MITOCHONDRIAL LAB. We are alive because we make a lot of ATP and ATP makes (nonspontaneous) chemical reactions take place

Size: px
Start display at page:

Download "MITOCHONDRIAL LAB. We are alive because we make a lot of ATP and ATP makes (nonspontaneous) chemical reactions take place"

Transcription

1 MITOCHONDRIAL LAB We are alive because we make a lot of ATP and ATP makes (nonspontaneous) chemical reactions take place We make about 95% of our ATP in the mitochondria We will isolate mitochondria, and study one enzymatic step in the pathway to making ATP

2 Mitochondria and disease: 1. CU MED CENTER: MITOCHONDRIAL MALFUNCTION LEADS TO PARKINSON S DISEASE (SHAKING AS YOU AGE) 2. IF YOU RESTRICT YOUR DIET, YOU MAY LIVER LONGER & HEALTHIER; MORE CALORIES TAKEN IN, MORE NAD+ IS USED TO CARRY ELECTRONS (NOTE THAT FAD ALSO CARRIES ELECTRONS). HOWEVER, NAD+ IS ALSO NEEDED FOR THE SIR2 PROTEIN THAT PREVENTS AGING SYMPTOMS. THUS, LOTS OF SUGAR INTAKE, NAD+ IS NOT AVAILABLE TO SIR2 YOU AGE FASTER. 3. Bad mitochondria may be related to Diabetes

3

4 4. Aging (less ATP made by mitochon- dria)

5

6 How we make most of our ATP: AEROBIC RESPIRATION: GLUCOSE IS BROKEN DOWN (HIGH ENERGY CHEMICAL BONDS BROKEN, ATOMS REMOVED) TO STRIP OFF ENERGETIC ELECTRONS. ENERGY FROM ELECTRONS IS USED TO MAKE ATP in the MITOCHONDRIA OXYGEN (0 2 ) ACCEPTS THE SPENT (LOW ENERGY) ELECTRONS= AEROBIC

7 PARTS OF AEROBIC RESPIRATION: 1) GLYCOLYSIS occurs in the cytoplasm (glucose broken in HALF to produce 2 pyruvate molecules) (ch. 9) (some list other step as intermediate step ; moving pyruvic acid into the mitochondrion) 2) TCA CYCLE (or Kreb s s cycle)- where what is left of glucose is broken all the way down to C0 2 and all the electrons are stripped off 3) Electrons are carried (by NADH or FADH2) to the electron transport chain and ATP synthase where ATP is made from electron energy (ch. 10)

8 PARTS OF AEROBIC RESPIRATION Part 1. 2 Part 3

9 CH. 9: GLYCOLYSIS GLYCOLYSIS IS A SERIES OF 12 CHEMICAL REACTIONS OCCURING IN THE CYTOPLASM TAKE GLUCOSE (LIKE JET FUEL) AND STRIPS OFF ITS ELECTRONS IN THE HIGH ENERGY COVALENT BONDS THIS BREAKS THE COVALENT BONDS AND BREAKS GLUCOSE IN HALF PRODUCING TWO 3 CARBON MOLECULES CALLED PYRUVATE LATER, ENERGY FROM THESE ELECTRONS WILL BE USED TO MAKE ATP

10 ENERGETIC ELECTRONS TAKEN FROM GLUCOSE GIVEN TO NAD+ WHICH CARRIES ELECTRONS INTO MITOCHONDRIA ELECTRONS GIVEN TO NAD is a REDUCTION USE MNEMONIC: OILRIG

11 Ch. 10: Last 2 Parts of Aerobic Respiration take place in the Mitochondrion. ATP made at inner membrane FOLDING MEMBRANE DOES WHAT? (HINT: GUT FOLDS)

12 Last 2 Parts involve the Electron Transport Chain (where electrons are stripped of their energy, energy used to pump Protons H+) Followed by allowing H+ to move back, turning ATP Synthase to make ATP. See SUMMARY ANIMATION FROM OUR TEXTBOOK D:\cell biol 3611\mito respiration\respiration 1418m.mov

13 Electron transport animation from Virtual cell web site see LINK ON our Cell Lab web site LAST STEP: ATP SYNTHASE IS LIKE A LITTLE MOLECULAR TURBINE; TURBINE IS ROTATED BY MOVEMENT OF H+; THEN TURBINE MAKES ATP. Animations: D:\cell biol 3611\mito respiration\etcadvanced.wmv

14 ANIMATIONS OF CHEMIOSMOSIS D:\cell biol 3611\mito respiration\chemiosmosis2.swf D:\cell biol 3611\mito respiration\atp SYNTHASE MBC 14_1.mov D:\cell biol 3611\mito respiration\17 ELEC TRANS CHAIN.MPG D:\cell biol 3611\mito respiration\atpgradientadvanced.wmv (NOTE THAT SOME ANIMATIONS TALK ONLY OF THE H+ CONCENTRATION GRADIENT, IGNORING THE VERY IMPORTANT ELECTRICAL GRADIENT FOR THE H+!!)

