2D XRD Imaging by Projection-Type X-Ray Microscope

Size: px
Start display at page:

Download "2D XRD Imaging by Projection-Type X-Ray Microscope"

Transcription

1 0/25 National Institute for Materials Science,Tsukuba, Japan 2D XRD Imaging by Projection-Type X-Ray Microscope 1. Introduction - What s projection-type X-ray microscope? 2. Examples for inhomogeneous/patterned specimens 3. Application to stress imaging 4. Application to combinatorial imaging 5. Summary and future outlook Kenji SAKURAI

2 2θ Why 2D Imaging for X-Ray Diffraction? Because inhomogeneous system is usual for many sciences identification of materials - mixed crystal - polymorphism poly-crystalline materials - ceramics - metals - organic crystals 1/25 Microstructure - phase transition -diffusion Inhomogeneous mixture Grain boundaries Textures Macrostructure - grain growth - preferred orientation - dendrite I Average information? physical property - residual stress - heat transfer

3 How to Obtain 2D Real Space Images? - Scanning vs. Projection (Reflection) Types - 2/25 Scanning type Projection type XY scan Synchrotron µ beam Sample T Wroblewski XRD (1995) K.Sakurai XRF movie (2003) X-Ray CCD camera with a collimator PC Fluorescent X-rays Diffracted X-rays Synchrotron wide beam detector High-resolution(~100nm) Sample Extremely quick(~100msec)

4 How Projection-type Microscope Works? Monochromator scan like EXAFS experiments 3/25 XRD imaging 2d n sinθ Bn = λ n Intensity E 0 E 1 E 2 E 3 X-Ray Energy E n = /λ n Normal XRD CCD Collimator SR Energy scan d 2 d 1 d 3 Monochromator Inhomogeneous sample

5 How Projection-type Microscope Works? 4/25 The experiment is just simple exposures without XY scan X-ray image Resolution: Δ= r/t d CCD BL-16A1 Photon Factory Collimator Primary X-rays r t d Sample

6 Cr K absorption edge Examples of 2D XRD Imaging Patterned metallic Cr thin films Energy [kev] ev (XRF) 1 sec x 30 5/23 Intensity θ 64 deg Camera- Sample 13 mm 5765 ev (XRD) 1 sec x d [A] 8mm 8mm

7 (220)(109)(1010)(300)(214)(018)(122)(116)(024)a-Al2O3Intensity[cps] (420)(131)(401)(232)(331)(114)(140)(123)(232)(231)(222)(230)(113)(312)(311)(203)(031)(222)(311)(310)(202)HfO2Intensity[cps] (833)(840)(662)(831)(660)(653)(822)(811)(800)(651)(642)(721)(640)(543)(444)(631)(622)(541)(620)(611)OCT0411Intensity[cps][ナ]HfO2 Y 2 O 3 Al 2 O 3 monoclinic HfO 2 (-401) Energy:6630eV (bragg angle: 45.31deg.) Cubic Y 2 O 3 (662) Energy:7160eV (bragg angle: 45.45deg.) alpha-al 2 O 3 (300) Energy:6345eV (bragg angle: 45.39deg.) Viewing Area 13mm 13mm Viewing Area 13mm 13mm 2d (Å) Examples of 2D XRD Imaging Different materials in the same view area 6/25

8 Monoclinic ZrO 2 (140) 6889eV(d=0.1266nm) Examples of 2D XRD Imaging Mapping of different phases of ZrO 2 7/25 Cubic ZrO 2 (400) 6787eV(d=0.1285nm) 13mm Intensity [Cps] Exposure Time 10 sec (0 3 3) Monoclinic Cubic Energy [kev] (1 4 0) (1 1 4) 13mm (4 0 0) (4 0 0) (4 0 1) (2 2 3) (2 3 1) (0 2 3) (2 3 0) (3 2 0) (3 1 2) (2 2 2) (1 1 3) XRD images Normal XRD d [A]

9 Examples of 2D XRD Imaging Mapping of different phases of TiO 2 8/ θ=76deg 2θ=84deg Viewing area 8 8mm A Intensity 50 anatase (200) rutile (210) R R Rutile Anatase 0 Incident beam:4900ev θ/2θ [deg]

10 Examples of 2D XRD Imaging Quantitative imaging for peak overlapping cases 9/23 Intensity B 1 A 1 B 2 A 2 I 1 (x,y)= A 1 C A (x,y) +B 1 C B (x,y) I 2 (x,y)= A 2 C A (x,y) +B 2 C B (x,y) I C A (x,y) = 1 B 2 I 2 B 1 A1 B 2 A 2 B 1 E 1 E X-ray Energy 2 I C B (x,y) = 2 A 1 I 1 A 2 A1 B 2 A 2 B 1

