: 44

45 H(t) / Ho Soft Matter: out-of-equilibrium dynamics Probing the dynamics of ageing: related to shelf-life of products Colloid-polymer mixture two-time correlation function Time (h) Gel Crossover of dynamic behavior large scale reorganization A. Fluerasu, A. Moussaid, et al., PRE(R) (2007) Slide: 45

46 UPBL9a: TRUSAXS Beamline SAXS/WAXS/USAXS Multiple detectors 32 m long and 2 m diameter Energy range: 720 kev Dq: 5x10-4 nm -1 (FWHM) q range: nm -1 Time res. 10 ms 2014 Sample-detector distance: m Slide: 46

47 UPBL9a: TRUSAXS Beamline SAXS/WAXS/USAXS Multiple detectors 32 m long and 2 m diameter Time (s) Energy range: 720 kev Dq: 5x10-4 nm -1 (FWHM) q range: nm -1 Time res. 10 ms SAXS WAXS USAXS Stroboscopic 10-5 Sample-detector distance: m /q (nm) Slide: 47

48 Summary & Outlook High brilliance X-ray scattering is a powerful method to elucidate the non-equilibrium structure & dynamics of soft matter. Time-resolved scattering experiments in the millisecond range can be performed even with dilute samples. Combination of nanoscale spatial and millisecond time resolution makes synchrotron techniques unique in these studies. Challenges lie in the ability to investigate complex polydisperse systems with competing interactions. Experiments can be performed in the functional state of the system. The emphasis will be on quantitative studies made possible by the high detection capability and reduced radiation damage, and complemented by advanced data analysis. Slide: 48

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

XPCS and Shear Flow. Wesley Burghardt Department of Chemical & Biological Engineering Northwestern University

XPCS and Shear Flow. Wesley Burghardt Department of Chemical & Biological Engineering Northwestern University XPCS and Shear Flow Wesley Burghardt Department of Chemical & Biological Engineering Northwestern University Outline Background: XPCS & rheology XPCS during shear Unidirectional shear flow Oscillatory

More information

Self-Assembled Iron Oxide Thin Films at the Liquid-Air Interface

Self-Assembled Iron Oxide Thin Films at the Liquid-Air Interface Self-Assembled Iron Oxide Thin Films at the Liquid-Air Interface Leandra Boucheron Candidacy Exam September 4, 2013 Introduction Outline Techniques and Results Grazing Incidence Diffraction (GID) X-Ray

More information

introduction to SAXS for polymers -a user view-

introduction to SAXS for polymers -a user view- introduction to SAXS for polymers -a user view- Luigi Balzano DSM Ahead/Material Science Center Geleen, The Netherlands luigi.balzano@dsm.com Synchrotron and Neutron Workshop (SyNeW) 2015 Utrecht, June

More information

Scattering experiments

Scattering experiments Scattering experiments Menu 1. Basics: basics, contrast, q and q-range. Static scattering: Light, x-rays and neutrons 3. Dynamics: DLS 4. Key examples Polymers The Colloidal Domain The Magic Triangle Length-

More information

Structural characterization. Part 2

Structural characterization. Part 2 Structural characterization Part Determining partial pair distribution functions X-ray absorption spectroscopy (XAS). Atoms of different elements have absorption edges at different energies. Structure

More information

Introduction to SAXS at SSRL

Introduction to SAXS at SSRL Everything You Ever Wanted to Know About Introduction to SAXS at SSRL SAXS But Were Afraid to Ask John A Pople Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Stanford CA

More information

The SAXS Guide. Getting acquainted with the principles. New Edition with special contributions

The SAXS Guide. Getting acquainted with the principles. New Edition with special contributions The SAXS Guide Getting acquainted with the principles New Edition with special contributions The SAXS Guide Getting acquainted with the principles 4 th edition by Heimo Schnablegger Yashveer Singh Special

More information

SELF-ASSEMBLY AND NANOTECHNOLOGY A Force Balance Approach

SELF-ASSEMBLY AND NANOTECHNOLOGY A Force Balance Approach SELF-ASSEMBLY AND NANOTECHNOLOGY A Force Balance Approach Yoon S. Lee Scientific Information Analyst Chemical Abstracts Service A Division of the American Chemical Society Columbus, Ohio WILEY A JOHN WILEY

