number Done by Corrected by Doctor Nafeth Abu Tarboush

Size: px
Start display at page:

Download "number Done by Corrected by Doctor Nafeth Abu Tarboush"

Transcription

1 number 6 Done by أنس القيشاوي Corrected by Zaid Emad Doctor Nafeth Abu Tarboush 1 P a g e

2 In the previous lecture, we talked about redox reactions and the reduction potential briefly and how it can help us to determine the direction of electron movement, and in this lecture we will complete studying this important topic. ΔE ΔE ( E = EA ED) is the difference in reduction potential, where: EA is the reduction potential of the electron acceptor. ED is the reduction potential of the electron donor. Does it determine the direction of the reaction? We can determine the direction of the reaction depending on the potential difference by calculating ΔG which is directly related to ΔE by the equation: The difference between ΔG & ΔE is that the sign of ΔE for spontaneous reactions is +ve while ΔG is ve. You need to know that electrons will be transported across the Electron Transport chain according to the potential difference and at the end of this movement of electrons will generate energy. Before we start talking about Krebs cycle, we will discuss what we mean by the electron carrier molecules (NAD+ & FAD). There are a lot of molecules that can carry electrons, these include the Niacin (vitamin B3) based molecules and the Flavin (vitamin B2) based molecules. 2 P a g e

3 1. The Niacin based molecules ( NAD+ & NADP+ ) The only difference between NAD+ & NADP+ is the phosphate group attached to Carbon number 2 of ribose in adenosine. The electron acceptor in both molecules is Nicotinic acid which accepts two electrons in the form of hydride ion. So both of them perform the same function. 2. The Flavin based molecules ( FAD & FMN ) The only difference between FAD & FMN is that FMN doesn t have the adenosine part as FAD,so it is composed of Flavin only. Both of these molecules accept 2 electrons as 2 hydrogen atoms and electron addition occurs on the free Nitrogen atoms of the Flavin ring. 3 P a g e

4 Unlike the Niacin based molecules, Flavin based molecules accept electrons sequentially (one by one), therefore, they can pass in the state of free radicals (one unpaired electron) which is a very dangerous state that can affect any component of the cell and damage it. As a result, Flavin based molecules will always be found hidden by enzymes or other structures, that s the reason why we can determine the reduction potential of NAD+ but we can t do the same with FAD without identifying the structure to which it is attached. Additionally, the energy released by the movement of electrons from NADH to Oxygen (the final acceptor of electrons in the Electron Transport Chain) is higher than that of FADH2. 4 P a g e

5 (Kreb s, Citric Acid, TCA) Cycle *The name..? Kreb s cycle: the biochemist who discovered it. Citric acid cycle: derived from the citric acidwhich is the first molecule in the cycle. Tricarboxylic acid (TCA) cycle: because citric acid has 3 carboxylic groups. Some important concepts: Fats, proteins and carbohydrates will be digested giving a common molecule (Acytel CoA; Two-Carbon units) which will enter the cycle and finally will come out as (((single))) CO2, which is the same CO2 we exhale. This process takes place in the matrix of the mitochondria. The cycle has 8 steps, 8 reactions, 8 enzymes and 8 intermediates. When we want to study this cycle, we divide it into two halves. 5 P a g e

6 Please refer to the figure to understand the mechanism of this cycle. You also need to memorize the chemical structure of each compound. The first half of the cycle has 4 steps, and it will engage itself in trying to convert the 6-carbon molecule which was formed by joining Acetyl CoA(two-carbon unit) and oxaloacetate (4-carbon unit),into a 4-carbon molecule. The second half will try to rearrange the 4-carbon compound to form the starting 4-carbon compound (oxaloacetate). 1. Bulding up of citrate:acetyl CoA will bind to oxaloacetate to produce citrate (Citric acid). This step requires energy that comes from the detachment of the CoA. Citric acid has 6 carbons, 3 carboxylic groups. Can citric acid be oxidized? No, because citric acid has 3 carboxylic groups, and carboxylic group is the highest state of oxidation, so it won t be oxidized.it also has an alcohol group, but it won t be oxidized because it s a tertiary alcohol. The only thing we can do is change the position of OH group by an isomerisation reaction. The enzyme used to produce citrate is Citrate synthase. 2. Isomeration of citrate:in this step we change the structure by converting the tertiary alcohol into secondary alcohol (which can be oxidised easily into a ketone). The enzyme used in this step is Aconitase. This enzyme is named like this because there is an intermediate compound called Aconitate. 3. Decarboxylation of isocitrate:in this step we remove a carboxylic group (CO2) from isocitrate converting it from a 6-carbon unit molecule into a 5-carbon unit molecule (α-ketoglutarate). 6 P a g e