11 Examples of 2D XRD Imaging 10/23 Orientation dependence of aluminum sheet (0.1mm t) (220) (311) RD RD Optical Photo Intensity [ 10 3 cps] X-ray d=2.338å 3751eV (111) (200) R.D. Normal XRD 6125eV (220) d=1.431å 6130eV θ[deg.] (311) (222) 7175 ev 1.7mm Line-pattern parallel to R.D. The strongest reflection is (311). d=1.221å 7140eV d=1.1690å 7504eV Viewing Area 8mm 8mm Exposure Time 1 sec

12 Application to Stress Imaging 11/25 Stress analysis has been done by conventional XRD Diffraction Angle, 2θ (deg.) Stress σ x X-ray ψ 1 ψ 2 ψ 3 2θ 2θ d+ ε 1 d d+ ε 2 d d+ ε 3 d larger ψ larger ε E Young s modulus ν Possion s ratio θ Bragg angle Ψ Orientation 2θ 1 + ν 2 v ε φψ = σ x sin ψ + ( σ 1 + σ 2 ) E E σ x Stress σ x σ x 2d sin θ=λ Δd ε = = cotθ Δθ d Strain Peak shift E (2θ φψ ) π = cotθ0 2 2(1 + ν ) sin ψ 180 = K M ( ε = E 1+ ν (sin ) φψ 2 ψ ) sin 2 Ψ Changing incidence angle

13 Application to Stress Imaging How to extend the method to 2D imaging? 1 + ν 2 v ε φψ = σ x sin ψ + ( σ 1 + σ 2 ) E E CCD 12/25 X-rays σ x E ( ε = 1+ ν (sin E = 1+ ν = K M φψ ψ ) 1 λ 2 λ sin ψ 0 2 ) λ/λ 0 Sample 2 sin Ψ λ λ 0 plot sin 2 ψ CCD Sample is always fixed Energy scan instead of 2θ scan Changing 2θ instead of incidence angle for ψ Sin 2 ψ λ/λo plot instead of sin 2 ψ 2θ plot Monochromator X-Rays ψ 2θ

14 Application to Stress Imaging Imaging of welded steel 13/25 Conventional XRD pattern (Cu Kα) Welded parts Blocks (low carbon steel)

15 Application to Stress Imaging 2D images for Fe(200) reflections at 90 deg 14/ eV 6128eV 6184eV Exposure time:5sec/image CCD steel block X-ray 90 Sample Welded part

16 Application to Stress Imaging 2D images for Fe(200) reflections for different ψ 15/25 X-ray CCD Sample X-ray CCD Sample X-ray CCD Sample ψ=39.0 ψ=45.0 ψ=52.5

17 Application to Stress Imaging 16/25 2D images of peak shift amount (X-ray wavelength) ψ=39.0 ψ=52.5 steel block ψ=45.0 Welded part

18 Application to Stress Imaging Finally obtained stress image from sin 2 ψ λ/λo plots Strain images for different ψ 17/25 Intensity λ/λ 0 ψ=39.0 Wavelength sin 2 ψ ψ=45.0 Intensity Wavelength Stress image Slope values for each pixel compressive Intensity tensile ψ=52.5 Wavelength

19 Application to Combinatorial Imaging 18/25 Efficient analysis of arrayed samples on a single substrate E 1 E 2 E 3 E 4 Single-rod fishing Net- fishing Parameters Sample-1, Sample-2,. XRD intensity Absorption XAFS XRD composition, temperature, etc. E A E B E C E D

20 Application to Combinatorial Imaging Y 2 O 3 Screening of high-k oxide candidates HfO 2 Cubic Y 2 O 3 (662) Energy: 7160 ev α-al 2 O 3 (300) Energy: 6345 ev 19/25 13mm Al 2 O 3 13mm Combinatorial library Graded ternary oxides sample prepared by pulsed laser deposition. A. Ahmet, Y.-Z. Yoo, K. Hasegawa, H. Koinuma, T. Chikyow Appl. Phys. A 79, (2004). - monoclinic HfO 2 (401) Energy: 6630 ev

21 Application to Combinatorial Imaging 20/25 XRF/XAFS imaging of CO 2 absorbing LiFeO 2 Synthesis temperature 100 o C 200 o C 300 o C 400 o C SQ substrate CO 2 Not exposed 8mm 100 o C 30 min 200 o C 30 min CO 2 exposure 350 o C 30 min 8mm Fe-K XRF image KeK-PF BL-16A1 Incident X-ray energy : 7130 ev (above the Fe-absorption edge) Imaging time : 3 sec Pixels : 1000 x 1000 Bulk Nano particles Chemical absorption of CO 2 2 LiFeO 2 + CO 2 Li 2 CO 3 + γ-fe 2 O 3

22 XRF Intensity (norm) Application to Combinatorial Imaging 21/25 XRF/XAFS imaging of CO 2 absorbing LiFeO 2 Synthesis temperature 100 o C 200 o C 300 o C 400 o C 0.5eV-step x 60 points Measuring time = 9 min!! CO 2 exposure Quick change at lower temperature absorption edge shift CO 2 exposure Not exposed 100 o C x 30 min 200 o C x 30 min 350 o C x 30 min X-Ray Energy (ev) 200 o C 400 o C