More information

Dynamics of materials with X-ray Photon Correlation Spectroscopy - Opportunities and detector requirements

Dynamics of materials with X-ray Photon Correlation Spectroscopy - Opportunities and detector requirements Dynamics of materials with X-ray Photon Correlation Spectroscopy - Opportunities and detector requirements Quasi-static speckles from colloidal suspension near random compact packing volume fraction Speckles

More information

Methoden moderner Röntgenphysik II Streuung und Abbildung

Methoden moderner Röntgenphysik II Streuung und Abbildung Methoden moderner Röntgenphysik II Streuung und Abbildung Stephan V. Roth DESY 5.6.14 Two phase Model single particle approximation > Amplitude: Δ 3 > Intensity: = > Closer look at Iq for dilute systems:

More information

Methoden moderner Röntgenphysik II Streuung und Abbildung

Methoden moderner Röntgenphysik II Streuung und Abbildung Methoden moderner Röntgenphysik II Streuung und Abbildung Stephan V. Roth DESY 1.5.15 Outline > 1.5. : Small-Angle X-ray Scattering (SAXS) > 19.5. : Applications & A short excursion into Polymeric materials

More information

Anirban Som

Anirban Som Anirban Som 01-11-14 Introduction Supramolecular chemistry generates complex structures over a range of length scales. Structures such as DNA origami, supramolecular polymers etc. are formed via multiple

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Small Angle X-ray Scattering (SAXS)

Small Angle X-ray Scattering (SAXS) Small Angle X-ray Scattering (SAXS) We have considered that Bragg's Law, d = λ/(2 sinθ), supports a minimum size of measurement of λ/2 in a diffraction experiment (limiting sphere of inverse space) but

More information

Supporting Information

Supporting Information Block Copolymer Mimetic Self-Assembly of Inorganic Nanoparticles Yunyong Guo, Saman Harirchian-Saei, Celly M. S. Izumi and Matthew G. Moffitt* Department of Chemistry, University of Victoria, P.O. Box

More information

Julien Schmitt, postdoc in the Physical Chemistry department. Internship 2010: Study of the SAXS scattering pattern of mesoporous materials

Julien Schmitt, postdoc in the Physical Chemistry department. Internship 2010: Study of the SAXS scattering pattern of mesoporous materials Before starting Julien Schmitt, postdoc in the Physical Chemistry department Internship 2010: Study of the SAXS scattering pattern of mesoporous materials PhD 2011-2014: Self-assembly mechanism of mesoporous

More information

Methoden Moderner Röntgenphysik II - Vorlesung im Haupt-/Masterstudiengang, Universität Hamburg, SoSe 2016, S. Roth

Methoden Moderner Röntgenphysik II - Vorlesung im Haupt-/Masterstudiengang, Universität Hamburg, SoSe 2016, S. Roth > 31.05. : Small-Angle X-ray Scattering (SAXS) > 0.06. : Applications & A short excursion into Polymeric materials > 04.06. : Grazing incidence SAXS (GISAXS) Methoden Moderner Röntgenphysik II - Vorlesung

More information

SAS Data Analysis Colloids. Dr Karen Edler

SAS Data Analysis Colloids. Dr Karen Edler SAS Data Analysis Colloids Dr Karen Edler Size Range Comparisons 10 1 0.1 0.01 0.001 proteins viruses nanoparticles micelles polymers Q = 2π/d (Å -1 ) bacteria molecules nanotubes precipitates grain boundaries

More information

X-Ray Scattering Studies of Thin Polymer Films

X-Ray Scattering Studies of Thin Polymer Films X-Ray Scattering Studies of Thin Polymer Films Introduction to Neutron and X-Ray Scattering Sunil K. Sinha UCSD/LANL Acknowledgements: Prof. R.Pynn( Indiana U.) Prof. M.Tolan (U. Dortmund) Wilhelm Conrad

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

Structure and Dynamics at the Nanoscale Probed by XPCS. Alec Sandy X-Ray Science Division Argonne National Laboratory

Structure and Dynamics at the Nanoscale Probed by XPCS. Alec Sandy X-Ray Science Division Argonne National Laboratory Structure and Dynamics at the Nanoscale Probed by XPCS Alec Sandy X-Ray Science Division Argonne National Laboratory Outline Motivation XPCS XPCS at beamline 8-ID at the APS Selected XPCS results from

