A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale

Size: px
Start display at page:

Download "A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale"

Transcription

1 A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale Jan Lüning

2 Outline Scientific motivation: Random magnetization processes Technique: Lensless imaging by Fourier Transform holography Feasibility: Single shot imaging at LCLS Equipment and costs Outlook: Future capabilities and experiments

3 Occurrence of random processes in magnetism Two examples: 1. Science: Imaging of critical magnetic fluctuations Direct observation of random magnetization dynamics occurring in equilibrium at Curie temperature 2. Technology: Origin of speed limit for magnetization switching Deterministic (repeatable) processes are required for technology but Random processes determine technological limit! Imaging of random dynamics requires recording of snapshots Jan Lüning Andreas Scherz H.C. Siegmann Bill Schlotter Yves Acreman Jo Stöhr Stefan Eisebitt Christian Günther Wolfgang Eberhardt

4 Phase transitions Phase transitions play an important role in a wide variety of materials and applications Theory groups phase transitions in classes, which following common, universal scaling laws Computer simulations allow detailed analysis of phase transitions in model systems Ferro- to paramagnetic phase transition is example of 2 nd order phase transition for which the order parameter (correlation length) diverges at critical temperature T c

5 Magnetic phase transitions Susceptibility T¼T C M(T)/M 0 Magnetization T<T C Â(T;H! 0) T>T C Image of critical fluctuations is computer simulation of Ising model (Web page of Schwabl, TU Munich). T / T c Critical fluctuations in 3D are expected to be small and fast In 2D fluctuations expected to be larger

6 2D critical magnetic fluctuations: Size and dynamics 1 ns 30 µs (T c ) o = Scaling laws ³»(Tc )» o z= 2 Relaxation time 10 nm 1 µm Â(T c ) Â o = ³»(Tc )» o =º Correlation length» (T T c ) T c Input for scaling laws: ξ 0 is range of spin correlation in ferromagentic phase Relaxation time o from FMR line width Susceptibility Â(T) for 1.8 ML Fe/W from Back et al., Nature (95)

7 Experiment Grow thin film with T c just above room temperature Let sample temperature drift slowly through T c Measure Magnetization Susceptibility Record image of magnetic domain structure M(T)=Mo Â(T;H! 0) T=T C This yields: Images of critical fluctuations arbitrarily close to T c ξ(t) Test of scaling laws

8 The technology challenge: Smaller and faster size speed factor ~ 100 to go factor 30 x 150 ~ 5000 to go Speed limit determined using ultrafast SLAC electron pulse as pump pulse. Probe pulse was subsequent imaging of static magnetic domain pattern.

9 The technology challenge: Smaller and faster To understand what is happening, we need to probe while the magnetic field is applied and right afterwards. 100 fs 10 ps Speed limit determined using ultrafast SLAC electron pulse as pump pulse. Probe pulse was subsequent imaging of static magnetic domain pattern.

10 The length of current x-ray probe pulses not enough intensity need to repeat over and over blind to random processes Repeatable process can be studied by pump-probe To understand why switching is not deterministic anymore one needs snapshot probe

11 Laser-generated current pulses Photoconductive Auston Switch Photoemission into Vacuum SLAC e - beam pulse not compatible with x-ray probe Generate laser-based current pulse for - magnetic field pulse - spin current pulse Estimated Peak Current: Experiment: ma Potential for >>10 A peak current Estimated Pulse Record Rise Time: image 5 ps of magnetization Pulse dynamics in the picosecond during range Estimated Pulse and Width: right 10 -after 200 ps the magnetic field pulse Estimated Peak Field: T

12 Fourier Transform X-ray spectro-holography

13 Soft x-rays provide magnetic contrast XMCD Fe L 2,3 a σ σ σ σ M M M M Cross-section data from Jeff Kortright (LBNL)

14 Digital image reconstruction Single Fourier transformation of scattering intensities yields the auto-correlation of sample, which contains image of sample due to the off-axis geometry in FT holography. (correlation theorem) Autocorrelation (Patterson map) Sample Mask 2 µm 10% - 90% intensity rise over about 50 nm RCP Intensity in image center, which contains self-correlation of apertures, is truncated.

