*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

Size: px
Start display at page:

Download "*blood and bones contain colloids. *milk is a good example of a colloidal dispersion."

Transcription

1 Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand (1 nm to 1 um). -> high surface-to-volume ratio: surface chemistry is very important! - Colloids in porous rocks, clays, mists, and smoke. *blood and bones contain colloids. *milk is a good example of a colloidal dispersion. - Colloids in industries: synthetic paints, foams, pastes - Stabilized dispersion of solid colloidal particles in liquid: charging the surface or adsorbing molecules. -> modification of the steric interactions between the particles. -> a balance between the repulsive forces and van der Waals forces. - Aggregation: 1) flocculation: the process of reversible aggregation 2) coagulation: irreversible process (sedimentation) - Surfactants in solution: 'association colloids'

2 3.1. Types of Colloids - Two-phase dispersions in a continuous medium. - Sols: 'lyophobic (solvent hating) solids' <-> lyophilic (solvent loving) cf. poor solvent and good solvent for polymers.

3 3.3. Forces between Colloidal Particles Van der Waals Forces - Attractions between the electric dipoles of the molecules -> Dispersion interactions between the molecules on each particle. - For flat infinite surfaces separated in vacuum by a distance h, the potential per area with A H = the Hamaker constant

4 - For two spherical particles of radius R where the interparticle separation is small ( ), the Derjaguin approximation: - Medium: vacuum -> liquid (dielectric) For a system of particle 1 and particle 2 are in medium 3, 1) Particles are far apart -> each interacts with medium 3 independently and the total A H is a sum of two particle-medium terms. 2) Particle 1 is close to particle 2 -> the particle1 interacts with a similar body (particle 2) and the effective A H is a sum of particle-particle and medium-medium contributions. - In the Hamaker approach, multi-body interactions are neglected. - The correct theory involves QM calculations of the dielectric permittivity of the continuous media (instantaneous fluctuations of the induced dipolar interactions): very complex!

5 Electrical Double-Layer Forces - The electrical potential around a charged colloid particle in solution: -> counterions: an ionic atmosphere is formed around it.

6 - The diffusive double layer: described by the Gouy-Chapman equation <- a solution of Poisson-Boltzmann equation for a planar double layer. At a point where the electrical potential is, and where is the number density (molar concentration = ) of each ionic species of valance z. The excess charge density -> into Poisson's equation: - In the case that (for the surface potential at x=0 is much smaller than and/or the electrolyte is weakly charged), with the Debye screening length

7 3.4. Characterization of Colloids Rheology: The flow behavior of colloids Particle Shape and Size

8 - Colloidal sols: solid particles are dispersed in a liquid. particle shapes of 3-D spherical, 2-D plate-like, 1-D rod-like forms Electrokinetic Effects - For charged colloid particles, the effect of an electric field on the flow behavior of the dispersion. - In electrophoresis measurements, the mobility in a stationary liquid. - Zeta potential: the potential at the surface between a stationary solution and a moving charged colloidal particle. (a moving particle will have a certain number of counterions attached to it) - Huckel and Smoluchowski equation : 1) Huckel : a charged colloid particle is small enough to be treated as a point charge. ( ) 2) Smoluchowski : the particle radius is large, being as a planar charged surface. (the double layer thickness << 1 -> )

9 - In the Huckel approximation, <-> (Stokes' law) When the particle moves steadily, Using the Debye-Huckel theory, the zeta potential -> In the limit that, - In the Smoluchowski approximation (the double layer in thin enough or R >>1), The double layer can be considered to be uniform and parallel to a flat surface. The mobility has a form of (or ) - Henry equation: with (Huckel and Smoluchowski)

10 3.5. Charge Stabilization Charged colloids - Electrostatic interactions in stabilizing many colloidal systems: ionization of surface acid or base groups in aqueous solution preferential ion adsorption/desorption, ionic surfactants selective dissolution (silver iodide crystals dissolved in water + Ag + variations of concentration and nature of an electrolyte ions), etc => the balance bet the electrostatic (repulsive) forces and vdw (attractive) forces Derjaguin-Landau-Verwey-Overbe 다 (DLVO) Theory - Forces between electrical double layers and long-range vdw forces: -> Stability of the colloid suspension (dispersion or association) 1) Primary minimum and possibly a secondary minimum 2) Potential barrier vs thermal fluctuations

11 - For two spherical colloid particles (R >>1) in an electrolyte of bulk concentration of c o, the electric potential from a charged plane with

12 Critical Coagulation Concentration - Coagulation can occur at an electrolyte concentration such that the repulsive double-layer interaction is reduced significantly to enable the attractive interactions to predominate. - At the ccc (V=0 and F=0), the interparticle separation is. into the total potential -> ccc (moles/unit vol) = 3.6. Steric Stabilization - Attachment of long chain molecules to colloid particles.