23 Summary 1M pixel imaging for ~ cm 2 area 2D XRD imaging by projection-type X-ray microscope Different phases 22/25 Energy-dispersive experiments with fixed geometry Glancing angle to the sample surface 1~3 deg Diffraction angle (CCD camera position) 60~120 deg Close distance between the sample and CCD device 0.5~15 mm Collimator plate inside the CCD camera 6 mrad Imaging of inhomogeneous/patterned polycrystalline specimens difference in materials, phases, orientations Application to stress imaging Application to combinatorial imaging Combining with XRF/XAFS imaging Different orientations

24 Summary 23/25 Both scanning and projection-types are necessary Geometry for the sample Scanning microscope Vertical arrangement (for most cases) Projection microscope (Non-Scanning) Horizontal arrangement Typical primary beam size µm x µm 8~12mm (H) x0.4mm(v) Necessity of focusing the primary beam Absolutely necessary Desirable for vertical direction Typical spatial resolution µm µm Typical observation area µm x µm 8-12mm x 8-12mm Ideal polarization in terms of S/B ratio Horizontally linear Vertically linear Typical pixel numbers ca. 100 x 100 More than 1000 x 1000 Typical measuring time for one image 3 24 h sec

25 Towards Future Projection-type microscope can be widely used Diffusion 24/25 Realtime Movie Deposition? composite materials 3D/4D Imaging Phase transition Chemical reaction Rapid Diagnostics Functionally graded materials Combinatorial screening American Chemical Society, Mitsubishi Electric Engineering Stress analysis We use a synchrotron but combination with X-ray tube is also promising..

26 Acknowledgement Thank you! Mari MIZUSAWA NIMS Stress imaging Hiromi EBA NIMS Masahiko Shoji NIMS Image processing Hiroshi SAWA Photon Factory, KEK Yusuke WAKABAYASHI Photon Factory, KEK Yoshinori UCHIDA Photon Factory, KEK Atsuo IIDA Photon Factory, KEK Combinatorial imaging BL-16A BL-16A BL-16A BL-4A 25/25 Active-Nano supported by MEXT, Japan government Photon Factory S-type Program References K.Sakurai, Spectrochimica Acta B54, 1497 (1999). K.Sakurai, Photon Factory Activity Report 2001 Part A, 33. K.Sakurai and H.Eba, Anal. Chem. 75, 355 (2003). M.Mizusawa and K.Sakurai, J. Synchrotron Rad. 11, 209 (2004). K.Sakurai and M.Mizusawa, AIP Conf. Proceedings (SRI-2003). (2004). K.Sakurai and M.Mizusawa, Nanotechnology, 15, S428 (2004). H.Eba and K.Sakurai, Materials Trans., 46, 665 (2005). H.Eba and K.Sakurai, Chemistry Letters, 34, 872 (2005). H.Eba and K.Sakurai, Appl. Surf. Sci., (in press). Japanese Patents , , , , , , ,

27 Measuring Point (No.1~5) Point Analysis Stress 2D image analysis region 2θ-sin 2 ψ plot σ=k M M is the slope in 2θ-sin 2 ψ plot K=-32.44kg/mm 2 /deg

28 Quick X-Ray Fluorescence Imaging Metallic Cr thin film on glass substrate X-ray image Incident X-ray Energy 10.0 kev X-ray Fluorescence Exposure Time 1 sec. K L M 8 mm Optical microscope image 8 mm

DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT

DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 003, Advances in X-ray Analysis, Volume 46. 6 DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT

More information

Development of 2-Dimentional Imaging XAFS System at BL-4

Development of 2-Dimentional Imaging XAFS System at BL-4 Development of 2-Dimentional Imaging XAFS System at BL-4 Koichi Sumiwaka 1, Misaki Katayama 2, Yasuhiro Inada 2 1) Department of Applied Chemistry, College of Science and Engineering, Ritsumeikan, University,

More information

Fig. 2. Intersection between X-ray and diffracted beams. 2θ 1 (1) (2) (3) (4) method.