15 Feasibility of single shot imaging at LCLS Minimize sample heating by 1. Phase contrast to lower absorption cross section 2. Reflection geometry to reduce film penetration 3. Multiple reference holography to better utilize photons Experiment Detector - Central beam stop OK for Fourier Transform holography - Higher dynamic range desirable Equipment and costs Outlook

16 1. Phase contrast soft x-ray holography Refractive index is complex: n = 1 - δ + iβ Co C. Mertens et al PRB ev FTH yields autocorrelation (correlation theorem): a a = Ŧ -1 ( Ŧ(a) 2 ) real part of AC Attenuation imaginary part of AC Phase shift On resonance λ x = 15 nm

17 1. Phase contrast soft x-ray holography Refractive index is complex: n = 1 - δ + iβ Co C. Mertens et al PRB Imaging with phase contrast before absorption resonance FTH yields autocorrelation reduces absorbed (correlation energy theorem): by factor of a >10 a = Ŧ -1 ( Ŧ(a) 2 ) real part of AC Attenuation imaginary part of AC Phase shift Before resonance λ x = 600 nm

18 2. Dichroic reflectivity Angle of total external reflection is dichroic Fe L 2,3 Phase Contrast 2 2 difference in angle of total external reflection yields respective reflectivity of domains with magnetization parallel and antiparallel to incident light of 50% and 1%.

19 3. Multiple reference Fourier transform holography SEM Linear signal improvement with number of references 5 µm 10 4 photons on detector 1 image 5 images 10 8 photons

20 Experiment: The IDEAL reflection sample design Side view Top view Cu single crystal substrate (green) 2 monolayer thin Fe film on substrate area titled upwards by 3 (red) 100 nm Au nanostructures, ideally cubes with 3 tilted surface (gold) 3 upwards tilt not required, but it would eliminate: substrate heating specula reflection from substrate, no central beam stop might be needed background scattering from surface roughness Fe film can be grown continuously on substrate

21 STEP 1: Unfocused, pink LCLS pulse LCLS parameters photons per pulse at 800 ev 5.7 µrad divergence (FWHM) at 800 ev about 150 m behind undulator 855 µm FWHM spot size at sample 10 7 photons per µm 2 within FWHM area of beam 10 7 photons on 5 µm sample area for 4 incidence

22 Sample heating analysis 50% and 1% reflectivity for 4 incidence angle and 705 ev (phase contrast) (similar to 100% contrast of F sample) 10 5 photons in scattering pattern needed for 5 µm diameter sample 5 10 reference beams incident photons required for overall zero magnetization Even if all energy remained within the thin film, i.e., assuming no ~1700 escaping photons Auger are absorbed electrons by or the fluorescence atoms photons, within the we less deposit: reflective domains of the Fe film (µ x = 1 / 600 nm -1 ) less than 1 mev per Fe atom in 2 Fe layers ~2900 about photons 2 mev are per absorbed Cu atom by in the top 4 10 mono 8 atoms layers of each Cu mono layer in regions below less reflective domains (µ x = 1 / 350 nm -1 ). This corresponds to a temperature raise of 1/50 ~10 of these K in Fe numbers film for high reflective domains. ~30 K in Cu substrate» Could use full unfocused beam!