13 - Steric stabilization, 1) the interparticle repulsion is indep of the electrolyte concentration. 2) effective in both non-aqueous and aqueous media 3) applicable for a wide range of colloid concentrations - Matching the properties of the adsorbed layers on the particles with 1) the dispersion medium or 2) the particle core -> interparticle interactions can be manipulated or tailored! [Reading Assignment] (p p. 139)

14 3.12. Foams - Liquid (solid) foams: a coarse dispersion of a gas in a liquid (solid) where the volume fraction of the gas is greater than that of the liquid (solid). - Foams are not thermodynamically stable due to large interfacial area (surface energy) - Some foams are metastable by the addition of small amount of soaps or surfactants. by retardation of drainage of liquid from the foam and prevention of rupture. Drainage of liquid under gravity: thinning of the liquid film Rupture from random disturbances (mechanical, thermal, evaporation, impurities)

15 - The development of a form structure: dynamic process Drainage of liquid throughout the liquid film -> polyhedral cellular structure Curvature at vertices of polyhedra (plateau borders) -> lower pressure built up -> pressure drop ( > surface tension) -> flow generation -> film rupture -> foam collapse

16 3.13. Emulsions - Dispersion of immiscible or partially miscible liquids. The free energy to disperse a liquid of volume V into drops of radius R with the interfacial tension - Emulsions: foods, pharmaceutical products, cosmetics, and agricultural products. - Emulsions (macroemulsions: um -> scattering of light) are thermodynamically unstable whereas microemulsions (1-100 nm -> clear and optically isotropic) are stable. The kinetics of exchange of molecules in and out of the stabilizing film are much greater in microemulsions Emulsions - Most common examples: water-in-oil (w/o) and oil-in-water (o/w) milk : fat droplets in a continuous aqueous phase, in fresh unskimmed cow's milk, 86% water, 5% lactose, 4% fat, 4% protein, and 1% salts.

17 mayonnaise: dispersion of vegetable oil in vinegar or lemon juice, stabilized by natural lecithin surfactant molecules. margarine: a water-in-oil emulsion. - The spontaneous formation of emulsions is rather uncommon. - The thermodynamic stability of emulsions: the free energy difference bet dispersed and undispersed systems.

18 with A = the interface area, and = the interfacial tension. The configurational entropy with = the vol fraction of liquid b and N = the number of droplets

19 -> The limiting value of for which emulsification occurs is defined by. where with r = the average droplet radius. - In emulsions stabilized by surfactant, the interfacial tension is reduced compared to that between pure liquids -> reduction in the free energy required to break up the emulsion.

20 microemulsions - Two types: dispersed (droplets) and bicontinuous (networks)

21 Spontaneous curvature of the surfactant interface H o -> 0 for droplets *H o 0 for bicont networks [positive or negative depending on whether the interface is curved toward oil (o/w) or water (w/o)] - Ternary (oil+water+surfactant) phase diagram in a triangular representation

22 - Winsor microemulsions: excess water (I) or oil (II), both (III) [Reading Assignment] 3.14 (p p. 155)

23 3.15. Concentrated Colloid Dispersions - Liquid, solid (crystalline), glass phases: Hard sphere model vol fraction : liquid freezing to a crystalline solid at crystal melting into liquid at coexistence between them. *glass transition occurs at

Module 8: "Stability of Colloids" Lecture 37: "" The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template

Module 8: Stability of Colloids Lecture 37:  The Lecture Contains: DLVO Theory. Effect of Concentration. Objectives_template The Lecture Contains: DLVO Theory Effect of Concentration file:///e /courses/colloid_interface_science/lecture37/37_1.htm[6/16/2012 1:02:12 PM] Studying the stability of colloids is an important topic

More information

Applied Surfactants: Principles and Applications

Applied Surfactants: Principles and Applications Applied Surfactants: Principles and Applications Tadros, Tharwat F. ISBN-13: 9783527306299 Table of Contents Preface. 1 Introduction. 1.1 General Classification of Surface Active Agents. 1.2 Anionic Surfactants.

More information

Colloid stability. Lyophobic sols. Stabilization of colloids.

Colloid stability. Lyophobic sols. Stabilization of colloids. Colloid stability. Lyophobic sols. Stabilization of colloids. Lyophilic and lyophobic sols Sols (lyosols) are dispersed colloidal size particles in a liquid medium (=solid/liquid dispersions) These sols

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Surface interactions part 1: Van der Waals Forces

Surface interactions part 1: Van der Waals Forces CHEM-E150 Interfacial Phenomena in Biobased Systems Surface interactions part 1: Van der Waals Forces Monika Österberg Spring 018 Content Colloidal stability van der Waals Forces Surface Forces and their

More information

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry

István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry Colloid stability István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry www.kolloid.unideb.hu (Stability of lyophilic colloids see: macromolecular solutions) Stabilities 1.