7 Oxidation of this secondary alcohol (isocitrate) will produce a ketone molecule, as we remove two hydrogen atoms making a double bond between carbon and oxygen. The first hydrogen atom will bind to NAD+ producing NADH. (The first NADH that comes out from the cycle). The enzyme used in this step is Isocitrate dehydrogenase. This reaction is an oxidative decarboxylation reaction. This step is the slowest step in the citric acid cycle, which means it is the rate limiting step of this cycle so it has the highest regulation among all of the steps of the cycle. 4. Decarboxylation of α-ketoglutarate:this step has the same mechanism as the previous one. We remove CO2 from α-ketoglutarate converting it from a 5-carbon unit molecule into a 4-carbon unit molecule (Succinyl CoA). When we remove the peripheral CO2, we created a peripheralcarbonyl group which is very unstable, so it will bind to CoA from the solution producing Succinyl CoA. The enzyme used in this step is called α-ketoglutarate dehydrogenase. In this step the second NADH molecule is produced. Here, the removal of hydrogen atoms from α-ketoglutarate isn t obvious as it occurs in an intermediate step. 5. Conversion of Succinyl CoA into Succinate: The first thing to do is to remove CoA. When you remove the CoA, you get a molecule which contains two carboxylic groups &two CH2 groups. The detachment of CoA will release energy that will be used in adding an inorganic phosphate to the GDP or ADP molecule producing GTP or ATP. In this step we formed ATP molecule without the need of oxygen, this process is called (substrate level phosphorylation). The enzyme that catalyses this step is Succinate thiokinase. How is this molecule different from oxaloacitate? o The difference is that we need to change the CH2 group presented in Succinate into a keto group (carbonyl group). 7 P a g e

8 6. Oxidation of Succinate: In this step we oxidise succinate into Fumarate by the removal of 2 Hydrogen atoms forming a double bond between the 2 nd and 3 rd carbons by a dehydrogenation reaction. The two hydrogen atoms will be used in reducing one FAD molecule into FADH2. The enzyme used for this step is called Succinate dehydrogenase. 7. Hydration of Fumarate: In this step we add H2O molecule in order to break the double bond producing an alcoholic compound (secondary alcohol) which is called Malate The enzyme that catalyses this step is called Fumarase. 8. Oxaloacetate regeneration: In this step, we oxidize Malate producing a double bound converting Malate into oxaloacetate, which is the starting compound for the cycle. One of the H atoms will bind to NAD+ as a hydride ion producing NADH (the 3 rd NADH produced by this cycle), and the remaining proton will go to the solution The enzyme that catalyses this step is called Malate dehydrogenase. The final products of the cycle: 1 ATP, 3 NADH, 1 FADH2, 2 CO2 This table will help you memorize the substrates, products & enzymes for each step. 8 P a g e

9 The End *Don t hesitate to contact me if u have any question regarding this lecture! The struggle you re in today is developing the strength you need for tomorrow!! 9 P a g e

number Done by Corrected by Doctor Nafeth Abu Tarboush

number Done by Corrected by Doctor Nafeth Abu Tarboush number 8 Done by Ali Yaghi Corrected by Mamoon Mohamad Alqtamin Doctor Nafeth Abu Tarboush 0 P a g e Oxidative phosphorylation Oxidative phosphorylation has 3 major aspects: 1. It involves flow of electrons

More information

Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts)

Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts) 1 Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts) Objectives 1: Describe the overall action of the Krebs cycle in generating ATP, NADH and FADH 2 from acetyl-coa 2: Understand the generation

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Photosynthetic autotrophs use the energy of sunlight to convert low-g CO 2 and H 2 O into energy-rich complex sugar molecules.

Photosynthetic autotrophs use the energy of sunlight to convert low-g CO 2 and H 2 O into energy-rich complex sugar molecules. Chapters 7 & 10 Bioenergetics To live, organisms must obtain energy from their environment and use it to do the work of building and organizing cell components such as proteins, enzymes, nucleic acids,

More information

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14 1 Principles of Bioenergetics Lehninger 3 rd ed. Chapter 14 2 Metabolism A highly coordinated cellular activity aimed at achieving the following goals: Obtain chemical energy. Convert nutrient molecules

More information

Lecture 10. Proton Gradient-dependent ATP Synthesis. Oxidative. Photo-Phosphorylation