23 Equipment and costs Small angle scattering setup (2Θ = 20 ) Layout of SSRL chamber ~150k + CCD Beam aperture chamber Sample chamber with Temperature control Earth field compensation Sample characterization - Susceptibility - Magnetization Sample manipulation Area detector Central beam stop OK for Fourier Transform holography Higher dynamic range desirable

24 STEP 2: Focused, pink LCLS pulse Spatial resolution is flux limited 116 µm FWHM source diameter 10:1 demagnification compatible with sample illumination and required momentum space resolution 10 µm FWHM spot size at sample with photons per pulse Focusing increases incident flux by factor of 10 5» 100 ev per Fe atom, 200 ev per Cu atom

25 STEP 3: Monochromatic LCLS pulse Intrinsic band width of LCLS sufficiently small for scattering from XMCD contrast Monochromaticity on the order of 5,000 would allow imaging with contrast originating from: XMLD (antiferromagnets) Element specific mapping of functional groups Study dynamics by pulse stretching Grating monochromator stretches pulse length C-value of PGM offers control over pulse stretching Reduces peak brightness by preserving integrated photon flux! Compare to stretching of electron beam pulse

26 STEP 4: Split LCLS pulse D 1 Ω, q max FEL pulse BS α M M D S Θ 2Θ D 2 Ω, q max X-ray probe X-ray probe Record consecutive images to follow ultrafast time evolution uneven pulse split X-ray pump X-ray probe

27 Future experiments Snapshot imaging on the nano-scale with femtosecond time resolution enables investigation of non-reproducible component of dynamics. Of interest to us are: Equilibrium dynamics Nanoscale ordering corresponds to fs ps time scale Spin and charge dynamics in correlated electron systems Short-range structure in liquids Non-equilibrium dynamics Spin relaxation in ferromagnets close to the Curie temperature

28 LCLS commissioning Unique contribution to LCLS characterization Pulse by pulse imaging of the X-ray source Mutual coherence function can be measured with non redundant pinhole array from each x-ray pulse. From mutual coherence function one can calculate an image of the source. Feasibility demonstrated at SSRL

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

Phase imaging of magnetic nanostructures using resonant soft x-ray holography

Phase imaging of magnetic nanostructures using resonant soft x-ray holography PHYSICAL REVIEW B 76, 440 007 Phase imaging of magnetic nanostructures using resonant soft x-ray holography A. Scherz,, * W. F. Schlotter,, K. Chen,, R. Rick,, J. Stöhr, J. Lüning, I. McNulty, 3,4 Ch.

More information

Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten

Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten Institut für Experimentelle Physik STI Round-Table Meeting, Hamburg, 22. - 24. Juni 2004 Outline motivation: why short pulses and the XFEL

More information

Exploring Ultrafast Excitations in Solids with Pulsed e-beams

Exploring Ultrafast Excitations in Solids with Pulsed e-beams Exploring Ultrafast Excitations in Solids with Pulsed e-beams Joachim Stöhr and Hans Siegmann Stanford Synchrotron Radiation Laboratory Collaborators: Y. Acremann, Sara Gamble, Mark Burkhardt ( SLAC/Stanford

More information

The Second Half Year 2017 PAL-XFEL Call for Proposals

The Second Half Year 2017 PAL-XFEL Call for Proposals The Second Half Year 2017 PAL-XFEL Call for Proposals Summary Information for Submitting Proposals We encourage scientists from all over the world to submit applications for beam time proposal to utilize

More information

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use.

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use. 1. Introduction The XTOD Offset Systems are designed to spatially separate the useful FEL radiation from high-energy spontaneous radiation and Bremsstrahlung γ-rays. These unwanted radiations are generated

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

X-Ray Spectroscopy at LCLS

X-Ray Spectroscopy at LCLS LCLS proposal preparation workshop for experiments at XPP, June 21, 2008, SLAC, Menlo Park, CA ħω ħω e - X-Ray Spectroscopy at LCLS Uwe Bergmann SSRL Stanford Linear Accelerator Center bergmann@slac.stanford.edu

More information

Spectroscopy with Free Electron Lasers. David Bernstein SASS Talk January 28 th, 2009