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

Colloidal dispersion

Colloidal dispersion Dispersed Systems Dispersed systems consist of particulate matter, known as the dispersed phase, distributed throughout a continuous or dispersion medium. The dispersed material may range in size from

More information

Stability of colloidal systems

Stability of colloidal systems Stability of colloidal systems Colloidal stability DLVO theory Electric double layer in colloidal systems Processes to induce charges at surfaces Key parameters for electric forces (ζ-potential, Debye

More information

Overview. Lecture 5 Colloidal Dispersions

Overview. Lecture 5 Colloidal Dispersions Physical Pharmacy Lecture 5 Colloidal Dispersions Assistant Lecturer in Pharmaceutics Overview Dispersed Systems Classification Colloidal Systems Properties of Colloids Optical Properties Kinetic Properties

More information

Contents. Preface XIII

Contents. Preface XIII V Contents Preface XIII 1 General Introduction 1 1.1 Fundamental Knowledge Required for Successful Dispersion of Powders into Liquids 1 1.1.1 Wetting of Powder into Liquid 1 1.1.2 Breaking of Aggregates

More information

Electrostatic Forces & The Electrical Double Layer

Electrostatic Forces & The Electrical Double Layer Electrostatic Forces & The Electrical Double Layer Dry Clay Swollen Clay Repulsive electrostatics control swelling of clays in water LiquidSolid Interface; Colloids Separation techniques such as : column

More information

Colloid & Interface Science Case Study Model Answers

Colloid & Interface Science Case Study Model Answers Colloid & Interface Science Case Study Model Answers Distance Learning Course in Cosmetic Science Society of Cosmetic Scientists Common Features Formulations were examples of lyophobic colloidal systems

More information

Zeta potential - An introduction in 30 minutes

Zeta potential - An introduction in 30 minutes Zeta potential - An introduction in 30 minutes ZETA POTENTIAL Introduction Zeta potential is a physical property which is exhibited by any particle in suspension, macromolecule or material surface. It

More information

Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry

Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Colloid stability. Lyophobic sols. Stabilization of colloids. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Lyophilic and lyophobic sols Sols (lyosols) are dispersed colloidal

More information

Colloid Science Principles, methods and applications

Colloid Science Principles, methods and applications Colloid Science Principles, methods and applications Second Edition Edited by TERENCE COSGROVE School of Chemistry, University of Bristol, Bristol, UK WILEY A John Wiley and Sons, Ltd, Publication Contents

More information

Protein-stabilised emulsions

Protein-stabilised emulsions Proteinstabilised emulsions Ranjan Sharma 1 Emulsion definition An emulsion consists of two immiscible liquids (generally oil and water) with one liquid forming the continueous phase while the other the

More information

COLLOID CHEMISTRY MD. KHAIRUL ISLAM

COLLOID CHEMISTRY MD. KHAIRUL ISLAM COLLOID CHEMISTRY MD. KHAIRUL ISLAM HISTORICAL BACKGROUND Thomas Graham (1861) observed that crystalline substances such as sugar, urea, and sodium chloride passed through the membrane, while others like

More information

Dispersion systems. Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase:

Dispersion systems. Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase: Dispersion systems 1/20 Dispersion system = dispersed phase in a continuum phase (medium) s/l, l/l,... According to the size of the dispersed phase: coarse dispersion (suspension), > 1 µm colloid 1 µm

More information

Overview of DLVO Theory

Overview of DLVO Theory Overview of DLVO Theory Gregor Trefalt and Michal Borkovec Email. gregor.trefalt@unige.ch, michal.borkovec@unige.ch September 29, 214 Direct link www.colloid.ch/dlvo Derjaguin, Landau, Vervey, and Overbeek

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

Module 8: "Stability of Colloids" Lecture 38: "" The Lecture Contains: Calculation for CCC (n c )

Module 8: Stability of Colloids Lecture 38:  The Lecture Contains: Calculation for CCC (n c ) The Lecture Contains: Calculation for CCC (n c ) Relation between surface charge and electrostatic potential Extensions to DLVO theory file:///e /courses/colloid_interface_science/lecture38/38_1.htm[6/16/2012

More information

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Journal of Colloid and Interface Science 263 (2003) 156 161 www.elsevier.com/locate/jcis The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Haohao

More information

Colloidal Dispersions

Colloidal Dispersions Physical Pharmacy Lecture 5 Colloidal Dispersions Assistant Lecturer in Pharmaceutics Overview Dispersed Systems Classification Colloidal Systems Properties of Colloids Optical Properties Kinetic Properties

More information

Investigation of stabilization mechanisms for colloidal suspension using nanoparticles.