Lecture 10. Proton Gradient-dependent ATP Synthesis. Oxidative. Photo-Phosphorylation Lecture 10 Proton Gradient-dependent ATP Synthesis Oxidative Phosphorylation Photo-Phosphorylation Model of the Electron Transport Chain (ETC) Glycerol-3-P Shuttle Outer Mitochondrial Membrane G3P DHAP

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Outer Glycolysis mitochondrial membrane Glucose ATP

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Outer Glycolysis mitochondrial membrane Glucose ATP Fig. 7.5 uter Glycolysis mitochondrial membrane Glucose Intermembrane space xidation Mitochondrial matrix Acetyl-oA Krebs FAD e NAD + FAD Inner mitochondrial membrane e Electron e Transport hain hemiosmosis

More information

Change to Office Hours this Friday and next Monday. Tomorrow (Abel): 8:30 10:30 am. Monday (Katrina): Cancelled (05/04)

Change to Office Hours this Friday and next Monday. Tomorrow (Abel): 8:30 10:30 am. Monday (Katrina): Cancelled (05/04) Change to Office Hours this Friday and next Monday Tomorrow (Abel): 8:30 10:30 am Monday (Katrina): Cancelled (05/04) Lecture 10 Proton Gradient-dependent ATP Synthesis Oxidative Phosphorylation Photo-Phosphorylation

More information

The products have more enthalpy and are more ordered than the reactants.

The products have more enthalpy and are more ordered than the reactants. hapters 7 & 10 Bioenergetics To live, organisms must obtain energy from their environment and use it to do the work of building and organizing cell components such as proteins, enzymes, nucleic acids,

More information

METABOLISM CHAPTER 04 BIO 211: ANATOMY & PHYSIOLOGY I. Dr. Lawrence G. Altman Some illustrations are courtesy of McGraw-Hill.

METABOLISM CHAPTER 04 BIO 211: ANATOMY & PHYSIOLOGY I. Dr. Lawrence G. Altman  Some illustrations are courtesy of McGraw-Hill. BIO 211: ANATOMY & PHYSIOLOGY I CHAPTER 04 1 Please wait 20 seconds before starting slide show. Mouse click or Arrow keys to navigate. Hit ESCAPE Key to exit. CELLULAR METABOLISM Dr. Lawrence G. Altman

More information

CELL METABOLISM OVERVIEW Keep the big picture in mind as we discuss the particulars!

CELL METABOLISM OVERVIEW Keep the big picture in mind as we discuss the particulars! BIO 211: ANATOMY & PHYSIOLOGY I CHAPTER 04 CELLULAR METABOLISM 1 Please wait 20 seconds before starting slide show. Mouse click or Arrow keys to navigate. Hit ESCAPE Key to exit. Dr. Lawrence G. Altman

More information

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully. Outline: Metabolism Part I: Fermentations Part II: Respiration Part III: Metabolic Diversity Learning objectives are: Learn about respiratory metabolism, ATP generation by respiration linked (oxidative)

More information

Lecture 7: Enzymes and Energetics

Lecture 7: Enzymes and Energetics Lecture 7: Enzymes and Energetics I. Biological Background A. Biological work requires energy 1. Energy is the capacity to do work a. Energy is expressed in units of work (kilojoules) or heat energy (kilocalories)

More information

Lectures by Kathleen Fitzpatrick

Lectures by Kathleen Fitzpatrick Chapter 10 Chemotrophic Energy Metabolism: Aerobic Respiration Lectures by Kathleen Fitzpatrick Simon Fraser University Figure 10-1 Figure 10-6 Conversion of pyruvate The conversion of pyruvate to acetyl

More information

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics Department of Chemistry and Biochemistry University of Lethbridge II. Bioenergetics Slide 1 Bioenergetics Bioenergetics is the quantitative study of energy relationships and energy conversion in biological

More information

BIOCHEMISTRY. František Vácha. JKU, Linz.

BIOCHEMISTRY. František Vácha. JKU, Linz. BIOCHEMISTRY František Vácha http://www.prf.jcu.cz/~vacha/ JKU, Linz Recommended reading: D.L. Nelson, M.M. Cox Lehninger Principles of Biochemistry D.J. Voet, J.G. Voet, C.W. Pratt Principles of Biochemistry

More information

TCA Cycle. Voet Biochemistry 3e John Wiley & Sons, Inc.

TCA Cycle. Voet Biochemistry 3e John Wiley & Sons, Inc. TCA Cycle Voet Biochemistry 3e Voet Biochemistry 3e The Electron Transport System (ETS) and Oxidative Phosphorylation (OxPhos) We have seen that glycolysis, the linking step, and TCA generate a large number

More information

Respiration and Photosynthesis. The Ying and Yang of Life.