15 We will study one enzyme in the TCA Cycle (see Ch. 10; esp figures used here) Succinate Dehydrogenase this enzyme breaks two chemical bonds and removes two H atoms from what is left of glucose.

16 Succin Dehydrog Actually binds Membrane proteins Of the Electron Transport Chain Succinate Dehydrog. Is located here

17 Pyruvate comes in from the cytoplasm into the mitochondrion, it is broken down in the TCA cycle to C0 2 and water. We will study TCA step 6 6

18 In this reaction, once again what is left of glucose is broken down further by breaking bonds and removal of 2 H atoms. FADH 2 carries the excited electrons to the electron transport chain (to make ATP from electron energy)

19 Better view of reaction note the two H atoms that are removed are on different carbons and on opposite sides (trans, not cis) In the lab, the electrons are not given to FAD, but we add a dye that changes its absorbance when it takes the electrons (change in absorbance recorded by spectrophotometer)

20 Succinate Dehydrogenase is an enzyme; substrate succinate binds in the active site (similar to enzymes below)

21 Characteristics of Succ. Dehyd. As it breaks chemical bonds between Carbon and Hydrogen (C-H) in succinate, it takes the excited electrons and the Hydrogen atoms (actually hydride) from the chemical bonds and gives them to FAD FAD becomes FADH 2 FADH 2 transfers the electrons to the electron transport chain. Energy from excited electrons used to make ATP

22 Cont d Succ. Dehyd. Is an Integral (?) membrane protein in the inner mitochondrial membrane (hard to remove from membrane, hard to study) All other TCA cycle enzymes are soluble (located in the matrix) If we add a reducible dye, the dye not FAD will pick up the electrons OILRIG: oxidation is loss of electrons, reduction is gain of electrons. So, dye (or FAD) is reduced, succinate is oxidized to fumarate

23 Cont d Succinate dehyd. has a size of 100,000 daltons. Average protein is 50,000 daltons ; how many amino acids in succ dehy? (/100) Also contains 8 iron atoms, Fe (iron) atoms help in the transfer of electrons from succinate to FAD. Has two subunits (so it has quarternary structure) Has higher activity than any other TCA cycle enzyme

24 Succinate Dehydrogenase is turned on or off through allosteric regulation (page 144 (page ) 145). Allosteric regulation is how the body controls an enzyme (competitive inhibition is typically artificial or external to the body) ATP or reduced coenzyme Q are allosteric activators of Succ Dehyd Allosteric activators typically bind somewhere between the subunits of Succ Dehyd (not the active site) to stimulate the enzyme activity Allosteric inhibitors act similarly to inhibit

25 Competitive Inhibition Inhibitor resembles Substrate This is not how the body/cell regulates enzymes (typically) - some medicines work this way So this method is artificial and used in test tubes to study an enzyme The inhibitor can bind to the active site (preventing the normal substrate from binding) but the inhibitor cannot form the product So, both the inhibitor and Substrate compete for the active site of the enzyme If the substrate is in excess, the inhibitor will not inhibit

26 Competitive Inhibitors resemble the normal substrate (but cannot be turned into product so they tie up enzymes by binding to their active site) Malonate

27 Competitive Inhibitors resemble the normal substrate -but cannot be turned into product so they tie up enzymes by binding to their active site. Malonate is a molecule that looks like succinate, but it cannot be made into fumaric acid (product) so malonate is a competitive inhibitor. Malonate is in a COMPETITION for the active site of the enzyme with succinate-- which ever is in higher concentration typically wins! Some medicines are competitive inhibitors

28 Other competitive inhibitors Other dibasic acids (means that they have two carboxylic acid functional groups= C00 - ) can act as competitive inhibitors The other dibasic acids inhibit because the distance between the two C00 - is about the same as the distance in succinate. The active site of succinate dehydrogenase must have two + charges that are separated by the same distance

29 Note that as long as the spacing between the two ends is ~same as in Succinate, get competitive inhibition. Even E two negative charges of pyrophosphate can act as a negative inhibitor:

30 SUCCINATE FITS INTO ACTIVE SITE (SOME OTHER DIBASIC ACIDS HAVE SAME SPACING BETWEEN NEGATIVE CHARGES) 0 = C - C - C C = ACTIVE SITE- WHERE SUBSTRATE OR COMPETITIVE INHIBITORS BIND. HERE, FIND AMINO ACIDS WHERE THEIR R GROUP HAS + CHARGE SUCCINATE DEHYDROGENASE

31 So, we will isolate mitochondria using centrifugation, and study Succinate Dehydrogenase To Isolate Organelles, you homogenize the cell and then use centrifugtation to Isolate the organelle

32 Differential Centrifugation A rotor moves round and round, and heavy particles move to the bottom of the test tube faster Text: p , 323, Sixth Ed

33 So, we will 1. isolate mitochondria from Xenopus liver and 2. follow Succinate Dehydrogenase activity by adding Succinate 3. add a competitive inhibitor called Malonate to reduce Succ Dehyd activity

34 Enzyme Kinetics If little substrate is around, there will be very little enzyme activity and the rate of the reaction will be slow If there is more substrate around, the enzyme will be more active and the reaction will be faster At a certain point, even if you raise the substrate concentration further, the rate of the reaction will not increase THIS IS SATURATION KINETICS (page 136 to 139 in text; 6 th ed)

35 Rate of Reaction (slope of OD600 vs. time) Saturation at higher substrate concentrations because all enzyme working as hard as they can- the enzymes Are saturated!

36 Vm = maximum velocity or rate of the reaction Km = a measure of enzyme-substrate affinity (low Km means high affinity) Obtain Vm by going over from the Y axis (rate of the reaction when it first begins) to where the rectangular hyperbola levels off Obtain Km by going down the Y axis to one half Vm, then going over to the line in the graph, then going down to X axis. You can also obtain the values by using a Double Reciprocal Plot (Fig and 6-13). 6

37 = [Succinate] Rate is initial slope for each concentration of succinate (in OD600 Versus time)

38 Double Reciprocal Plot

Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts)

Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts) 1 Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts) Objectives 1: Describe the overall action of the Krebs cycle in generating ATP, NADH and FADH 2 from acetyl-coa 2: Understand the generation

More information

Biological Chemistry and Metabolic Pathways

Biological Chemistry and Metabolic Pathways Biological Chemistry and Metabolic Pathways 1. Reaction a. Thermodynamics b. Kinetics 2. Enzyme a. Structure and Function b. Regulation of Activity c. Kinetics d. Inhibition 3. Metabolic Pathways a. REDOX

More information

Unit 3: Cell Energy Guided Notes

Unit 3: Cell Energy Guided Notes Enzymes Unit 3: Cell Energy Guided Notes 1 We get energy from the food we eat by breaking apart the chemical bonds where food is stored. energy is in the bonds, energy is the energy we use to do things.

More information

AP Biology Cellular Respiration

AP Biology Cellular Respiration AP Biology Cellular Respiration The bonds between H and C represents a shared pair of electrons These are high-energy electrons This represents chemical potential energy Hydro-carbons posses a lot of chemical

More information

Cellular Respiration Stage 4: Electron Transport Chain

Cellular Respiration Stage 4: Electron Transport Chain Cellular Respiration Stage 4: Electron Transport Chain 2006-2007 Cellular respiration What s the point? The point is to make ATP! ATP 2006-2007 ATP accounting so far Glycolysis 2 ATP Kreb s cycle 2 ATP

More information

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP The chemical energy used for most cell processes is carried by ATP. Molecules in food store chemical

More information

Life Depends on Photosynthesis

Life Depends on Photosynthesis Photosynthesis Life Depends on Photosynthesis Most energy Comes from the Sun Life Depends on Photosynthesis Most energy Comes from the Sun Life Depends on Photosynthesis Most energy Comes from the Sun

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reactions, light-dependent, Calvin cycle, thylakoid, photosystem II, oxygen, light-harvesting, two, chloroplasts,

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Overview 10 reactions u convert () to pyruvate (3C) u produces: 4 & NADH u consumes: u net: & NADH C-C-C-C-C-C fructose-1,6bp P-C-C-C-C-C-C-P DHAP P-C-C-C G3P C-C-C-P H P i P i pyruvate C-C-C 4 4 NAD +

More information

State state describe

State state describe Warm-Up State the products of the light-dependent reaction of photosynthesis, state which product has chemical energy, and describe how that product is made. KREBS ETC FADH 2 Glucose Pyruvate H 2 O NADH

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reectlons, light-dependent, Calvin cycle, thylakoid, oxygen, light-harvesting, two, chloroplasts, photosynthesis,

More information

Metabolism Review. A. Top 10

Metabolism Review. A. Top 10 A. Top 10 Metabolism Review 1. Energy production through chemiosmosis a. pumping of H+ ions onto one side of a membrane through protein pumps in an Electron Transport Chain (ETC) b. flow of H+ ions across

More information

All organisms require a constant expenditure of energy to maintain the living state - "LIFE".