Investigation of stabilization mechanisms for colloidal suspension using nanoparticles. University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2014 Investigation of stabilization mechanisms for colloidal suspension using

More information

Chapter 6 Stability of Colloidal Suspensions

Chapter 6 Stability of Colloidal Suspensions Chapter 6 Stability of Colloidal Suspensions 6.1 Kinetic Stability of Colloidal Suspensions o G = A f sl sl interfacial surface tension (sol/liq) [J/m 2 ] sol/liq surface change [m 2 ] γ sl > 0 colloid

More information

An Overview of the Concept, Measurement, Use and Application of Zeta Potential. David Fairhurst, Ph.D. Colloid Consultants, Ltd

An Overview of the Concept, Measurement, Use and Application of Zeta Potential. David Fairhurst, Ph.D. Colloid Consultants, Ltd An Overview of the Concept, Measurement, Use and Application of Zeta Potential David Fairhurst, Ph.D. Colloid Consultants, Ltd Fundamental Parameters that control the Nature and Behavior of all Particulate

More information

Electrophoretic Light Scattering Overview

Electrophoretic Light Scattering Overview Electrophoretic Light Scattering Overview When an electric field is applied across an electrolytic solution, charged particles suspended in the electrolyte are attracted towards the electrode of opposite

More information

Contents XVII. Preface

Contents XVII. Preface V Preface XVII 1 General Introduction 1 1.1 Suspensions 1 1.2 Latexes 2 1.3 Emulsions 2 1.4 Suspoemulsions 3 1.5 Multiple Emulsions 3 1.6 Nanosuspensions 4 1.7 Nanoemulsions 4 1.8 Microemulsions 5 1.9

More information

Particle Characterization Laboratories, Inc.

Particle Characterization Laboratories, Inc. Analytical services Particle size analysis Dynamic Light Scattering Static Light Scattering Sedimentation Diffraction Zeta Potential Analysis Single Point Titration Isoelectric point determination Aqueous

More information

Chapter 6 Stability of Colloidal Suspensions

Chapter 6 Stability of Colloidal Suspensions Chapter 6 Stability of Colloidal Suspensions 6.1 Kinetic Stability of Colloidal Suspensions o G = A f sl sl interfacial surface tension (sol/liq) [J/m 2 ] sol/liq surface change [m 2 ] γ sl > 0 colloid

More information

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 20, 2012 Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important Mats Larsson 1, Adrian Hill 2, and John Duffy 2 1 Malvern

More information

CHAPTER :COLLOIDS. Subject: Physical Pharmacy. Subject code:phcy102

CHAPTER :COLLOIDS. Subject: Physical Pharmacy. Subject code:phcy102 CHAPTER :COLLOIDS Subject: Physical Pharmacy Subject code:phcy102 INSTRUCTOR Dr. Jagadeesh G Hiremath Assistant Professor in Pharmaceutics College of Pharmacy & Nursing University of Nizwa P.O. Box 33,

More information

1. The Classification of Dispersion Systems 2. Lyophobic Colloids 3. The Stability and Coagulation of Dispersion Systems 4. Properties of Colloids

1. The Classification of Dispersion Systems 2. Lyophobic Colloids 3. The Stability and Coagulation of Dispersion Systems 4. Properties of Colloids Dispersion Systems 1. The Classification of Dispersion Systems 2. Lyophobic Colloids 3. The Stability and Coagulation of Dispersion Systems 4. Properties of Colloids Dispersion system is a heterogeneous

More information

Colloids Originally derived from a GREEK word KOLLA means GLUE

Colloids Originally derived from a GREEK word KOLLA means GLUE Colloids Originally derived from a GREEK word KOLLA means GLUE Definition: Colloidal dispersions discontinuous particle phase (dispersed phase) distributed uniformly in a finely divided sate in a continuous

More information

MOLECULAR INTERACTIONS NOTES

MOLECULAR INTERACTIONS NOTES - 1 - MOLECULAR INTERACTIONS NOTES Summary of Fundamental Molecular Interactions Q1Q Ion-Ion U ( r) = 4 r πεε o µ Q cosθ U ( r) = 4πεε o r µ 1µ U ( r) 3 r µ 1 µ U ( r) 6 r µ 1 α U ( r) 6 r Ion-Dipole Dipole-Dipole

More information

DLVO Theory and Non-DLVO Forces

DLVO Theory and Non-DLVO Forces NPTEL Chemical Engineering Interfacial Engineering Module 3: Lecture 5 DLVO Theory and Non-DLVO Forces Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati 781039