Respiration and Photosynthesis. The Ying and Yang of Life. Respiration and Photosynthesis The Ying and Yang of Life. Why? You ve always been told that you must eat and breathe. Why? In this unit we will attempt to answer those questions. 1 st Law of Thermodynamics

More information

Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová

Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová Respiratory chain (RCH) a) is found in all cells b) is located in a mitochondrion c) includes enzymes integrated in the inner

More information

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism BBS2710 Microbial Physiology Module 5 - Energy and Metabolism Topics Energy production - an overview Fermentation Aerobic respiration Alternative approaches to respiration Photosynthesis Summary Introduction

More information

Bio102 Problems Photosynthesis

Bio102 Problems Photosynthesis Bio102 Problems Photosynthesis 1. Why is it advantageous for chloroplasts to have a very large (in surface area) thylakoid membrane contained within the inner membrane? A. This limits the amount of stroma

More information

Courtesy of Elsevier. Used with permission.

Courtesy of Elsevier. Used with permission. Chemistry 5.07 2013 Problem Set 5 Answers Problem 1 Succinate dehydrogenase (SDH) is a heterotetramer enzyme complex that catalyzes the oxidation of succinate to fumarate with concomitant reduction of

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy 6 Pathways that Harvest and Store Chemical Energy Energy is stored in chemical bonds and can be released and transformed by metabolic pathways. Chemical energy available to do work is termed free energy

More information

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration How do living things stay alive? Cellular Respiration Burning Happens in ALL living things inside cells and has the main goal of producing ATP the fuel of life It does not matter whether the organisms

More information

Cellular Respiration Stage 4: Electron Transport Chain

Cellular Respiration Stage 4: Electron Transport Chain Cellular Respiration Stage 4: Electron Transport Chain 2006-2007 Cellular respiration What s the point? The point is to make ATP! ATP 2006-2007 ATP accounting so far Glycolysis 2 ATP Kreb s cycle 2 ATP

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 5: Energy for Biological Processes Notes Aerobic Respiration Aerobic respiration as splitting of the respiratory substrate, to release carbon dioxide as a waste product

More information

Section A: The Principles of Energy Harvest

Section A: The Principles of Energy Harvest CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section A: The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle

More information

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation Cellular Energetics Photosynthesis, Cellular Respiration and Fermentation TEKS B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized parts that

More information

Biological Chemistry and Metabolic Pathways

Biological Chemistry and Metabolic Pathways Biological Chemistry and Metabolic Pathways 1. Reaction a. Thermodynamics b. Kinetics 2. Enzyme a. Structure and Function b. Regulation of Activity c. Kinetics d. Inhibition 3. Metabolic Pathways a. REDOX

More information

Photosynthesis and Cellular Respiration Practice Test Name

Photosynthesis and Cellular Respiration Practice Test Name Photosynthesis and Cellular Respiration Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which H+ has just passed through the

More information

The Life of a Cell. The Chemistry of Life. A View of the Cell. Cellular Transport and the Cell Cycle. Energy in a Cell

The Life of a Cell. The Chemistry of Life. A View of the Cell. Cellular Transport and the Cell Cycle. Energy in a Cell The Life of a Cell The Chemistry of Life A View of the Cell Cellular Transport and the Cell Cycle Energy in a Cell Chapter 9 Energy in a Cell 9.1: The Need for Energy 9.1: Section Check 9.2: Photosynthesis:

More information

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions Name: KEY CP Biology Unit 5 Cell Energy Study Guide Vocabulary to know: ATP ADP Aerobic Anaerobic ATP Synthases Cellular Respiration Chlorophyll Chloroplast Electron Carriers Electron Transport Chain Fermentation

More information

Chapter 2 Energy in Biology Demand and Use

Chapter 2 Energy in Biology Demand and Use Chapter 2 Energy in Biology Demand and Use A coupled energy source is a prerequisite of sustained dynamics in thermodynamically open systems. Abstract From the point of view of energy management in biological

More information

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D.