More information

Coherent X-ray Scattering and X-ray Photon Correlation Spectroscopy

Coherent X-ray Scattering and X-ray Photon Correlation Spectroscopy Coherent X-ray Scattering and X-ray Photon Correlation Spectroscopy Laurence Lurio Department of Physics Northern Illinois University http://www.niu.edu/~llurio/coherence/ Outline Theory of X-ray Photon

More information

Methoden moderner Röntgenphysik II Streuung und Abbildung

Methoden moderner Röntgenphysik II Streuung und Abbildung Methoden moderner Röntgenphysik II Streuung und Abbildung Stephan V. Roth DESY 12.05.2015 Outline > 12.05.: Small-Angle X-ray Scattering (SAXS) > 19.05.: SAXS > 21.05.: Applications of SAXS > 02.06.: Grazing

More information

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications In materials science, people are always interested in viewing

More information

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization HERCULES Specialized Course: Non-atomic resolution scattering in biology and soft matter Grenoble, September 14-19, 2014 Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation,

More information

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour Mohamed Daoud Claudine E.Williams Editors Soft Matter Physics With 177 Figures, 16 of them in colour Contents 1. Droplets: CapiUarity and Wetting 1 By F. Brochard-Wyart (With 35 figures) 1.1 Introduction

More information

Surface Sensitive X-ray Scattering

Surface Sensitive X-ray Scattering Surface Sensitive X-ray Scattering Introduction Concepts of surfaces Scattering (Born approximation) Crystal Truncation Rods The basic idea How to calculate Examples Reflectivity In Born approximation

More information

Making Functional Surfaces and Thin Films: Where are the Atoms?

Making Functional Surfaces and Thin Films: Where are the Atoms? Making Functional Surfaces and Thin Films: Where are the Atoms? K. Ludwig, A. DeMasi, J. Davis and G. Erdem Department of Physics Materials Science and Engineering Program Why x-rays? λ ~10-10 m ~ distance

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

The Small Angle X-ray Scattering Technique: An Overview

The Small Angle X-ray Scattering Technique: An Overview The Small Angle X-ray Scattering Technique: An Overview Dr. Gianluca Croce, Ph.D DISTA - Univ. Piemonte Orientale Via T. Michel 11,15121 Alessandria (Italy) gianluca.croce@mfn.unipmn.it Dr. Gianluca Croce

More information

May the Force be with you: High-speed Atomic Force Microscopes for Synchrotron Sample Holders Luca Costa

May the Force be with you: High-speed Atomic Force Microscopes for Synchrotron Sample Holders Luca Costa May the Force be with you: High-speed Atomic Force Microscopes for Synchrotron Sample Holders Luca Costa ESRF, The European Synchrotron 71 Rue des Martyrs, 38000 Grenoble, France EXP DIV - THE SURFACE

More information

stabilization and organization, Indo-French Workshop on Multifunctional Molecular and Hybrid Devices 6-10 October 2008, Saint-Aubin

stabilization and organization, Indo-French Workshop on Multifunctional Molecular and Hybrid Devices 6-10 October 2008, Saint-Aubin : emulsion stabilization and organization, Indo-French Workshop on Multifunctional Molecular and Hybrid Devices 6-10 October 2008, Saint-Aubin CEA,IRAMIS,LIONS October 7, 2008 Nanochemistry Interfaces,

More information

GISAXS, GID and X-Ray Reflectivity in Materials Science

GISAXS, GID and X-Ray Reflectivity in Materials Science united nations educational, scientific and cultural organization the abdus salam international centre for theoretical physics international atomic energy agency SCHOOL ON SYNCHROTRON RADIATION AND APPLICATIONS

More information

Structural characterization. Part 2

Structural characterization. Part 2 Structural characterization Part Scattering angle Crystalline materials Bragg s law: Scattering vector Q ~ d -1, where d is interplanar distance Q has dimension [m -1 ], hence large Q (large scattering

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Small Angle Scattering - Introduction

Small Angle Scattering - Introduction Small Angle Scattering - Introduction Why scattering at small angles? Angle & size related thru Braggs law: λ = 2d sin θ Small Angle Scattering - Introduction Why scattering at small angles? Angle & size