Fig. 2. Intersection between X-ray and diffracted beams. 2θ 1 (1) (2) (3) (4) method. 2017A-E10 Program Title An attempt to measure strains of coarse grains and micro area using double exposure method 1), 2) 3) 3) 4) Username : K. Suzuki 1), T. Shobu 2) R. Yasuda 3) A. Shiro 3) Y. Kiso

More information

Early Development of Dispersive X-Ray Absorption Spectrometer and Recent Extension of Dispersive Optics to Quick X-ray Reflectometory

Early Development of Dispersive X-Ray Absorption Spectrometer and Recent Extension of Dispersive Optics to Quick X-ray Reflectometory Early Development of Dispersive X-Ray Absorption Spectrometer and Recent Extension of Dispersive Optics to Quick X-ray Reflectometory T. Matsushita, Photon Factory KEK Tsukuba, Ibaraki, Japan outline laboratory

More information

Strain, Stress and Cracks Klaus Attenkofer PV Reliability Workshop (Orlando) April 7-8, 2015

Strain, Stress and Cracks Klaus Attenkofer PV Reliability Workshop (Orlando) April 7-8, 2015 Strain, Stress and Cracks Klaus Attenkofer PV Reliability Workshop (Orlando) April 7-8, 2015 1 BROOKHAVEN SCIENCE ASSOCIATES Overview Material s response to applied forces or what to measure Definitions

More information

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry X-rays Wilhelm K. Roentgen (1845-1923) NP in Physics 1901 X-ray Radiography - absorption is a function of Z and density X-ray crystallography X-ray spectrometry X-rays Cu K α E = 8.05 kev λ = 1.541 Å Interaction

More information

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 266 NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

More information

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ).

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ). X-Ray Diffraction X-ray diffraction geometry A simple X-ray diffraction (XRD) experiment might be set up as shown below. We need a parallel X-ray source, which is usually an X-ray tube in a fixed position

More information

Supplementary Information

Supplementary Information Supplementary Information Bismuth Sulfide Nanoflowers for Detection of X-rays in the Mammographic Energy Range Shruti Nambiar a,b, Ernest K. Osei a,c,d, John T.W.Yeow *,a,b a Department of Systems Design

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD

SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD 73 SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD Atsuo Iida 1), Yoichi Takanishi 2) 1)Photon Factory, Institute of Materials Structure Science, High Energy

More information

Scattering Techniques and Geometries How to choose a beamline. Christopher J. Tassone

Scattering Techniques and Geometries How to choose a beamline. Christopher J. Tassone Scattering Techniques and Geometries How to choose a beamline Christopher J. Tassone Why Care About Geometries? How do you decide which beamline you want to use? Questions you should be asking Do I want

More information

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 511 FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON

More information

Q. Shen 1,2) and T. Toyoda 1,2)

Q. Shen 1,2) and T. Toyoda 1,2) Photosensitization of nanostructured TiO 2 electrodes with CdSe quntum dots: effects of microstructure in substrates Q. Shen 1,2) and T. Toyoda 1,2) Department of Applied Physics and Chemistry 1), and

More information

Muffin-tin potentials in EXAFS analysis

Muffin-tin potentials in EXAFS analysis J. Synchrotron Rad. (5)., doi:.7/s6577555 Supporting information Volume (5) Supporting information for article: Muffin-tin potentials in EXAFS analysis B. Ravel Supplemental materials: Muffin tin potentials

More information

Refinement of X-ray Fluorescence Holography for Determination of Local Atomic Environment

Refinement of X-ray Fluorescence Holography for Determination of Local Atomic Environment Materials Transactions, Vol. 43, No. 7 (2002) pp. 1464 to 1468 Special Issue on Grain Boundaries, Interfaces, Defects and Localized Quantum Structure in Ceramics c 2002 The Japan Institute of Metals Refinement

More information

Swanning about in Reciprocal Space. Kenneth, what is the wavevector?

Swanning about in Reciprocal Space. Kenneth, what is the wavevector? Swanning about in Reciprocal Space or, Kenneth, what is the wavevector? Stanford Synchrotron Radiation Laboratory Principles The relationship between the reciprocal lattice vector and the wave vector is

More information

print first name print last name print student id grade

print first name print last name print student id grade print first name print last name print student id grade Experiment 2 X-ray fluorescence X-ray fluorescence (XRF) and X-ray diffraction (XRD) may be used to determine the constituent elements and the crystalline

More information

MEASUREMENT OF TEMPORAL RESOLUTION AND DETECTION EFFICIENCY OF X-RAY STREAK CAMERA BY SINGLE PHOTON IMAGES

MEASUREMENT OF TEMPORAL RESOLUTION AND DETECTION EFFICIENCY OF X-RAY STREAK CAMERA BY SINGLE PHOTON IMAGES Proceedings of IBIC212, Tsukuba, Japan MEASUREMENT OF TEMPORAL RESOLUTION AND DETECTION EFFICIENCY OF X-RAY STREAK CAMERA BY SINGLE PHOTON IMAGES A. Mochihashi, M. Masaki, S. Takano, K. Tamura, H. Ohkuma,

More information

XRD RAPID SCREENING SYSTEM FOR COMBINATORIAL CHEMISTRY

XRD RAPID SCREENING SYSTEM FOR COMBINATORIAL CHEMISTRY Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 1 XRD RAPID SCREENING SYSTEM FOR COMBINATORIAL CHEMISTRY Bob B. He, John Anzelmo, Peter LaPuma, Uwe Preckwinkel,

More information

Data collection Strategy. Apurva Mehta

Data collection Strategy. Apurva Mehta Data collection Strategy Apurva Mehta Outline Before.. Resolution, Aberrations and detectors During.. What is the scientific question? How will probing the structure help? Is there an alternative method?