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D. Biochemical bases for energy transformations Biochemical bases for energy transformations Nutrition 202 Animal Energetics R. D. Sainz Lecture 02 Energy originally from radiant sun energy Captured in chemical

More information

PHOTOSYNTHESIS. Chapter 8

PHOTOSYNTHESIS. Chapter 8 PHOTOSYNTHESIS Chapter 8 ENERGY & LIFE ENERGY The ability to do work. Can be stored in chemical bonds. Cells need energy to do things like active transport, dividing, moving, and producing and storing

More information

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels Cellular Respiration: Harvesting Chemical Energy 9.1 Catabolic pathways yield energy by oxidizing organic fuels 9.2 Glycolysis harvests chemical energy by oxidizing glucose to pyruvate 9.3 The citric acid

More information

Energy in the World of Life

Energy in the World of Life Cellular Energy Energy in the World of Life Sustaining life s organization requires ongoing energy inputs Assembly of the molecules of life starts with energy input into living cells Energy Conversion

More information

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP The chemical energy used for most cell processes is carried by ATP. Molecules in food store chemical

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AP Exam Chapters 9 and 10; Photosynthesis and Respiration Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Carbon dioxide (CO2) is released

More information

Basic Concepts of Metabolism. Stages of Catabolism. Key intermediates 10/12/2015. Chapter 15, Stryer Short Course

Basic Concepts of Metabolism. Stages of Catabolism. Key intermediates 10/12/2015. Chapter 15, Stryer Short Course Basic Concepts of Metabolism Chapter 15, Stryer Short Course Digestion Formation of key intermediate small molecules Formation of ATP Stages of Catabolism Key intermediates 1 Fundamental Needs for Energy

More information

Energy & Life: Cellular Respiration PART I: HARVESTING CHEMICAL ENERGY

Energy & Life: Cellular Respiration PART I: HARVESTING CHEMICAL ENERGY Energy & Life: Cellular Respiration PART I: HARVESTING CHEMICAL ENERGY Energy u Energy is not created or destroyed, it is transformed, changed. u E= ability to do work u Living things depend on energy

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Lecture 13 9/30/05 I. General Principles Cellular Respiration: arvesting Chemical Energy Chapter 9 Lecture utline 1. Regulation of Enzymes: competitive, allosteric, phosphorylation 2. Equilibrium 3. Digestion

More information

Biology A: Chapter 5 Annotating Notes

Biology A: Chapter 5 Annotating Notes Name: Pd: Biology A: Chapter 5 Annotating Notes -As you read your textbook, please fill out these notes. -Read each paragraph state the big/main idea on the left side. - On the right side you should take

More information

Respiration and Photosynthesis

Respiration and Photosynthesis Respiration and Photosynthesis Cellular Respiration Glycolysis The Krebs Cycle Electron Transport Chains Anabolic Pathway Photosynthesis Calvin Cycle Flow of Energy Energy is needed to support all forms

More information

AHL Topic 8 IB Biology Miss Werba

AHL Topic 8 IB Biology Miss Werba CELL RESPIRATION & PHOTOSYNTHESIS AHL Topic 8 IB Biology Miss Werba TOPIC 8 CELL RESPIRATION & PHOTOSYNTHESIS 8.1 CELL RESPIRATION 1. STATE that oxidation involves the loss of electrons from an element,

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

Energy Exchanges Exam: What to Study

Energy Exchanges Exam: What to Study Energy Exchanges Exam: What to Study Here s what you will need to make sure you understand in order to prepare for our exam: Free Energy Conceptual understanding of free energy as available energy in a

More information

Center for Academic Services & Advising

Center for Academic Services & Advising March 2, 2017 Biology I CSI Worksheet 6 1. List the four components of cellular respiration, where it occurs in the cell, and list major products consumed and produced in each step. i. Hint: Think about

More information

PHOTOSYNTHESIS STARTS WITH

PHOTOSYNTHESIS STARTS WITH Name Date Period PHOTOSYNTHESIS STARTS WITH 1. Molecules that collect light energy are called _P. 2. Chlorophyll a and b absorb _B -_V and _R wavelengths of light best. 3. _C is the main light absorbing

More information

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP:

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP: Understanding How Living Things Obtain and Use Energy. Cell Energy: The Big Picture Most Autotrophs produce food (sugar) using light energy during Photosynthesis. Then, both Autotrophs and Heterotroph

More information

Unit 3: Cell Energy Guided Notes

Unit 3: Cell Energy Guided Notes Enzymes Unit 3: Cell Energy Guided Notes 1 We get energy from the food we eat by breaking apart the chemical bonds where food is stored. energy is in the bonds, energy is the energy we use to do things.