Spectroscopy with Free Electron Lasers. David Bernstein SASS Talk January 28 th, 2009 Spectroscopy with Free Electron Lasers David Bernstein SASS Talk January 28 th, 2009 Overview Who am I?! What is FLASH?! The promise of Free Electron Lasers (FELs) The Trouble with Spectroscopy Sample

More information

Solid-State Dynamics and Education

Solid-State Dynamics and Education Chapter 6 Solid-State Dynamics and Education (http://www.eduphys.ethz.ch/) Head Prof. Dr. Andreas Vaterlaus Academic Staff Dr. Yves Acremann Andreas Fognini Dr. Christian Helm Dr. Thomas Michlmayr Martin

More information

PEEM and XPEEM: methodology and applications for dynamic processes

PEEM and XPEEM: methodology and applications for dynamic processes PEEM and XPEEM: methodology and applications for dynamic processes PEEM methods and General considerations Chemical imaging Magnetic imaging XMCD/XMLD Examples Dynamic studies PEEM and XPEEM methods 1

More information

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Wei-Sheng Lee Stanford Institute of Material and Energy Science (SIMES) SLAC & Stanford University Collaborators

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

Elimination of X-Ray Diffraction through Stimulated X-Ray Transmission

Elimination of X-Ray Diffraction through Stimulated X-Ray Transmission SLAC-R-169 Elimination of X-Ray Diffraction through Stimulated X-Ray Transmission B. Wu, 1 T. Wang, C. E. Graves, 1 D. Zhu, 3 W. F. Schlotter, 3 J. Turner, 3 O. Hellwig, Z. Chen, 5 H. A. Dürr, 3 A. Scherz,

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation

Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation SESAME-JSPS School November 14-16, 2011 Amman, Jordan Time Resolved (Pump Probe) Experiment to watch structural dynamics by using the pulsed nature of synchrotron radiation Shin-ichi Adachi (Photon Factory,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10721 Experimental Methods The experiment was performed at the AMO scientific instrument 31 at the LCLS XFEL at the SLAC National Accelerator Laboratory. The nominal electron bunch charge

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 Performance Metrics of Future Light Sources Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 http://www-ssrl.slac.stanford.edu/aboutssrl/documents/future-x-rays-09.pdf special acknowledgment to John Corlett,

More information

Supporting Information for: Transformation in VO 2 Thin Films by

Supporting Information for: Transformation in VO 2 Thin Films by Supporting Information for: Imaging Nanometer Phase Coexistence at Defects During the Insulator-Metal Phase Transformation in VO 2 Thin Films by Resonant Soft X-Ray Holography Luciana Vidas,, Christian

More information

Multilayer Interference Coating, Scattering, Diffraction, Reflectivity

Multilayer Interference Coating, Scattering, Diffraction, Reflectivity Multilayer Interference Coating, Scattering, Diffraction, Reflectivity mλ = 2d sin θ (W/C, T. Nguyen) Normal incidence reflectivity 1..5 1 nm MgF 2 /Al Si C Pt, Au 1 ev 1 ev Wavelength 1 nm 1 nm.1 nm Multilayer

More information

XRD endstation: condensed matter systems

XRD endstation: condensed matter systems XRD endstation: condensed matter systems Justine Schlappa SCS Instrument Beamline Scientist Hamburg, January 24, 2017 2 Outline Motivation Baseline XRD setup R&D setup Two-color operation and split&delay

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Making Functional Surfaces and Thin Films: Where are the Atoms?