All organisms require a constant expenditure of energy to maintain the living state - LIFE. CELLULAR RESPIRATION All organisms require a constant expenditure of energy to maintain the living state - "LIFE". Where does the energy come from and how is it made available for life? With rare exception,

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy 6 Pathways that Harvest and Store Chemical Energy Energy is stored in chemical bonds and can be released and transformed by metabolic pathways. Chemical energy available to do work is termed free energy

More information

Energy for Life 12/11/14. Light Absorption in Chloroplasts

Energy for Life 12/11/14. Light Absorption in Chloroplasts Energy for Life Biochemical pathways A series of reactions where the products of one reaction is used in the next reaction Light Absorption in Chloroplasts Chloroplasts Two membranes Grana- layered stacks

More information

The Life of a Cell. The Chemistry of Life. A View of the Cell. Cellular Transport and the Cell Cycle. Energy in a Cell

The Life of a Cell. The Chemistry of Life. A View of the Cell. Cellular Transport and the Cell Cycle. Energy in a Cell The Life of a Cell The Chemistry of Life A View of the Cell Cellular Transport and the Cell Cycle Energy in a Cell Chapter 9 Energy in a Cell 9.1: The Need for Energy 9.1: Section Check 9.2: Photosynthesis:

More information

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels Cellular Respiration: Harvesting Chemical Energy 9.1 Catabolic pathways yield energy by oxidizing organic fuels 9.2 Glycolysis harvests chemical energy by oxidizing glucose to pyruvate 9.3 The citric acid

More information

Energy Exchanges Exam: What to Study

Energy Exchanges Exam: What to Study Energy Exchanges Exam: What to Study Here s what you will need to make sure you understand in order to prepare for our exam: Free Energy Conceptual understanding of free energy as available energy in a

More information

Cellular respiration ATP. Cellular Respiration Stage 4: Electron Transport Chain. AP Biology. The point is to make ATP! What s the point?

Cellular respiration ATP. Cellular Respiration Stage 4: Electron Transport Chain. AP Biology. The point is to make ATP! What s the point? ellular respiration ellular Respiration Stage 4: Electron Transport hain What s the point? The point is to make! accounting so far Glycolysis 2 Kreb s cycle 2 Life takes a lot of energy to run, need to

More information

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration How do living things stay alive? Cellular Respiration Burning Happens in ALL living things inside cells and has the main goal of producing ATP the fuel of life It does not matter whether the organisms

More information

Cellular Respiration. Pg 231

Cellular Respiration. Pg 231 Cellular Respiration Pg 231 Define cellular respiration. The process by which mitochondria break down food molecules to produce ATP is called cellular respiration. In plants breaking sugar (glucose) to

More information

20. Electron Transport and Oxidative Phosphorylation

20. Electron Transport and Oxidative Phosphorylation 20. Electron Transport and Oxidative Phosphorylation 20.1 What Role Does Electron Transport Play in Metabolism? Electron transport - Role of oxygen in metabolism as final acceptor of electrons - In inner

More information

ATP. Division Ave. High School AP Biology. Cellular Respiration Stage 4: Electron Transport Chain. Cellular respiration. The point is to make ATP!

ATP. Division Ave. High School AP Biology. Cellular Respiration Stage 4: Electron Transport Chain. Cellular respiration. The point is to make ATP! ellular Respiration Stage 4: Electron Transport hain 2006-2007 ellular respiration What s the point? The point is to make! 2006-2007 1 accounting so far Glycolysis 2 Kreb s cycle 2 Life takes a lot of

More information

Cellular Respiration Chapter 5 Notes

Cellular Respiration Chapter 5 Notes Cellular Respiration Chapter 5 Notes Some Terms to Know Aerobic = WITH oxygen Anaerobic = without oxygen NAD electron carrier = NADH FAD electron carrier = FADH 2 Cellular Respiration a way for cells to

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 5: Energy for Biological Processes Notes Aerobic Respiration Aerobic respiration as splitting of the respiratory substrate, to release carbon dioxide as a waste product

More information

Energy Transformation. Metabolism = total chemical reactions in cells.