More information

On the Chemical Free Energy of the Electrical Double Layer

On the Chemical Free Energy of the Electrical Double Layer 1114 Langmuir 23, 19, 1114-112 On the Chemical Free Energy of the Electrical Double Layer Marian Manciu and Eli Ruckenstein* Department of Chemical Engineering, State University of New York at Buffalo,

More information

Electrostatic Double Layer Force: Part III

Electrostatic Double Layer Force: Part III NPTEL Chemical Engineering Interfacial Engineering Module 3: Lecture 4 Electrostatic Double Layer Force: Part III Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati

More information

Porous Media Induced Aggregation of Protein- Stabilized Gold Nanoparticles

Porous Media Induced Aggregation of Protein- Stabilized Gold Nanoparticles Supporting Information 3 Porous Media Induced Aggregation of Protein- Stabilized Gold Nanoparticles 4 Matthew Y. Chan, and Peter J. Vikesland* Department of Civil and Environmental Engineering, Virginia

More information

Module 8: "Stability of Colloids" Lecture 40: "" The Lecture Contains: Slow Coagulation. Other Factors affecting Kinetics of Coagulation

Module 8: Stability of Colloids Lecture 40:  The Lecture Contains: Slow Coagulation. Other Factors affecting Kinetics of Coagulation The Lecture Contains: Slow Coagulation Other Factors affecting Kinetics of Coagulation file:///e /courses/colloid_interface_science/lecture40/40_1.htm[6/16/2012 12:55:50 PM] Slow Coagulation As shown in

More information

1 General Introduction

1 General Introduction 1 1 General Introduction Several classes of formulations of disperse systems are encountered in the chemical industry, including suspensions, emulsions, suspoemulsions (mixtures of suspensions and emulsions),

More information

It is the size of the

It is the size of the Chapter 2: Literature Review (Note: A modified form of this chapter will be published as Rheology and Colloidal Stability in Paints and Coatings, Proceedings of the Association of Formulation Chemists,

More information

COLLOIDAL DISPERSIONS

COLLOIDAL DISPERSIONS COLLOIDAL DISPERSIONS Marlyn D. Laksitorini Lab. of Physical Pharmacy and Biopharmaceutics Dept.Pharmaceutics Gadjah Mada School of Pharmacy References Overview 1. Type of Dispersion 2. Example of Colloidal

More information

COLLOIDAL STATE. INTRODUCTION: Thomas Graham originally classified all substances in two

COLLOIDAL STATE. INTRODUCTION: Thomas Graham originally classified all substances in two COLLOIDAL STATE INTRODUCTION: Thomas Graham originally classified all substances in two group- 1. Crystalloids: These substances can easily be obtained in the crystalline from and their solution can diffused

More information

Complete and precise descriptions based on quantum mechanics exist for the Coulombic/Electrostatic force. These are used to describe materials.

Complete and precise descriptions based on quantum mechanics exist for the Coulombic/Electrostatic force. These are used to describe materials. The forces of nature: 1. Strong forces hold protons and neutrons together (exchange of mesons) 2. Weak interactions are involved in some kinds of radioactive decay (β-decay) 3. Coulombic or electrostatic

More information

Intermolecular and Surface Forces

Intermolecular and Surface Forces Intermolecular and Surface Forces ThirH FHitinn '' I I 111 \J& LM* КтЛ I Km I W I 1 Jacob N. Israelachvili UNIVERSITY OF CALIFORNIA SANTA BARBARA, CALIFORNIA, USA AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

Properties of Solutions

Properties of Solutions Properties of Solutions The States of Matter The state a substance is in at a particular temperature and pressure depends on two antagonistic entities: The kinetic energy of the particles The strength

More information

Water and Aqueous Systems

Water and Aqueous Systems Water and Aqueous Systems The Water Molecule: a Review Water is a simple tri-atomic molecule, H 2 O Each O-H bond is highly polar, because of the high electronegativity of the oxygen (N, O, F, and Cl have

More information

PHRC 4110 Pharmaceutics I

PHRC 4110 Pharmaceutics I CO01: Use interpretive tools for proper data handling CO01.01: Describe basic mathematics and statistic to interpret pharmaceutical data CO01.02: Work with exponents, powers, roots, logarithms, and antilogarithms

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

Physical Chemistry of Surfaces

Physical Chemistry of Surfaces Physical Chemistry of Surfaces Fifth Edition ARTHUR W. ADAMSON Department of Chemistry, University of Southern California Los Angeles, California >) A WILEY-INTERSCIENCE PUBLICATION John Wiley &. Sons,

More information

Single action pressing (from top)