Making Functional Surfaces and Thin Films: Where are the Atoms? Making Functional Surfaces and Thin Films: Where are the Atoms? K. Ludwig, A. DeMasi, J. Davis and G. Erdem Department of Physics Materials Science and Engineering Program Why x-rays? λ ~10-10 m ~ distance

More information

Undulator Commissioning Spectrometer for the European XFEL

Undulator Commissioning Spectrometer for the European XFEL Undulator Commissioning Spectrometer for the European XFEL FEL Beam Dynamics Group meeting DESY, Hamburg, Nov. 9 th 010 Wolfgang Freund, WP74 European XFEL wolfgang.freund@xfel.eu Contents Undulator commissioning

More information

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation Two-Stage Chirped-Beam SASE-FEL for High ower Femtosecond X-Ray ulse Generation C. Schroeder*, J. Arthur^,. Emma^, S. Reiche*, and C. ellegrini* ^ Stanford Linear Accelerator Center * UCLA 12-10-2001 LCLS-TAC

More information

SOFT X-RAY MATERIAL INSTRUMENT (SXR)

SOFT X-RAY MATERIAL INSTRUMENT (SXR) SOFT X--RAY MATERIAL INSTRUMENT ((SXR)) SUMMARY OF THE TECHNICAL DESIGN DRAFT 3-3-09 This document is derived from the SXR Technical Design Report, July 2008, prepared for the LCLS by the SXR consortium.

More information

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design Operated by Los Alamos National Security, LLC, for the U.S. Department of Energy MaRIE (Matter-Radiation Interactions in Extremes) MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design B. Carlsten, C.

More information

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

Photoemission Electron Microscopy (PEEM)

Photoemission Electron Microscopy (PEEM) PHOTOEMISSION ELECTRON MICROSCOPY Pat Photongkam Research Facility Division Synchrotron Light Research Institute (Public Organization) Synchrotron Light Research Institute (Public Organization) 111 University

More information

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS LCLS Technical Advisory Committee December 10-11, 2001. SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS Patrick Krejcik LCLS Technical Advisory Committee Report 1: July 14-15, 1999 The

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11231 Materials and Methods: Sample fabrication: Highly oriented VO 2 thin films on Al 2 O 3 (0001) substrates were deposited by reactive sputtering from a vanadium target through reactive

More information

The BESSY - FEL Collaboration

The BESSY - FEL Collaboration The BESSY - FEL Collaboration Planning the Revolution for Research with soft X-Rays Photon Energy Range : 20 ev up to 1 kev λ/λ 10-2 to 10-4 Peak Power: 1mJ in 200 fs >> 5 GW Time Structure: 200 fs (

More information

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources Christian Gutt Department of Physics, University ofsiegen, Germany gutt@physik.uni-siegen.de Outline How to measure dynamics

More information

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials Robert Schoenlein Materials Sciences Division Chemical Sciences Division - UXSL Matteo Rini ils Huse F. Reboani &

More information

Hirohito Ogasawara, Dennis Nordlund, Anders Nilsson

Hirohito Ogasawara, Dennis Nordlund, Anders Nilsson Pump-probe Ultrafast Surface Chemistry (PES, XES) station for Real Time Electronic Structure Mapping of Catalytic Reactions: Instrumentation Hirohito Ogasawara, Dennis Nordlund, Anders Nilsson Stanford

More information

General theory of diffraction

General theory of diffraction General theory of diffraction X-rays scatter off the charge density (r), neutrons scatter off the spin density. Coherent scattering (diffraction) creates the Fourier transform of (r) from real to reciprocal

More information

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Neutron Instruments I & II. Ken Andersen ESS Instruments Division Neutron Instruments I & II ESS Instruments Division Neutron Instruments I & II Overview of source characteristics Bragg s Law Elastic scattering: diffractometers Continuous sources Pulsed sources Inelastic

More information

The MEC endstation at LCLS New opportunities for high energy density science

The MEC endstation at LCLS New opportunities for high energy density science The MEC endstation at LCLS New opportunities for high energy density science Singapore, fttp-5, April 20th, 2011 Bob Nagler BNagler@slac.stanford.edu SLAC national accelerator laboratory 1 Overview Motivation

More information

Ultrafast dynamics in multiferroics HoMnO 3 revealed by fs spectroscopy. Chih Wei Luo ( 羅志偉 )

Ultrafast dynamics in multiferroics HoMnO 3 revealed by fs spectroscopy. Chih Wei Luo ( 羅志偉 ) Ultrafast dynamics in multiferroics HoMnO 3 revealed by fs spectroscopy Chih Wei Luo ( 羅志偉 ) Outline Introduction of femtosecond (fs) laser pulses Ultrafast dynamics in multiferroics HoMnO 3 Summary I

More information

Swanning about in Reciprocal Space. Kenneth, what is the wavevector?