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Overview 10 reactions u convert () to pyruvate (3C) u produces: 4 & NADH u consumes: u net: & NADH C-C-C-C-C-C fructose-1,6bp P-C-C-C-C-C-C-P DHAP P-C-C-C G3P C-C-C-P H P i P i pyruvate C-C-C 4 4 NAD +

More information

Sara Khraim. Shaymaa Alnamos ... Dr. Nafeth

Sara Khraim. Shaymaa Alnamos ... Dr. Nafeth 10 Sara Khraim Shaymaa Alnamos... Dr. Nafeth *Requirement of oxidative phosphorylation: 1- Source and target for electrons(nadh+fadh2 >> O2). 2- Electron carriers. 3- Enzymes, like oxidoreductases and

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 107 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 107 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 107 Week 6 Procedure 7.2 Label test tubes well, including group name 1) Add solutions listed to small test tubes 2)

More information

Photosynthesis and Cellular Respiration Unit

Photosynthesis and Cellular Respiration Unit Photosynthesis and Cellular Respiration Unit All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs: organisms that can make their own

More information

20. Electron Transport and Oxidative Phosphorylation

20. Electron Transport and Oxidative Phosphorylation 20. Electron Transport and Oxidative Phosphorylation 20.1 What Role Does Electron Transport Play in Metabolism? Electron transport - Role of oxygen in metabolism as final acceptor of electrons - In inner

More information

Energy Metabolism exergonic reaction endergonic reaction Energy of activation

Energy Metabolism exergonic reaction endergonic reaction Energy of activation Metabolism Energy Living things require energy to grow and reproduce Most energy used originates from the sun Plants capture 2% of solar energy Some captured energy is lost as metabolic heat All energy

More information

All organisms require a constant expenditure of energy to maintain the living state - "LIFE".

All organisms require a constant expenditure of energy to maintain the living state - LIFE. CELLULAR RESPIRATION All organisms require a constant expenditure of energy to maintain the living state - "LIFE". Where does the energy come from and how is it made available for life? With rare exception,

More information

MITOCW watch?v=ojvz7pvvz-o

MITOCW watch?v=ojvz7pvvz-o MITOCW watch?v=ojvz7pvvz-o SPEAKER 1: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

2.A.2- Capture and Storage of Free Energy

2.A.2- Capture and Storage of Free Energy 2.A.2- Capture and Storage of Free Energy Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis. EU 2.A- Growth, reproduction

More information

Cellular Respiration. Pg 231

Cellular Respiration. Pg 231 Cellular Respiration Pg 231 Define cellular respiration. The process by which mitochondria break down food molecules to produce ATP is called cellular respiration. In plants breaking sugar (glucose) to

More information

Chapter 5. Table of Contents. Section 1 Energy and Living Things. Section 2 Photosynthesis. Section 3 Cellular Respiration

Chapter 5. Table of Contents. Section 1 Energy and Living Things. Section 2 Photosynthesis. Section 3 Cellular Respiration Photosynthesis and Cellular Respiration Table of Contents Section 1 Energy and Living Things Section 2 Photosynthesis Section 3 Cellular Respiration Section 1 Energy and Living Things Objectives Analyze

More information

Cellular Respiration. Mitochondria Rule! Mr. Kurt Kristensen

Cellular Respiration. Mitochondria Rule! Mr. Kurt Kristensen Cellular Respiration Mitochondria Rule! Mr. Kurt Kristensen Harvard Biovisions Mitochondria Summer Session Week 1: Cellular Respiration Students should. 1) Understand the locations, and functions of the

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6 Metabolism: Energy and Enzymes Chapter 6 Forms of Energy Outline Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration 1 2 Forms

More information

BIOLOGY 111. CHAPTER 7: Vital Harvest: Deriving Energy From Food

BIOLOGY 111. CHAPTER 7: Vital Harvest: Deriving Energy From Food BIOLOGY 111 CHAPTER 7: Vital Harvest: Deriving Energy From Food Deriving Energy from Food: What is the best carbohydrate source (for energy) in our food? Glucose! Where is the energy stored in glucose?

More information

Catalysis. Instructor: Dr. Tsung-Lin Li Genomics Research Center Academia Sinica

Catalysis. Instructor: Dr. Tsung-Lin Li Genomics Research Center Academia Sinica Catalysis Instructor: Dr. Tsung-Lin Li Genomics Research Center Academia Sinica References: Biochemistry" by Donald Voet and Judith G. Voet Biochemistry" by Christopher K. Mathews, K. E. Van Hold and Kevin

More information

1. How is a partially charged battery like ADP?

1. How is a partially charged battery like ADP? Name The chart below shows key terms from the lesson with their definitions. Complete the chart by writing a strategy to help you remember the meaning of each term. One has been done for you. Term Definition

More information

Energy Transformation. Metabolism = total chemical reactions in cells.