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis Tim Nunney The world leader in serving science 2 XPS Surface Analysis XPS +... UV Photoelectron Spectroscopy UPS He(I)

More information

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1])

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1]) Röntgenpraktikum M. Oehzelt (based on the diploma thesis of T. Haber [1]) October 21, 2004 Contents 1 Fundamentals 2 1.1 X-Ray Radiation......................... 2 1.1.1 Bremsstrahlung......................

More information

NAME GEOL FORENSIC GEOLOGY X-RAY DIFFRACTION AND FORENSIC GEOLOGY

NAME GEOL FORENSIC GEOLOGY X-RAY DIFFRACTION AND FORENSIC GEOLOGY NAME GEOL.2150 - FORENSIC GEOLOGY X-RAY DIFFRACTION AND FORENSIC GEOLOGY I. Introduction Minerals are crystalline solids. Individual minerals are distinguished on the basis of chemistry and the way in

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Portable type TXRF analyzer: Ourstex 200TX

Portable type TXRF analyzer: Ourstex 200TX Excerpted from Adv. X-Ray. Chem. Anal., Japan: 42, pp. 115-123 (2011) H. Nagai, Y. Nakajima, S. Kunimura, J. Kawai Improvement in Sensitivity and Quantification by Using a Portable Total Reflection X-Ray

More information

Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study

Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study Arturas Vailionis 1, Wolter Siemons 1,2, Gertjan Koster 1 1 Geballe Laboratory for

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

X-ray diffraction geometry

X-ray diffraction geometry X-ray diffraction geometry Setting controls sample orientation in the diffraction plane. most important for single-crystal diffraction For any poly- (or nano-) crystalline specimen, we usually set: 1 X-ray

More information

EXAFS. Extended X-ray Absorption Fine Structure

EXAFS. Extended X-ray Absorption Fine Structure AOFSRR Cheiron School 2010, SPring-8 EXAFS Oct. 14th, 2010 Extended X-ray Absorption Fine Structure Iwao Watanabe Ritsumeikan University EXAFS Theory Quantum Mechanics Models Approximations Experiment

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

X-ray, Neutron and e-beam scattering

X-ray, Neutron and e-beam scattering X-ray, Neutron and e-beam scattering Introduction Why scattering? Diffraction basics Neutrons and x-rays Techniques Direct and reciprocal space Single crystals Powders CaFe 2 As 2 an example What is the

More information

X Rays & Crystals. Characterizing Mineral Chemistry & Structure. J.D. Price

X Rays & Crystals. Characterizing Mineral Chemistry & Structure. J.D. Price X Rays & Crystals Characterizing Mineral Chemistry & Structure J.D. Price Light - electromagnetic spectrum Wave behavior vs. particle behavior If atoms are on the 10-10 m scale, we need to use sufficiently

More information

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry Pavol Mikula, Nuclear Physics Institute ASCR 25 68 Řež near Prague, Czech Republic NMI3-Meeting, Barcelona, 21 Motivation Backscattering

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples

Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples Beamline practice at BL01B1 (XAFS) In-situ XAFS measurement of catalyst samples ver. 2015/09/18 T. Ina, K. Kato, T. Uruga (JASRI), P. Fons (AIST/JASRI) 1. Introduction The bending magnet beamline, BL01B1,

More information

Structure determination at high pressures: X-ray diffraction

Structure determination at high pressures: X-ray diffraction Structure determination at high pressures: X-ray diffraction Julio Pellicer Porres MALTA Consolider Team Dpto. de Física Aplicada ICMUV, Univ. València, Spain Julio.Pellicer@uv.es 1 Outline XRD at high

More information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2 S1 Chemistry at Boron: Synthesis and Properties of Red to Near-IR Fluorescent Dyes based on Boron Substituted Diisoindolomethene Frameworks Gilles Ulrich, a, * Sebastien Goeb a, Antoinette De Nicola a,

More information

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS SCSAM Short Course Amir Avishai RESEARCH QUESTIONS Sea Shell Cast Iron EDS+SE Fe Cr C Objective Ability to ask the

More information

SAMANTHA GORHAM FRANK H. MORRELL CAMPUS ADVISOR: Prof. TREVOR A. TYSON (NJIT)

SAMANTHA GORHAM FRANK H. MORRELL CAMPUS ADVISOR: Prof. TREVOR A. TYSON (NJIT) SAMANTHA GORHAM FRANK H. MORRELL CAMPUS ADVISOR: Prof. TREVOR A. TYSON (NJIT) I WANT TO THANK PROFESSOR TREVOR A. TYSON FOR HIS HELP IN ASSISTING ME THROUGHOUT THE COURSE OF THIS PRJECT AND RESEARCH. I

More information

X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL

X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 321 X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL Kazuhiro Takada 1,

More information

Multilayer Interference Coating, Scattering, Diffraction, Reflectivity

Multilayer Interference Coating, Scattering, Diffraction, Reflectivity Multilayer Interference Coating, Scattering, Diffraction, Reflectivity mλ = 2d sin θ (W/C, T. Nguyen) Normal incidence reflectivity 1..5 1 nm MgF 2 /Al Si C Pt, Au 1 ev 1 ev Wavelength 1 nm 1 nm.1 nm Multilayer

More information

IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE

IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 158 IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE B. H.