Energy Transformation. Metabolism = total chemical reactions in cells. Energy Transformation Metabolism = total chemical reactions in cells. metabole = change Metabolism is concerned with managing the material and energy resources of the cell -Catabolism -Anabolism -Catabolism

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

Cellular Respiration. The mechanism of creating cellular energy. Thursday, 11 October, 12

Cellular Respiration. The mechanism of creating cellular energy. Thursday, 11 October, 12 Cellular Respiration The mechanism of creating cellular energy What do we know?? What do we know?? Grade 5 - Food --> Energy What do we know?? Grade 5 - Food --> Energy Grade 10 - glu. + O2 --> CO2 + H20

More information

All Cells need energy. (Ability to perform work) What do cells use energy for? Mitosis. Repair. Active transport. Movement.

All Cells need energy. (Ability to perform work) What do cells use energy for? Mitosis. Repair. Active transport. Movement. Cell Energetics All Cells need energy. (Ability to perform work) What do cells use energy for? Mitosis. Repair. Active transport. Movement. What Is ATP? ATP adenosine triphosphate is a chemical molecule

More information

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars 4.2 8.2 Overview Photosynthesis: of Photosynthesis An Overview Photosynthesis process by which plants make food using energy from the sun Plants are autotrophs that make their own source of chemical energy.

More information

2. In regards to the fluid mosaic model, which of the following is TRUE?

2. In regards to the fluid mosaic model, which of the following is TRUE? General Biology: Exam I Sample Questions 1. How many electrons are required to fill the valence shell of a neutral atom with an atomic number of 24? a. 0 the atom is inert b. 1 c. 2 d. 4 e. 6 2. In regards

More information

f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy.

f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy. Problem Set 2-Answer Key BILD1 SP16 1) How does an enzyme catalyze a chemical reaction? Define the terms and substrate and active site. An enzyme lowers the energy of activation so the reaction proceeds

More information

Cellular Respiration Chapter 5 Notes

Cellular Respiration Chapter 5 Notes Cellular Respiration Chapter 5 Notes Some Terms to Know Aerobic = WITH oxygen Anaerobic = without oxygen NAD electron carrier = NADH FAD electron carrier = FADH 2 Cellular Respiration a way for cells to

More information

PHOTOSYNTHESIS. Chapter 8

PHOTOSYNTHESIS. Chapter 8 PHOTOSYNTHESIS Chapter 8 ENERGY & LIFE ENERGY The ability to do work. Can be stored in chemical bonds. Cells need energy to do things like active transport, dividing, moving, and producing and storing

More information

Center for Academic Services & Advising

Center for Academic Services & Advising March 2, 2017 Biology I CSI Worksheet 6 1. List the four components of cellular respiration, where it occurs in the cell, and list major products consumed and produced in each step. i. Hint: Think about

More information

REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS A. Top 10 If you learned anything from this unit, you should have learned: 1. Energy production through chemiosmosis a. pumping of H+

More information

Metabolism Test D [50 marks]

Metabolism Test D [50 marks] Metabolism Test D [50 marks] 1. A cricket was placed in a respirometer at constant temperature for ten minutes. The soap bubble moved along the pipette. [Source: International Baccalaureate Organization

More information

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions Name: KEY CP Biology Unit 5 Cell Energy Study Guide Vocabulary to know: ATP ADP Aerobic Anaerobic ATP Synthases Cellular Respiration Chlorophyll Chloroplast Electron Carriers Electron Transport Chain Fermentation

More information

Energy & Life: Cellular Respiration PART I: HARVESTING CHEMICAL ENERGY

Energy & Life: Cellular Respiration PART I: HARVESTING CHEMICAL ENERGY Energy & Life: Cellular Respiration PART I: HARVESTING CHEMICAL ENERGY Energy u Energy is not created or destroyed, it is transformed, changed. u E= ability to do work u Living things depend on energy

More information

AHL Topic 8 IB Biology Miss Werba

AHL Topic 8 IB Biology Miss Werba CELL RESPIRATION & PHOTOSYNTHESIS AHL Topic 8 IB Biology Miss Werba TOPIC 8 CELL RESPIRATION & PHOTOSYNTHESIS 8.1 CELL RESPIRATION 1. STATE that oxidation involves the loss of electrons from an element,

More information

Cell Energetics. How plants make food and everyone makes energy!