Energy Transformation. Metabolism = total chemical reactions in cells. Energy Transformation Metabolism = total chemical reactions in cells. metabole = change Metabolism is concerned with managing the material and energy resources of the cell -Catabolism -Anabolism -Catabolism

More information

AP Biology Day 16. Monday, September 26, 2016

AP Biology Day 16. Monday, September 26, 2016 AP Biology Day 16 Monday, September 26, 2016 CW/HW Assignments 1. Ch. 9 Guided Reading 2. Ch. 9 Video Cornell Notes (2) PLANNER 1. Ch. 9 Video Cornell Notes (weebly) 2. Study & schedule test retake! unit

More information

Bioenergetics and high-energy compounds

Bioenergetics and high-energy compounds Bioenergetics and high-energy compounds Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Department of Medical Chemistry and Clinical Biochemistry 2nd Faculty of Medicine, Charles University in Prague and Motol

More information

Cellular Respiration. The mechanism of creating cellular energy. Thursday, 11 October, 12

Cellular Respiration. The mechanism of creating cellular energy. Thursday, 11 October, 12 Cellular Respiration The mechanism of creating cellular energy What do we know?? What do we know?? Grade 5 - Food --> Energy What do we know?? Grade 5 - Food --> Energy Grade 10 - glu. + O2 --> CO2 + H20

More information

ΔG o' = ηf ΔΕ o' = (#e ( V mol) ΔΕ acceptor

ΔG o' = ηf ΔΕ o' = (#e ( V mol) ΔΕ acceptor Reading: Sec. 19.1 Electron-Transfer Reactions in Mitochondria (listed subsections only) 19.1.1 Electrons are Funneled to Universal Electron Acceptors p. 692/709 19.1.2 Electrons Pass through a Series

More information

2. In regards to the fluid mosaic model, which of the following is TRUE?

2. In regards to the fluid mosaic model, which of the following is TRUE? General Biology: Exam I Sample Questions 1. How many electrons are required to fill the valence shell of a neutral atom with an atomic number of 24? a. 0 the atom is inert b. 1 c. 2 d. 4 e. 6 2. In regards

More information

Advanced Cell Biology. Lecture 8

Advanced Cell Biology. Lecture 8 Advanced Cell Biology. Lecture 8 Alexey Shipunov Minot State University January 28, 2013 Shipunov (MSU) Advanced Cell Biology. Lecture 8 January 28, 2013 1 / 33 Outline Questions and answers Energy and

More information

MITOCHONDRIAL LAB. We are alive because we make a lot of ATP and ATP makes (nonspontaneous) chemical reactions take place

MITOCHONDRIAL LAB. We are alive because we make a lot of ATP and ATP makes (nonspontaneous) chemical reactions take place MITOCHONDRIAL LAB We are alive because we make a lot of ATP and ATP makes (nonspontaneous) chemical reactions take place We make about 95% of our ATP in the mitochondria We will isolate mitochondria, and

More information

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per Cell Energy Notes Name Per THE ENDOSYMBIOTIC THEORY The Endosymbiotic theory is the idea that a long time ago, engulfed other prokaryotic cells by. This resulted in the first First proposed by Explains

More information

Photosynthesis and cellular respirations

Photosynthesis and cellular respirations The Introduction of Biology Defining of life Basic chemistry, the chemistry of organic molecules Classification of living things History of cells and Cells structures and functions Photosynthesis and cellular

More information

A + B = C C + D = E E + F = A

A + B = C C + D = E E + F = A Photosynthesis - Plants obtain energy directly from the sun - Organisms that do this are autotrophs (make their own food from inorganic forms) - Photosynthesis is a series of chemical reactions where the

More information

Ch. 6 & 7 Photosynthesis & Cellular Respiration

Ch. 6 & 7 Photosynthesis & Cellular Respiration Ch. 6 & 7 Photosynthesis & Cellular Respiration 6.1 Energy Reactions The Cycle of Energy Sun CO 2 H 2 O Photosynthesis (energy stored) Cellular Respiration (energy released) O 2 Glucose Obtaining Energy

More information

State state describe

State state describe Warm-Up State the products of the light-dependent reaction of photosynthesis, state which product has chemical energy, and describe how that product is made. KREBS ETC FADH 2 Glucose Pyruvate H 2 O NADH

More information

Energy for Life 12/11/14. Light Absorption in Chloroplasts

Energy for Life 12/11/14. Light Absorption in Chloroplasts Energy for Life Biochemical pathways A series of reactions where the products of one reaction is used in the next reaction Light Absorption in Chloroplasts Chloroplasts Two membranes Grana- layered stacks

More information

All Cells need energy. (Ability to perform work) What do cells use energy for? Mitosis. Repair. Active transport. Movement.