More information

Two-dimensional homologous perovskites as light absorbing materials for solar cell applications

Two-dimensional homologous perovskites as light absorbing materials for solar cell applications Supporting Information for Two-dimensional homologous perovskites as light absorbing materials for solar cell applications Duyen H. Cao, Constantinos C. Stoumpos, Omar K. Farha,, Joseph T. Hupp, and Mercouri

More information

MeV electron diffraction and microscopy

MeV electron diffraction and microscopy UESDM, UCLA, Dec. 12 14, 2012 MeV electron diffraction and microscopy in Osaka University Jinfeng Yang Osaka University, Japan Collaborators: (RIKEN) Yoshie Murooka (Osaka Univ.) Y. Naruse, K. Kan, K.

More information

X-Ray Fluorescence and Natural History

X-Ray Fluorescence and Natural History X-Ray Fluorescence and Natural History How XRF Helps XRF can be used both quantitatively (homogenous samples) and quantitatively (heterogenous samples).! Trace elements in a fossil can help identify source,

More information

Neutron Imaging at Spallation Neutron Sources

Neutron Imaging at Spallation Neutron Sources Neutron Imaging at Spallation Neutron Sources E.H. LEHMANN, A. KAESTNER Paul Scherrer Institut, Deptm. Spallation Neutron Source, Switzerland OUTLINE 1. Introduction: Motivation for Neutron Imaging 2.

More information

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF)

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF) Cheiron School 014 Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF) 1 Atomic Number Absorption Edges in the Soft X-ray Region M edge L edge K edge. Li Absorption-edge Energy (ev) Studies using

More information

Electrochemical Cell for in-situ XAFS Measurements

Electrochemical Cell for in-situ XAFS Measurements Electrochemical Cell for in-situ XAFS Measurements Ryota Miyahara, Kazuhiro Hayashi, Misaki Katayama, and Yasuhiro Inada Applied Chemistry Course, Graduate School of Life Sciences, Ritsumeikan University,

More information

Basics of Synchrotron Radiation Beamlines and Detectors. Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors

Basics of Synchrotron Radiation Beamlines and Detectors. Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors Basics of Synchrotron Radiation Beamlines and Detectors Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors Important properties of Synchrotron Radiation Tunability

More information

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses 2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass Photonic Glass Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses Takumi FUJIWARA Tohoku University Department

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes,, and Yuepeng Deng Department of Materials Science and Engineering University

More information

Laser matter interaction

Laser matter interaction Laser matter interaction PH413 Lasers & Photonics Lecture 26 Why study laser matter interaction? Fundamental physics Chemical analysis Material processing Biomedical applications Deposition of novel structures

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Lecture 23 X-Ray & UV Techniques

Lecture 23 X-Ray & UV Techniques Lecture 23 X-Ray & UV Techniques Schroder: Chapter 11.3 1/50 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Diffractometer. Geometry Optics Detectors

Diffractometer. Geometry Optics Detectors Diffractometer Geometry Optics Detectors Diffractometers Debye Scherrer Camera V.K. Pecharsky and P.Y. Zavalij Fundamentals of Powder Diffraction and Structural Characterization of Materials. Diffractometers

More information

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation SESAME-JSPS School November 14-16, 2011 Amman, Jordan Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation Shin-ichi Adachi (Photon Factory,

More information

Mechanical characterization of single crystal BaTiO 3 film and insitu. XRD observation of microstructure change due to

Mechanical characterization of single crystal BaTiO 3 film and insitu. XRD observation of microstructure change due to 76 Chapter 4 Mechanical characterization of single crystal BaTiO 3 film and insitu XRD observation of microstructure change due to mechanical loading 4.1 Introduction Ferroelectric materials have many

More information

Measurement of EUV scattering from Mo/Si multilayer mirrors

Measurement of EUV scattering from Mo/Si multilayer mirrors Measurement of EUV scattering from Mo/Si multilayer mirrors N. Kandaka, T. Kobayashi, T. Komiya, M. Shiraishi, T. Oshino and K. Murakami Nikon Corp. 3 rd EUVL Symposium Nov. 2-4 2004 (Miyazaki, JAPAN)

More information

Name : Roll No. :.. Invigilator s Signature :.. CS/B.Tech/SEM-2/PH-201/2010 2010 ENGINEERING PHYSICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are