Swanning about in Reciprocal Space. Kenneth, what is the wavevector? Swanning about in Reciprocal Space or, Kenneth, what is the wavevector? Stanford Synchrotron Radiation Laboratory Principles The relationship between the reciprocal lattice vector and the wave vector is

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays David A. Reis PULSE Institute, Departments of Photon Science and Applied Physics, Stanford University SLAC National Accelerator

More information

Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012

Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012 Overview of spectroscopies III Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012 Motivation: why we need theory Spectroscopy (electron dynamics) Theory of electronic

More information

Main Notation Used in This Book

Main Notation Used in This Book Main Notation Used in This Book z Direction normal to the surface x,y Directions in the plane of the surface Used to describe a component parallel to the interface plane xoz Plane of incidence j Label

More information

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Richard Haight IBM TJ Watson Research Center PO Box 218 Yorktown Hts., NY 10598 Collaborators Al Wagner Pete Longo Daeyoung

More information

EUV and Soft X-Ray Optics

EUV and Soft X-Ray Optics EUV and Soft X-Ray Optics David Attwood University of California, Berkeley Cheiron School September 2011 SPring-8 1 The short wavelength region of the electromagnetic spectrum n = 1 δ + iβ δ, β

More information

Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory

Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory Henry.Chapman@desy.de Isaac Newton Opticks 1704 Newton was the first

More information

Developments for the FEL user facility

Developments for the FEL user facility Developments for the FEL user facility J. Feldhaus HASYLAB at DESY, Hamburg, Germany Design and construction has started for the FEL user facility including the radiation transport to the experimental

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Ultrafast nanoscience with ELI ALPS

Ultrafast nanoscience with ELI ALPS Ultrafast nanoscience with ELI ALPS Péter Dombi Wigner Research Centre for Physics, Budapest & Max Planck Institute of Quantum Optics, Garching Overview ultrafast (femtosecond/attosecond) dynamicsin metal

More information

Ultrafast XPCS. Gerhard Grübel

Ultrafast XPCS. Gerhard Grübel . Ultrafast XPCS Gerhard Grübel W.Roseker, S. Lee, F. Lehmkühler, I. Steinke, H. Schulte-Schrepping, M. Walther, G.B. Stephenson, P. Fuoss, M. Sikorski, and A. Robert DESY Deutsches Elektronen Synchrotron,

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

X-TOD Update. Facility Advisory Committee Photon Breakout Session. October 30, 2007

X-TOD Update. Facility Advisory Committee Photon Breakout Session. October 30, 2007 XTOD Update Facility Advisory Committee Photon Breakout Session LCLS Layout Linac Undulator Hall FEE (Front-End-Enclosure) Diagnostics SOMS HOMS X-Ray Tunnel FEH (Far Experimental Hall) NEH (Near Experimental

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Stanford Synchrotron Radiation Lightsource SSRL

Stanford Synchrotron Radiation Lightsource SSRL Stanford Synchrotron Radiation Lightsource SSRL x Chi-Chang Kao BL1-4 BL1-5 BL2-1 BL2-2 BL2-3 BL4-1 BL4-2 BL4-3 BL5-4 BL6-2(3) BL7-1 BL7-2 BL7-3 BL8-1 BL8-2 BL9-1 BL9-2 BL9-3 BL10-1 BL10-2(2) BL11-1 BL11-2

More information

X-ray Imaging and Spectroscopy of Individual Nanoparticles

X-ray Imaging and Spectroscopy of Individual Nanoparticles X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland Intensity [a.u.] 1.4 1.3 1.2 1.1 D 8 nm 1 1 2 3 1.0 770