Single action pressing (from top) www.komage.de Single action pressing (from top) Double action pressing with fixed die Typical course of the pressure during pressing and ejection (Single action) Upper punch Pressure Lower punch Time Green

More information

MIXTURES AND DISSOLVING. CE/Honors Chemistry Unit 10

MIXTURES AND DISSOLVING. CE/Honors Chemistry Unit 10 MIXTURES AND DISSOLVING CE/Honors Chemistry Unit 10 TYPES OF MIXTURES Solution: homogeneous mixture of two or more substances in a single phase Two parts: solvent (greater amt) and solute Does not separate

More information

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( ) 3.05 Nanomechanics of Materials and Biomaterials Thursday 04/05/07 Prof. C. Ortiz, MITDMSE I LECTURE 14: TE ELECTRICAL DOUBLE LAYER (EDL) Outline : REVIEW LECTURE #11 : INTRODUCTION TO TE ELECTRICAL DOUBLE

More information

Charged Interfaces & electrokinetic

Charged Interfaces & electrokinetic Lecture Note #7 Charged Interfaces & electrokinetic phenomena Reading: Shaw, ch. 7 Origin of the charge at colloidal surfaces 1. Ionization Proteins acquire their charge by ionization of COOH and NH 2

More information

1. Chemisorption is highly specific in nature. It occurs only if there is a possibility of chemical bonding between the adsorbent and the adsorbate.

1. Chemisorption is highly specific in nature. It occurs only if there is a possibility of chemical bonding between the adsorbent and the adsorbate. Question 5.1: Write any two characteristics of Chemisorption. 1. Chemisorption is highly specific in nature. It occurs only if there is a possibility of chemical bonding between the adsorbent and the adsorbate.

More information

Chapter 7. Pickering Stabilisation ABSTRACT

Chapter 7. Pickering Stabilisation ABSTRACT Chapter 7 Pickering Stabilisation ABSTRACT In this chapter we investigate the interfacial properties of Pickering emulsions. Based upon findings that indicate these emulsions to be thermodynamically stable,

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross.

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross. Colloid Chemistry La chimica moderna e la sua comunicazione Silvia Gross Istituto Dipartimento di Scienze di e Scienze Tecnologie Chimiche Molecolari ISTM-CNR, Università Università degli Studi degli Studi

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Factors governing the tendency of colloidal particles to flocculate

Factors governing the tendency of colloidal particles to flocculate Brownian flocculation of polymer colloids in the presence of a secondary minimum William R. Schowalter* and Alec B. Eidsath Department of Chemical Engineering, University of Illinois, Urbana, IL 61801

More information

Heat Capacity of Water A) heat capacity amount of heat required to change a substance s temperature by exactly 1 C

Heat Capacity of Water A) heat capacity amount of heat required to change a substance s temperature by exactly 1 C CHEMISTRY Ch. 13 Notes: Water and Its Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 13.1 Notes I. Water Molecule Characteristics POLAR molecule (a

More information

COLLOIDAL SOLUTIONS. Department of Medical Chemistry Pomeranian Medical University

COLLOIDAL SOLUTIONS. Department of Medical Chemistry Pomeranian Medical University COLLOIDAL SOLUTIONS Department of Medical Chemistry Pomeranian Medical University 1 COMPONENTS OF THE SYSTEM -chemicals which create the system. They create different type of mixtures - which makes the

More information

CHEMISTRY PHYSICAL. of FOODS INTRODUCTION TO THE. CRC Press. Translated by Jonathan Rhoades. Taylor & Francis Croup

CHEMISTRY PHYSICAL. of FOODS INTRODUCTION TO THE. CRC Press. Translated by Jonathan Rhoades. Taylor & Francis Croup Christos Ritzoulis Translated by Jonathan Rhoades INTRODUCTION TO THE PHYSICAL CHEMISTRY of FOODS CRC Press Taylor & Francis Croup Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis

More information

Physical chemistry of surfaces

Physical chemistry of surfaces Physical chemistry of surfaces Nanostructures possess a large fraction of surface atoms per unit volume. The physical and chemical properties of surfaces have great importance when describing general properties

More information

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 12 Solutions Sherril Soman, Grand Valley State University Thirsty Seawater Drinking seawater can cause dehydration. Seawater Is a homogeneous mixture of salts with water Contains

More information

Modern Aspects of Emulsion Science

Modern Aspects of Emulsion Science Modern Aspects of Emulsion Science Edited by Bernard P. Binks Department of Chemistry, University ofhull, UK THE ROYAL SOCIETY OF CHEMISTRY Information Services Chapter 1 Emulsions - Recent Advances in

More information

II. FLUID INTERFACES AND CAPILLARITY

II. FLUID INTERFACES AND CAPILLARITY CONTENTS Preface vii I. INTRODUCTION 1 A. Interfaces 1 B. Colloids 4 C. The bridge to nanoscience 10 1. What is nanoscience? 10 2. Nanostructures and assemblies 12 3. Generic nanoscience 17 4. New tools

More information

General Chem Solution.notebook. Solutions. Mar 12 8:19 AM

General Chem Solution.notebook. Solutions. Mar 12 8:19 AM General Chem Solution.notebook Solutions Mar 12 8:19 AM 1 Solutions 2015 OBJECTIVES: 1. I can distinguish between a heterogeneous and a homogeneous solution. 2. I can list different solute solvent combinations.