More information

Initial Results on the Feasibility of Hybrid X-Ray Microscopy

Initial Results on the Feasibility of Hybrid X-Ray Microscopy CHINESE JOURNAL OF PHYSICS VOL. 43, NO. 5 OCTOBER 2005 Initial Results on the Feasibility of Hybrid X-Ray Microscopy P. K. Tseng, 1 W. F. Pong, 1 C. L. Chang, 1 C. P. Hsu, 1 F. Y. Lin, 2 C. S. Hwang, 2

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Supporting Information

Supporting Information Supporting Information Devlin et al. 10.1073/pnas.1611740113 Optical Characterization We deposit blanket TiO films via ALD onto silicon substrates to prepare samples for spectroscopic ellipsometry (SE)

More information

Chapter 3 Chapter 4 Chapter 5

Chapter 3   Chapter 4 Chapter 5 Preamble In recent years bismuth-based, layer-structured perovskites such as SrBi 2 Nb 2 O 9 (SBN) and SrBi 2 Ta 2 O 9 (SBT) have been investigated extensively, because of their potential use in ferroelectric

More information

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 96 THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS

More information

Development of a Compact XAFS Measurement Chamber under Atmospheric Pressure in the Soft X-ray Region

Development of a Compact XAFS Measurement Chamber under Atmospheric Pressure in the Soft X-ray Region Development of a Compact XAFS Measurement Chamber under Atmospheric Pressure in the Soft X-ray Region Koji Nakanishi, Toshiaki Ohta Abstract We have developed a compact experimental set-up for X-ray absorption

More information

Good Diffraction Practice Webinar Series

Good Diffraction Practice Webinar Series Good Diffraction Practice Webinar Series High Resolution X-ray Diffractometry (1) Mar 24, 2011 www.bruker-webinars.com Welcome Heiko Ress Global Marketing Manager Bruker AXS Inc. Madison, Wisconsin, USA

More information

Structural characterization. Part 1

Structural characterization. Part 1 Structural characterization Part 1 Experimental methods X-ray diffraction Electron diffraction Neutron diffraction Light diffraction EXAFS-Extended X- ray absorption fine structure XANES-X-ray absorption

More information

X-ray Polarimetry with gas proportional counters through rise-time

X-ray Polarimetry with gas proportional counters through rise-time X-ray Polarimetry with gas proportional counters through rise-time K. Hayashida, T. Horikawa, Y. Nakashima, H. Tsunemi (Osaka University, Japan) Acknowledge to Y. Namito (KEK, Japan) N.Tokanai (Yamagata

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

PB I FEL Gas-Monitor Detectors for FEL Online Photon Beam Diagnostics BESSY

PB I FEL Gas-Monitor Detectors for FEL Online Photon Beam Diagnostics BESSY FEL 2004 Gas-Monitor Detectors for FEL Online Photon Beam Diagnostics M. Richter S.V. Bobashev, J. Feldhaus A. Gottwald, U. Hahn A.A. Sorokin, K. Tiedtke BESSY PTB s Radiometry Laboratory at BESSY II 1

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Chapter 1 X-ray Absorption Fine Structure (EXAFS)

Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1 Chapter 1 X-ray Absorption Fine Structure (EXAFS) 1.1 What is EXAFS? X-ray absorption fine structure (EXAFS, XAFS) is an oscillatory modulation in the X-ray absorption coefficient on the high-energy

More information

Cauchois Johansson x-ray spectrograph for kev energy range

Cauchois Johansson x-ray spectrograph for kev energy range REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 72, NUMBER 2 FEBRUARY 2001 Cauchois Johansson x-ray spectrograph for 1.5 400 kev energy range E. O. Baronova a) and M. M. Stepanenko RRC Kurchatov Institute, 123182,

More information

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark)

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark) 1 A brick of mass 5.0 kg falls through water with an acceleration of 0.90 m s 2. Which of the following can be used to calculate the resistive force acting on the brick? A 5.0 (0.90 9.81) B 5.0 (0.90 +

More information

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I Light Source I Takashi TANAKA (RIKEN SPring-8 Center) Light Source I Light Source II CONTENTS Introduction Fundamentals of Light and SR Overview of SR Light Source Characteristics of SR (1) Characteristics

More information

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington EE 527 MICROFABRICATION Lecture 5 Tai-Chang Chen University of Washington MICROSCOPY AND VISUALIZATION Electron microscope, transmission electron microscope Resolution: atomic imaging Use: lattice spacing.