More information

An Introduction to Polymer Physics

An Introduction to Polymer Physics An Introduction to Polymer Physics David I. Bower Formerly at the University of Leeds (CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xii xv 1 Introduction 1 1.1 Polymers and the scope of the book

More information

GISAXS STUDY OF CADMIUM SULFIDE QUANTUM DOTS

GISAXS STUDY OF CADMIUM SULFIDE QUANTUM DOTS Surface Review and Letters, Vol. 9, No. 1 (2002) 455 459 c World Scientific Publishing Company GISAXS STUDY OF CADMIUM SULFIDE QUANTUM DOTS P. DUBCEK and S. BERNSTORFF Sincrotrone Trieste, SS 14 km 163.5,

More information

ADVANCED APPLICATIONS OF SYNCHROTRON RADIATION IN CLAY SCIENCE

ADVANCED APPLICATIONS OF SYNCHROTRON RADIATION IN CLAY SCIENCE CMS WORKSHOP LECTURES Volume 19 ADVANCED APPLICATIONS OF SYNCHROTRON RADIATION IN CLAY SCIENCE THE CLAY MINERALS SOCIETY Joseph W. Stucki, Series Editor and Editor in Chief University of Illinois Urbana,

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

Tunable Nanoparticle Arrays at Charged Interfaces

Tunable Nanoparticle Arrays at Charged Interfaces Tunable Nanoparticle Arrays at Charged Interfaces Supporting Material Sunita Srivastava 1, Dmytro Nykypanchuk 1, Masafumi Fukuto 2 and Oleg Gang 1* 1 Center for Functional Nanomaterials, Brookhaven National

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Hierarchical Dynamics of Soft Matters & Prospects of Japanese Future Light Sources

Hierarchical Dynamics of Soft Matters & Prospects of Japanese Future Light Sources XDL Workshop 6 @ Cornell Univ. Hierarchical Dynamics of Soft Matters & Prospects of Japanese Future Light Sources Yuya Shinohara Department of Advanced Materials Science, Graduate School of Frontier Sciences,

More information

Emulsions Part 3. microemulsions miniemulsions. remarks to: Klaus Tauer MPI Colloids and Interfaces Am Mühlenberg, D Golm, Germany

Emulsions Part 3. microemulsions miniemulsions. remarks to: Klaus Tauer MPI Colloids and Interfaces Am Mühlenberg, D Golm, Germany Emulsions Part 3 remarks to: microemulsions miniemulsions Klaus Tauer MPI Colloids and Interfaces Am Mühlenberg, D-14476 Golm, Germany Micro and Miniemulsion Why Special Emphasis? questionable graph!!!

More information

Coherent X-ray diffraction for Condensed matter physics

Coherent X-ray diffraction for Condensed matter physics Coherent X-ray diffraction for Condensed matter physics Sylvain RAVY CRISTAL beamline Synchrotron SOLEIL Saint Aubin 91192 Gif-sur-Yvette France Collaborations David Le Bolloc h, (lab. physique des solides,

More information

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale Jan Lüning Outline Scientific motivation: Random magnetization processes Technique: Lensless imaging by Fourier Transform holography Feasibility:

More information

Colloidal samples investigated using coherent x-ray scattering methods. Michael Sprung DESY Hamburg,

Colloidal samples investigated using coherent x-ray scattering methods. Michael Sprung DESY Hamburg, Colloidal samples investigated using coherent x-ray scattering methods Michael Sprung DESY Hamburg, 09.11.014 Acknowledgements Coherence beamline A. Schavkan, A. Ricci, A. Zozulya, F. Westermeier, S. Bondarenko,

More information

ENAS 606 : Polymer Physics

ENAS 606 : Polymer Physics ENAS 606 : Polymer Physics Professor Description Course Topics TA Prerequisite Class Office Hours Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu This course covers the static and dynamic

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications Contact Information Professor Chia-Kuang (Frank) Tsung Email: frank.tsung@bc.edu Office: Merkert 224; Phone: (617) 552-8927 Office Hours: Monday 5-6

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Introduction to X-ray and neutron scattering