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications History of Nanotechnology: Time Line Democritus in ancient Greece: concept of atom 1900 : Rutherford : discovery of atomic nucleus The first TEM was

More information

An Introduction to namic Light Scattering by Macromole cules

An Introduction to namic Light Scattering by Macromole cules An Introduction to namic Light Scattering by Macromole cules Kenneth S. Schmitz Department of Chemistry University of Missouri-Kansas Kansas City, Missouri City ACADEMIC PRESS, INC. Harcourt Brace Jovanovich,

More information

CHEMISTRY Ch. 14 Notes: Mixtures and Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

CHEMISTRY Ch. 14 Notes: Mixtures and Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. CHEMISTRY Ch. 14 Notes: Mixtures and Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 14.1 notes I. Types of mixtures (mixture a physical blend of substances)

More information

3 rd Food Emulsions Short Course November 13 th & 14 th, 2008 University of Massachusetts. David Julian McClements University of Massachusetts

3 rd Food Emulsions Short Course November 13 th & 14 th, 2008 University of Massachusetts. David Julian McClements University of Massachusetts 3 rd Food Emulsions Short Course November 13 th & 14 th, 2008 University of Massachusetts David Julian McClements University of Massachusetts Program Objectives Review Basic Principles of Emulsion Science

More information

SURFACE CHEMISTRY

SURFACE CHEMISTRY Short Answer Questions: SURFACE CHEMISTRY *1. What is catalysis? How is catalysis classified? Give two examples for each type of catalysis? Ans. A catalyst is the substance that increases the rate of chemical

More information

Chapter 13 - Solutions

Chapter 13 - Solutions Chapter 13 - Solutions 13-1 Types of Mixtures Solutions A. Soluble 1. Capable of being dissolved B. Solution 1. A homogeneous mixture of two or more substances in a single phase C. Solvent 1. The dissolving

More information

H 2 O WHAT PROPERTIES OF WATER MAKE IT ESSENTIAL TO LIFE OF EARTH? Good solvent High Surface tension Low vapor pressure High boiling point

H 2 O WHAT PROPERTIES OF WATER MAKE IT ESSENTIAL TO LIFE OF EARTH? Good solvent High Surface tension Low vapor pressure High boiling point Unit 9: Solutions H 2 O WHAT PROPERTIES OF WATER MAKE IT ESSENTIAL TO LIFE OF EARTH? Good solvent High Surface tension Low vapor pressure High boiling point Water is a polar molecule. It experiences hydrogen

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

Set 1: Set 2: Set 3: Set 4: Set 5:

Set 1: Set 2: Set 3: Set 4: Set 5: Chapter 12 Physical Properties of Solutions Problems - Page 535 541 Set 1:16, 22, 24, 29, 31; Set 2: 34, 38, 45, 52, 60; Set 3: 62, 66, 74, 90, 93; Set 4: 94, 96, 101, 107, 108, 114 Set 5: 120, 123, 128,

More information

Colloidal Particles at Liquid Interfaces: An Introduction

Colloidal Particles at Liquid Interfaces: An Introduction 1 Colloidal Particles at Liquid Interfaces: An Introduction Bernard P. Binks and Tommy S. Horozov Surfactant and Colloid Group, Department of Chemistry, University of Hull, Hull, HU6 7RX, UK 1.1 Some Basic

More information

Classification of emulsifiers and stabilizers

Classification of emulsifiers and stabilizers EMULSIONS An emulsion is a mixture of two immiscible substances whereby one substance (the dispersed phase) is dispersed in the other (the continuous phase). Example oil and water. Emulsions normally have

More information

A dispersion (system) Colloidal solutions High molecular mass compounds

A dispersion (system) Colloidal solutions High molecular mass compounds A dispersion (system) Colloidal solutions High molecular mass compounds Outline Types of dispersions Characteristics of main types of dispersions Properties of colloidal solutions Structure of colloidal

More information

A.% by mass (like % composition)

A.% by mass (like % composition) Solutions; Colloids Key Words Solute Solvent Solubility effervescence Miscible saturated Supersaturated (metastable system)- a cooled solution contains more solute than it would at equilibrium, desolvation=