More information

Magnetization dynamics and fs pulsed X-ray sources

Magnetization dynamics and fs pulsed X-ray sources HERCULES SPECIALIZED COURSE: Neutrons and Synchrotron Radiation for Magnetism (HSC18) Magnetization dynamics and fs pulsed X-ray sources Jan Lüning Laboratoire de Chimie Physique Matière et Rayonnement

More information

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Dr. Ari Salmi www.helsinki.fi/yliopisto 26.3.2018 1 Last lecture key points Coherent acoustic phonons = sound at nanoscale Incoherent

More information

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space Tobias U. Schülli, X-ray nanoprobe group ESRF OUTLINE 1 Internal structure of

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

Diamond Update: Surface and Interface Beamlines

Diamond Update: Surface and Interface Beamlines Diamond Update: Surface and Interface Beamlines I. K. Robinson University College London Diamond Light Source Argonne SIS group pizza lunch 21 April 2009 Outline Coherent X-ray Diffraction Imaging of small

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Conductance Measurements The conductance measurements were performed at the University of Aarhus. The Ag/Si surface was prepared using well-established procedures [1, 2]. After

More information

Holcomb Group Capabilities

Holcomb Group Capabilities Holcomb Group Capabilities Synchrotron Radiation & Ultrafast Optics West Virginia University mikel.holcomb@mail.wvu.edu The Physicists New Playground The interface is the device. - Herbert Kroemer, beginning

More information

Femto-second FEL Generation with Very Low Charge at LCLS

Femto-second FEL Generation with Very Low Charge at LCLS Femto-second FEL Generation with Very Low Charge at LCLS Yuantao Ding, For the LCLS commissioning team X-ray Science at the Femtosecond to Attosecond Frontier workshop May 18-20, 2009, UCLA SLAC-PUB-13525;

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

COST MP0601 Short Wavelength Laboratory Sources

COST MP0601 Short Wavelength Laboratory Sources Background: Short wavelength radiation has been used in medicine and materials studies since immediately after the 1895 discovery of X-rays. The development of synchrotron sources over the last ~25 years

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Delay-Line Imaging and XPCS

Delay-Line Imaging and XPCS . Delay-Line Imaging and XPCS Gerhard Grübel W.Roseker, F. Lehmkühler, L. MüIler, S. Schleitzer, M. Berntsen, H. Schulte-Schrepping, M. Walther DESY Deutsches Elektronen Synchrotron, Notkestr. 85, 22607

More information

Very High Third-Order Nonlinear Optical Activities of Intrazeolite PbS Quantum Dots. Supporting Information

Very High Third-Order Nonlinear Optical Activities of Intrazeolite PbS Quantum Dots. Supporting Information Very High Third-Order Nonlinear Optical Activities of Intrazeolite PbS Quantum Dots Supporting Information SI-1. Preparation of Y g s The Y g s (2 2.5 cm 2 ) were prepared according to the procedure described

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott

Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott Hyunung Yu Selezion A. Hambir School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory University of Illinois

More information

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison Abstract Measurement capabilities for the Pegasus ST are increasing to support the scientific studies of plasma behavior at very-low A. Global parameters are obtained from equilibrium reconstructions constrained

More information

EUV and Soft X-Ray Optics

EUV and Soft X-Ray Optics EUV and Soft X-Ray Optics David Attwood University of California, Berkeley and Advanced Light Source, LBNL Cheiron School October 2010 SPring-8 1 The short wavelength region of the electromagnetic spectrum

More information

Q. Shen 1,2) and T. Toyoda 1,2)

Q. Shen 1,2) and T. Toyoda 1,2) Photosensitization of nanostructured TiO 2 electrodes with CdSe quntum dots: effects of microstructure in substrates Q. Shen 1,2) and T. Toyoda 1,2) Department of Applied Physics and Chemistry 1), and