Introduction to X-ray and neutron scattering UNESCO/IUPAC Postgraduate Course in Polymer Science Lecture: Introduction to X-ray and neutron scattering Zhigunov Alexander Institute of Macromolecular Chemistry ASCR, Heyrovsky sq., Prague -16 06 http://www.imc.cas.cz/unesco/index.html

More information

Lamellar-to-Onion Transition with Increasing Temperature under Shear Flow In Nonionic Surfactant Systems. Tadashi Kato

Lamellar-to-Onion Transition with Increasing Temperature under Shear Flow In Nonionic Surfactant Systems. Tadashi Kato Lamellar-to-Onion Transition with Increasing Temperature under Shear Flow In Nonionic Surfactant Systems Tadashi Kato Department of Chemistry Tokyo Metropolitan University August 12, ISSP2010/SOFT 1 Coworkers:

More information

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands This document was presented at PPXRD - Pharmaceutical Powder X-ray

More information

2 Preparation of hollow spheres, microcapsules and microballoons by surfactant free emulsion templating

2 Preparation of hollow spheres, microcapsules and microballoons by surfactant free emulsion templating 2 Preparation of hollow spheres, microcapsules and microballoons by surfactant free emulsion templating We report on the synthesis of new types of monodisperse, micrometer-sized hollow particles obtained

More information

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES).

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). S1 Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). The combined SAXS/XANES measurements were carried out at the µspot beamline at BESSY II (Berlin, Germany). The beamline

More information

Combined SANS and SAXS in studies of nanoparticles with core-shell structure

Combined SANS and SAXS in studies of nanoparticles with core-shell structure Indian Journal of Pure & Applied Physics Vol. 44, October 006, pp. 74-78 Combined SANS and SAXS in studies of nanoparticles with core-shell structure P S Goyal & V K Aswal* UGC-DAE CSR, Mumbai Centre (*Solid

More information

Lecture 8. Polymers and Gels

Lecture 8. Polymers and Gels Lecture 8 Polymers and Gels Variety of polymeric materials Polymer molecule made by repeating of covalently joint units. Many of physical properties of polymers have universal characteristic related to

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

Nanotechnology Fabrication Methods.

Nanotechnology Fabrication Methods. Nanotechnology Fabrication Methods. 10 / 05 / 2016 1 Summary: 1.Introduction to Nanotechnology:...3 2.Nanotechnology Fabrication Methods:...5 2.1.Top-down Methods:...7 2.2.Bottom-up Methods:...16 3.Conclusions:...19

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

3D and Atomic-resolution Imaging with Coherent Electron Nanobeams - Opportunities and Challenges for X-rays

3D and Atomic-resolution Imaging with Coherent Electron Nanobeams - Opportunities and Challenges for X-rays 3D and Atomic-resolution Imaging with Coherent Electron Nanobeams - Opportunities and Challenges for X-rays David A. Muller Lena Fitting Kourkoutis, Megan Holtz, Robert Hovden, Qingyun Mao, Julia Mundy,

More information

Thermal Methods of Analysis Theory, General Techniques and Applications. Prof. Tarek A. Fayed

Thermal Methods of Analysis Theory, General Techniques and Applications. Prof. Tarek A. Fayed Thermal Methods of Analysis Theory, General Techniques and Applications Prof. Tarek A. Fayed 1- General introduction and theory: Thermal analysis (TA) is a group of physical techniques in which the chemical

More information

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Introduction to Dynamic Light Scattering with Applications Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Outline Introduction to dynamic light scattering Particle

More information

arxiv: v1 [cond-mat.soft] 25 Jan 2019

arxiv: v1 [cond-mat.soft] 25 Jan 2019 Shape anisotropy of magnetic nanoparticles in (Co 86 Nb 12 Ta 2 ) x (SiO 2 ) 1 x composite films revealed by grazing-incidence small-angle X-ray scattering arxiv:1901.08825v1 [cond-mat.soft] 25 Jan 2019

More information

International Journal of Advancements in Research & Technology, Volume 3, Issue 11, November ISSN

International Journal of Advancements in Research & Technology, Volume 3, Issue 11, November ISSN International Journal of Advancements in Research & Technology, Volume 3, Issue 11, November -2014 30 HEAT TRANSFER INTENSIFICATION USING NANOFLUIDS INTRODUCTION Prof. B.N. Havaraddi Assistant Professor