More information

Thermodynamic and Kinetic Investigations for Redox Reactions of Nickel Species Supported on Silica

Thermodynamic and Kinetic Investigations for Redox Reactions of Nickel Species Supported on Silica Thermodynamic and Kinetic Investigations for Redox Reactions of Nickel Species Supported on Silica Shohei Yamashita, Misaki Katayama, Yasuhiro Inada Graduate School of Life Sciences, Ritsumeikan University,

More information

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires with Controllable Overpotential Bin Liu 1, Hao Ming Chen, 1 Chong Liu 1,3, Sean C. Andrews 1,3, Chris Hahn 1, Peidong Yang 1,2,3,* 1 Department

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2013 69451 Weinheim, Germany 3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells** Hui Wang, Kai

More information

object objective lens eyepiece lens

object objective lens eyepiece lens Advancing Physics G495 June 2015 SET #1 ANSWERS Field and Particle Pictures Seeing with electrons The compound optical microscope Q1. Before attempting this question it may be helpful to review ray diagram

More information

Atomic Motion via Inelastic X-Ray Scattering

Atomic Motion via Inelastic X-Ray Scattering Atomic Motion via Inelastic X-Ray Scattering Cheiron School Beamline Practical - Monday ONLY at BL35 Alfred Q.R. Baron & Satoshi Tsutsui We will introduce students to the use of inelastic x-ray scattering,

More information

8. XAFS Measurements and Errors

8. XAFS Measurements and Errors 8. XAFS Measurements and rrors XAFS Measurements X-ray detectors: Ionization chamber detectors Solid state detectors lectron yield detectors Scintillation detectors µ ) = µ 1 + χ )) 0 Transmission Measurement

More information

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

Solid State Science and Technology, Vol. 13, No 1 & 2 (2005) ISSN

Solid State Science and Technology, Vol. 13, No 1 & 2 (2005) ISSN FABRICATION OF Bi-Ti-O THIN FILM PRESSURE SENSOR PREPARED BY ELECTRON BEAM EVAPORATION METHOD Chong Cheong Wei, Muhammad Yahaya and Muhamad Mat Salleh Institue of Microengineering and Nanoelectronics,

More information

with any accuracy. The parameter a of cubic substances is directly proportional to the spacing d of any particular set of lattice planes:

with any accuracy. The parameter a of cubic substances is directly proportional to the spacing d of any particular set of lattice planes: The change in solute concentration or temperature produce only a small change in lattice parameter precise parameter measurements is needed to measure these quantities with any accuracy. The parameter

More information

X-Ray Emission and Absorption

X-Ray Emission and Absorption X-Ray Emission and Absorption Author: Mike Nill Alex Bryant February 6, 20 Abstract X-rays were produced by two bench-top diffractometers using a copper target. Various nickel filters were placed in front

More information

X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy X-ray Absorption Spectroscopy Matthew Newville Center for Advanced Radiation Sources University of Chicago 12-Sept-2014 SES VI SES VI 12-Sept-2014 SES VI What Is XAFS? X-ray Absorption Fine-Structure (XAFS)

More information

Surface Sensitivity & Surface Specificity

Surface Sensitivity & Surface Specificity Surface Sensitivity & Surface Specificity The problems of sensitivity and detection limits are common to all forms of spectroscopy. In its simplest form, the question of sensitivity boils down to whether

More information

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space Tobias U. Schülli, X-ray nanoprobe group ESRF OUTLINE 1 Internal structure of

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

ABC s of Electrochemistry series Materials Characterization techniques: SEM and EDS Ana María Valenzuela-Muñiz November 3, 2011

ABC s of Electrochemistry series Materials Characterization techniques: SEM and EDS Ana María Valenzuela-Muñiz November 3, 2011 ABC s of Electrochemistry series Materials Characterization techniques: SEM and EDS Ana María Valenzuela-Muñiz November 3, 2011 CEER, Department of Chemical and Biomolecular Engineering Outline Introduction

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 2b: X-ray Fluorescence Spectrometry Text: Chapter 12 Rouessac (1 week) 4.0 X-ray Fluorescence Download, read and understand EPA method 6010C ICP-OES Winter 2009 Page 1 Atomic X-ray Spectrometry Fundamental

More information

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

Strong Facet-Induced and Light-Controlled Room-Temperature. Ferromagnetism in Semiconducting β-fesi 2 Nanocubes

Strong Facet-Induced and Light-Controlled Room-Temperature. Ferromagnetism in Semiconducting β-fesi 2 Nanocubes Supporting Information for Manuscript Strong Facet-Induced and Light-Controlled Room-Temperature Ferromagnetism in Semiconducting β-fesi 2 Nanocubes Zhiqiang He, Shijie Xiong, Shuyi Wu, Xiaobin Zhu, Ming

More information

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author.   ciac - Shanghai P. R. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Supplementary Information For Journal of Materials Chemistry A Perovskite- @BiVO

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature05669 SUPPLEMENTARY INFORMATION Reversible Shape Changes of Molecular Crystals by Photoirradiation Seiya Kobatake 1, Shizuka Takami, Hiroaki Muto, Tomoyuki Ishikawa 1 & Masahiro Irie

More information

PLS-II s STXM and its application activities

PLS-II s STXM and its application activities 1 PLS-II s STXM and its application activities Hyun-Joon Shin Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Korea shj001@postech.ac.kr Two accelerators for x-rays...

More information