More information

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF)

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF) Cheiron School 014 Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF) 1 Atomic Number Absorption Edges in the Soft X-ray Region M edge L edge K edge. Li Absorption-edge Energy (ev) Studies using

More information

Photoemission Spectroscopy

Photoemission Spectroscopy FY13 Experimental Physics - Auger Electron Spectroscopy Photoemission Spectroscopy Supervisor: Per Morgen SDU, Institute of Physics Campusvej 55 DK - 5250 Odense S Ulrik Robenhagen,

More information

X ray and XUV phase contrast diagnostics for ELI NP

X ray and XUV phase contrast diagnostics for ELI NP X ray and XUV phase contrast diagnostics for ELI NP D. Stutman 1,2, F. Negoita 1 and D. Ursescu 1 1 ELI NP, Bucharest Magurele, Romania 2 Johns Hopkins University, Baltimore, USA CARPATHIAN SUMMER SCHOOL

More information

Trends in X-ray Synchrotron Radiation Research

Trends in X-ray Synchrotron Radiation Research Trends in X-ray Synchrotron Radiation Research Storage rings Energy Recovery Linacs (ERL) Free Electron Lasers Jochen R. Schneider DESY Development of the brilliance of X-ray sources Since the discovery

More information

Spin-resolved photoelectron spectroscopy

Spin-resolved photoelectron spectroscopy Spin-resolved photoelectron spectroscopy Application Notes Spin-resolved photoelectron spectroscopy experiments were performed in an experimental station consisting of an analysis and a preparation chamber.

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

Karine Chesnel BYU. Idaho State University, Physics department 22 September 2014

Karine Chesnel BYU. Idaho State University, Physics department 22 September 2014 Karine Chesnel BYU Idaho State University, Physics department 22 September 2014 Potential applications of magnetic nanoparticles Magnetic recording Biomedical applications J. Mater. Chem., 19, 6258 6266

More information

Undulator radiation from electrons randomly distributed in a bunch

Undulator radiation from electrons randomly distributed in a bunch Undulator radiation from electrons randomly distributed in a bunch Normally z el >> N u 1 Chaotic light Spectral property is the same as that of a single electron /=1/N u Temporal phase space area z ~(/

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6014/189/dc1 Supporting Online Material for Light-Induced Superconductivity in a Stripe-Ordered Cuprate D. Fausti,* R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M.

More information

X-Ray Scattering Studies of Thin Polymer Films

X-Ray Scattering Studies of Thin Polymer Films X-Ray Scattering Studies of Thin Polymer Films Introduction to Neutron and X-Ray Scattering Sunil K. Sinha UCSD/LANL Acknowledgements: Prof. R.Pynn( Indiana U.) Prof. M.Tolan (U. Dortmund) Wilhelm Conrad

More information

Workshop Overview & Charge, Science Examples, Instrumentation R&D. Bill Schlotter Feb. 9, 2015

Workshop Overview & Charge, Science Examples, Instrumentation R&D. Bill Schlotter Feb. 9, 2015 Workshop Overview & Charge, Science Examples, Instrumentation R&D Bill Schlotter Feb. 9, 2015 Outline Workshop Charge Workshop Format Breakout activities Scientific Opportunity Example From workshops to

More information

Laser-driven intense X-rays : Studies at RRCAT

Laser-driven intense X-rays : Studies at RRCAT Laser-driven intense X-rays : Studies at RRCAT B. S. Rao Laser Plasma Division Team Effort Principal contributors : Experiment: P. D. Gupta, P. A. Naik, J. A. Chakera, A. Moorti, V. Arora, H. Singhal,

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Disordered Materials: Glass physics

Disordered Materials: Glass physics Disordered Materials: Glass physics > 2.7. Introduction, liquids, glasses > 4.7. Scattering off disordered matter: static, elastic and dynamics structure factors > 9.7. Static structures: X-ray scattering,

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information