More information

Simulations of Self-Assembly of Polypeptide-Based Copolymers

Simulations of Self-Assembly of Polypeptide-Based Copolymers East China University of Science and Technology Theory, Algorithms and Applications of Dissipative Particle Dynamics Simulations of Self-Assembly of Polypeptide-Based Copolymers Jiaping LIN ( 林嘉平 ) East

More information

Neutron Imaging at Spallation Neutron Sources

Neutron Imaging at Spallation Neutron Sources Neutron Imaging at Spallation Neutron Sources E.H. LEHMANN, A. KAESTNER Paul Scherrer Institut, Deptm. Spallation Neutron Source, Switzerland OUTLINE 1. Introduction: Motivation for Neutron Imaging 2.

More information

672 Advanced Solid State Physics. Scanning Tunneling Microscopy

672 Advanced Solid State Physics. Scanning Tunneling Microscopy 672 Advanced Solid State Physics Scanning Tunneling Microscopy Biao Hu Outline: 1. Introduction to STM 2. STM principle & working modes 3. STM application & extension 4. STM in our group 1. Introduction

More information

Previous Faraday Discussions

Previous Faraday Discussions Previous Faraday Discussions All previous volumes can be viewed at Faraday Discussions from 2011 onwards are listed at Faraday Discussions 2000-2010 147: Chemistry of the Planets Introductory Lecture:

More information

Transmission Electron Microscopy

Transmission Electron Microscopy Transmission Electron Microscopy Fu-Rong Chen Transmission Electron Microscopy David B. Williams C. Barry Carter Background:Solid State Physics Materials Science 1.1 Why Electron Microscope? 1.1 Why Electron

More information

Polymers and Nanomaterials from Liquid-Liquid Interfaces: Synthesis, Self-Organisation and Applications

Polymers and Nanomaterials from Liquid-Liquid Interfaces: Synthesis, Self-Organisation and Applications Preface My interest in liquid liquid interfaces, the reactions occurring at them and through them, as well as their physical properties and potential applications was initiated during my early days of

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

Techniques useful in biodegradation tracking and biodegradable polymers characterization

Techniques useful in biodegradation tracking and biodegradable polymers characterization Techniques useful in biodegradation tracking and biodegradable polymers characterization Version 1 Wanda Sikorska and Henryk Janeczek 1 Knowledge on biodegradable polymers structures is essential for the

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

The Use of the Ultra Small Angle X-ray Scattering Technique to study the Solid Structure of Edible Fat Systems

The Use of the Ultra Small Angle X-ray Scattering Technique to study the Solid Structure of Edible Fat Systems The Use of the Ultra Small Angle X-ray Scattering Technique to study the Solid Structure of Edible Fat Systems Fernanda Peyronel Alejandro Marangoni & David Pink Session: Analytical and Quality Control

More information

Holographic Characterization of Agglomerates in CMP Slurries

Holographic Characterization of Agglomerates in CMP Slurries Holographic Characterization of Agglomerates in CMP Slurries Total Holographic Characterization (THC) Comparison of THC to other technologies Dynamic Light Scattering (DLS) Scanning Electron Microscopy

More information

Applied Surfactants: Principles and Applications

Applied Surfactants: Principles and Applications Applied Surfactants: Principles and Applications Tadros, Tharwat F. ISBN-13: 9783527306299 Table of Contents Preface. 1 Introduction. 1.1 General Classification of Surface Active Agents. 1.2 Anionic Surfactants.

More information

X-Ray Microscopy with Elemental, Chemical, and Structural Contrast

X-Ray Microscopy with Elemental, Chemical, and Structural Contrast Institut für Strukturphysik, TU Dresden, Christian Schroer (schroer@xray-lens.de) X-Ray Microscopy with Elemental, Chemical, and Structural Contrast Christian G. Schroer Institute of Structural Physics,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information Visualization of equilibrium position of colloidal particles at fluid-water

More information

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Biomedical Nanotechnology. Lec-05 Characterisation of Nanoparticles

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Biomedical Nanotechnology. Lec-05 Characterisation of Nanoparticles INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE Biomedical Nanotechnology Lec-05 Characterisation of Nanoparticles Dr. P. Gopinath Department of Biotechnology Indian Institute