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

Lecture 3 Charged interfaces

Lecture 3 Charged interfaces Lecture 3 Charged interfaces rigin of Surface Charge Immersion of some materials in an electrolyte solution. Two mechanisms can operate. (1) Dissociation of surface sites. H H H H H M M M +H () Adsorption

More information

Sanitary Engineering. Coagulation and Flocculation. Week 3

Sanitary Engineering. Coagulation and Flocculation. Week 3 Sanitary Engineering Coagulation and Flocculation Week 3 1 Coagulation and Flocculation Colloidal particles are too small to be removed by sedimentation or by sand filtration processes. Coagulation: Destabilization

More information

Guidelines for the characterization of dispersion stability

Guidelines for the characterization of dispersion stability Provläsningsexemplar / Preview TECHNICAL REPORT ISO/TR 13097 First edition 2013-06-15 Guidelines for the characterization of dispersion stability Lignes directrices pour la caractérisation de la stabilité

More information

Colloidal dosage Forms Dr. rer. nat. Rebaz H. Ali

Colloidal dosage Forms Dr. rer. nat. Rebaz H. Ali University of Sulaimani School of Pharmacy Dept. of Pharmaceutics Third level - Second semester Colloidal dosage Forms Dr. rer. nat. Rebaz H. Ali Outlines Disperse systems Introduction Lyophilic Lyophobic

More information

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Lecture 3 Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Adsorption at Gas-Liquid interface Measurements of equilibrium adsorption surface tension measurements (Wilhelmy plate) surface analysis

More information

Colloidal Crystal: emergence of long range order from colloidal fluid

Colloidal Crystal: emergence of long range order from colloidal fluid Colloidal Crystal: emergence of long range order from colloidal fluid Lanfang Li December 19, 2008 Abstract Although emergence, or spontaneous symmetry breaking, has been a topic of discussion in physics

More information

Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension

Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension 7 Gas-liquid phase separation in oppositely charged colloids: stability and interfacial tension We study the phase behaviour and the interfacial tension of the screened Coulomb (Yukawa) restricted primitive

More information

V. Electrostatics. MIT Student

V. Electrostatics. MIT Student V. Electrostatics Lecture 26: Compact Part of the Double Layer MIT Student 1 Double-layer Capacitance 1.1 Stern Layer As was discussed in the previous lecture, the Gouy-Chapman model predicts unphysically

More information

Attraction or repulsion between charged colloids? A connection with Debye Hückel theory

Attraction or repulsion between charged colloids? A connection with Debye Hückel theory J. Phys.: Condens. Matter 12 (2000) A263 A267. Printed in the UK PII: S0953-8984(00)07724-9 Attraction or repulsion between charged colloids? A connection with Debye Hückel theory René van Roij H H Wills

More information

Chapter 11 Properties of Solutions

Chapter 11 Properties of Solutions Chapter 11 Properties of Solutions 11.1 Solution Composition. Molarity moles solute 1. Molarity ( M ) = liters of solution B. Mass Percent mass of solute 1. Mass percent = 1 mass of solution C. Mole Fraction

More information

Solvent does the dissolving (acetone) Solute the substance being dissolved (Styrofoam ) Soluble able to be dissolved

Solvent does the dissolving (acetone) Solute the substance being dissolved (Styrofoam ) Soluble able to be dissolved Solvent does the dissolving (acetone) Solute the substance being dissolved (Styrofoam ) Soluble able to be dissolved Like dissolves Like Ionic & polar compounds dissolve each other. Nonpolar dissolves

More information

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour Mohamed Daoud Claudine E.Williams Editors Soft Matter Physics With 177 Figures, 16 of them in colour Contents 1. Droplets: CapiUarity and Wetting 1 By F. Brochard-Wyart (With 35 figures) 1.1 Introduction

More information

COALESCENCE REQUIRES THAT DROPS "TOUCH" I. Conceptual organization of the idea of touching drops for Orimulsion

COALESCENCE REQUIRES THAT DROPS TOUCH I. Conceptual organization of the idea of touching drops for Orimulsion MEMORANDUM In this document we present some general ideas regarding emulsion stability which we would like to discuss with the group. COALESCENCE REQUIRES THAT DROPS "TOUCH" I. Conceptual organization

More information

List of Figures. between the two surfaces and A the Hamaker constant (fig. 3.4)... 54

List of Figures. between the two surfaces and A the Hamaker constant (fig. 3.4)... 54 List of Figures 1.1 Transfer of momentum between contiguous layers of fluid..... 10 1.2 Flow around a moving sphere..................... 18 1.3 Interaction between two moving spheres................ 19

More information