All Cells need energy. (Ability to perform work) What do cells use energy for? Mitosis. Repair. Active transport. Movement. Cell Energetics All Cells need energy. (Ability to perform work) What do cells use energy for? Mitosis. Repair. Active transport. Movement. What Is ATP? ATP adenosine triphosphate is a chemical molecule

More information

1) What is the one letter and the three letter abbreviations for the poly peptide shown

1) What is the one letter and the three letter abbreviations for the poly peptide shown Lecture 1 Short problems 1) What is the one letter and the three letter abbreviations for the poly peptide shown 2) How many peptide bonds does this polypeptide possess? 3) Circle the peptide bonds 4)

More information

Review Questions - Lecture 5: Metabolism, Part 1

Review Questions - Lecture 5: Metabolism, Part 1 Review Questions - Lecture 5: Metabolism, Part 1 Questions: 1. What is metabolism? 2. What does it mean to say that a cell has emergent properties? 3. Define metabolic pathway. 4. What is the difference

More information

Microbiology II Microbial physiology I Energetics

Microbiology II Microbial physiology I Energetics Microbiology II Microbial physiology I Energetics Catabolism Heat Efficiency ~ 60% Efficiency ~ 40% Anabolism Chemical energy (chemotrophic) Light energy (phototrophic) ATP +/ 50 kj/mol ADP + P i Biosyntheses

More information

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars 4.2 8.2 Overview Photosynthesis: of Photosynthesis An Overview Photosynthesis process by which plants make food using energy from the sun Plants are autotrophs that make their own source of chemical energy.

More information

Chapter 13 Principles of Bioenergetics

Chapter 13 Principles of Bioenergetics Chapter 13 Principles of Bioenergetics 1. Cells need energy to do all their work To generate and maintain its highly ordered structure (biosynthesis of macromolecules) To generate all kinds of movement

More information

I. Enzymes as Catalysts Chapter 4

I. Enzymes as Catalysts Chapter 4 8/29/11 I. Enzymes as Catalysts Chapter 4 Enzymes and Energy Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Enzymes Activation Energy A class

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Outline I. Energy and Carbon Cycle II. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions Carbon Cycle All organisms

More information

1/25/2018. Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration

1/25/2018. Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration 1 2 3 4 5 Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration Energy is needed by cells to do work Chemical energy, a form of potential energy, is stored in bonds of food molecules (such as glucose)

More information

Be sure to understand:

Be sure to understand: Learning Targets & Focus Questions for Unit 6: Bioenergetics Chapter 8: Thermodynamics Chapter 9: Cell Resp Focus Q Ch. 10: Photosynthesis Chapter 8 (141-150) 1. I can explain how living systems adhere

More information

Metabolism Review. A. Top 10

Metabolism Review. A. Top 10 A. Top 10 Metabolism Review 1. Energy production through chemiosmosis a. pumping of H+ ions onto one side of a membrane through protein pumps in an Electron Transport Chain (ETC) b. flow of H+ ions across

More information

Name Date Class. Photosynthesis and Respiration

Name Date Class. Photosynthesis and Respiration Concept Mapping Photosynthesis and Respiration Complete the Venn diagram about photosynthesis and respiration. These terms may be used more than once: absorbs, Calvin cycle, chlorophyll, CO 2, H 2 O, Krebs

More information

Part II => PROTEINS and ENZYMES. 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory

Part II => PROTEINS and ENZYMES. 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory Part II => PROTEINS and ENZYMES 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory Section 2.5a: Enzyme Nomenclature Synopsis 2.5a - Enzymes are biological catalysts they are almost

More information

Welcome to Class 8! Introductory Biochemistry! Announcements / Reminders! Midterm TA led Review Sessions!

Welcome to Class 8! Introductory Biochemistry! Announcements / Reminders! Midterm TA led Review Sessions! Announcements / Reminders Midterm TA led Review Sessions Welcome to Class 8 Sunday, February 23 from 8-10pm Location: Science Center Main Room (315) Office Hours Prof Salomon: SFH 270 on Thursday Feb 20,

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism Why do organisms need energy? How do organisms manage their energy needs? Defining terms and issues: energy and thermodynamics metabolic reactions and energy transfers

More information

f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy.

f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy. Problem Set 2-Answer Key BILD1 SP16 1) How does an enzyme catalyze a chemical reaction? Define the terms and substrate and active site. An enzyme lowers the energy of activation so the reaction proceeds

More information

Giving you the energy you need!

Giving you the energy you need! Giving you the energy you need! Use your dominant hand Open and close the pin (with your thumb and forefinger) as many times as you can for 20 seconds while holding the other fingers straight out! Repeat

More information