More information

http://www.physics.ucdavis.edu/condensed_matter.html A brief introduction to Condensed Matter Physics at Davis and an overview of the Condensed Matter Experiment Group The Past-- 30 Years of Nobel Prizes

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

2D XRD Imaging by Projection-Type X-Ray Microscope

2D XRD Imaging by Projection-Type X-Ray Microscope 0/25 National Institute for Materials Science,Tsukuba, Japan 2D XRD Imaging by Projection-Type X-Ray Microscope 1. Introduction - What s projection-type X-ray microscope? 2. Examples for inhomogeneous/patterned

More information

Dissipative Particle Dynamics: Foundation, Evolution and Applications

Dissipative Particle Dynamics: Foundation, Evolution and Applications Dissipative Particle Dynamics: Foundation, Evolution and Applications Lecture 4: DPD in soft matter and polymeric applications George Em Karniadakis Division of Applied Mathematics, Brown University &

More information

SLS Symposium on X-Ray Instrumentation

SLS Symposium on X-Ray Instrumentation SLS Symposium on X-Ray Instrumentation Tuesday, December 7, 2010 10:00 to 12:15, WBGB/019 10:00 The optics layout of the PEARL beamline P. Oberta, U. Flechsig and M. Muntwiler 10:30 Instrumentation for

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Types of Polymers Compatibility of Polymers Effects of Polymers Analysis of polymers Recovery of PMA What Is a

More information

Lecture 5: Characterization methods

Lecture 5: Characterization methods Lecture 5: Characterization methods X-Ray techniques Single crystal X-Ray Diffration (XRD) Powder XRD Thin film X-Ray Reflection (XRR) Microscopic methods Optical microscopy Electron microscopies (SEM,

More information

Prediction and accelerated laboratory discovery of heterogeneous catalysts

Prediction and accelerated laboratory discovery of heterogeneous catalysts Prediction and accelerated laboratory discovery of heterogeneous catalysts Kenneth R. Poeppelmeier Charles E. and Emma H. Morrison Professor of Chemistry Department of Chemistry 2145 Sheridan Road Evanston,

More information

What is the role of simulation in nanoscience research?

What is the role of simulation in nanoscience research? ChE/MSE 557 Intro part 2 What is the role of simulation in nanoscience research? 1 Opportunities for Simulation Simulation Simulation complements both experiment and theory. Extends window of observation

More information

The Compact Laboratory SAXS/WAXS/GISAXS System. SAXSpoint

The Compact Laboratory SAXS/WAXS/GISAXS System. SAXSpoint The Compact Laboratory SAXS/WAXS/GISAXS System SAXSpoint SAXSpoint The world s brightest footprint It s a common mindset that small-angle X-ray scattering experiments of high resolution require synchrotron

More information

Non contact measurement of viscoelastic properties of biopolymers

Non contact measurement of viscoelastic properties of biopolymers Non contact measurement of viscoelastic properties of biopolymers Christelle Tisserand, Anton Kotzev, Mathias Fleury, Laurent Brunel, Pascal Bru, Gérard Meunier Formulaction, 10 impasse Borde Basse, 31240

More information

APPLIED PHYSICS 216 X-RAY AND VUV PHYSICS (Sept. Dec., 2006)

APPLIED PHYSICS 216 X-RAY AND VUV PHYSICS (Sept. Dec., 2006) APPLIED PHYSICS 216 X-RAY AND VUV PHYSICS (Sept. Dec., 2006) Course Meeting: Monday, Wednesdays 11-12:15 Professor: Office Hours: Secretary: Mid Term: Final Exam: Another Course: Zhi-Xun Shen McCullough

More information

Synchrotron Methods in Nanomaterials Research

Synchrotron Methods in Nanomaterials Research Synchrotron Methods in Nanomaterials Research Marcel MiGLiERiNi Slovak University of Technology in Bratislava and Centre for Nanomaterials Research, Olomouc marcel.miglierini@stuba.sk www.nuc.elf.stuba.sk/bruno

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Supplementary Figures:

Supplementary Figures: Supplementary Figures: dcdtbt vibration spectrum: Ground state blue vs Cation state red Intensity a.u. 1000 1100 1200 1300 1400 1500 1600 1700 Frequency cm^1 dcdtbt vibration spectrum: Ground state blue

More information