Cell Energetics. How plants make food and everyone makes energy! Cell Energetics How plants make food and everyone makes energy! Carbon Cycle Where did the mitochondria and chloroplast come from? Endosymbiotic Theory Endosymbiotic theory = a theory that some of the

More information

Photosynthesis and Cellular Respiration Unit

Photosynthesis and Cellular Respiration Unit Photosynthesis and Cellular Respiration Unit All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs: organisms that can make their own

More information

Ev e ry living c e l l needs a source of

Ev e ry living c e l l needs a source of 12 Photosynthesis and Cellular Respiration Ev e ry living c e l l needs a source of energy. Without energy, metabolism all of the chemical reactions that occur within cells will not occur. In this activity,

More information

Respiration and Photosynthesis

Respiration and Photosynthesis Respiration and Photosynthesis Cellular Respiration Glycolysis The Krebs Cycle Electron Transport Chains Anabolic Pathway Photosynthesis Calvin Cycle Flow of Energy Energy is needed to support all forms

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

Aerobic Cellular Respiration

Aerobic Cellular Respiration Aerobic Cellular Respiration Under aerobic conditions (oxygen gas is available), cells will undergo aerobic cellular respiration. The end products of aerobic cellular respiration are carbon dioxide gas,

More information

Energy in the World of Life

Energy in the World of Life Cellular Energy Energy in the World of Life Sustaining life s organization requires ongoing energy inputs Assembly of the molecules of life starts with energy input into living cells Energy Conversion

More information

Cell and Molecular Biology

Cell and Molecular Biology Cell and Molecular Biology (3000719): academic year 2013 Content & Objective :Cell Chemistry and Biosynthesis 3 rd Edition, 1994, pp. 41-88. 4 th Edition, 2002, pp. 47-127. 5 th Edition, 2008, pp. 45-124.

More information

BIOLOGY 111. CHAPTER 7: Vital Harvest: Deriving Energy From Food

BIOLOGY 111. CHAPTER 7: Vital Harvest: Deriving Energy From Food BIOLOGY 111 CHAPTER 7: Vital Harvest: Deriving Energy From Food Deriving Energy from Food: What is the best carbohydrate source (for energy) in our food? Glucose! Where is the energy stored in glucose?

More information

Lectures by Kathleen Fitzpatrick

Lectures by Kathleen Fitzpatrick Chapter 10 Chemotrophic Energy Metabolism: Aerobic Respiration Lectures by Kathleen Fitzpatrick Simon Fraser University Figure 10-1 Figure 10-6 Conversion of pyruvate The conversion of pyruvate to acetyl

More information

Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová

Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová Respiratory chain (RCH) a) is found in all cells b) is located in a mitochondrion c) includes enzymes integrated in the inner

More information

ATP. Chapter 4. Photosynthesis. Cell Respiration. Energy of Life. All organisms need energy in order to survive

ATP. Chapter 4. Photosynthesis. Cell Respiration. Energy of Life. All organisms need energy in order to survive ATP Chapter 4 Photosynthesis Energy of Life All organisms need energy in order to survive 2 Major groups of organisms: A. autotrophs make their own food Ex: plants B. heterotrophs must eat others living

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Outline I. Energy and Carbon Cycle II. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions Carbon Cycle All organisms

More information

AP Bio-Ms.Bell Unit#3 Cellular Energies Name

AP Bio-Ms.Bell Unit#3 Cellular Energies Name AP Bio-Ms.Bell Unit#3 Cellular Energies Name 1. Base your answer to the following question on the image below. 7. Base your answer to the following question on Which of the following choices correctly

More information

Chapter 5. The Chloroplast. 5.1 Matter and Energy Pathways in Living Systems. Photosynthesis & Cellular Respiration

Chapter 5. The Chloroplast. 5.1 Matter and Energy Pathways in Living Systems. Photosynthesis & Cellular Respiration Chapter 5 Photosynthesis & Cellular Respiration 5.1 Matter and Energy Pathways in Living Systems Both cellular respiration and photosynthesis are examples of biological processes that involve matter &

More information

Ch. 6 & 7 Photosynthesis & Cellular Respiration

Ch. 6 & 7 Photosynthesis & Cellular Respiration Ch. 6 & 7 Photosynthesis & Cellular Respiration 6.1 Energy Reactions The Cycle of Energy Sun CO 2 H 2 O Photosynthesis (energy stored) Cellular Respiration (energy released) O 2 Glucose Obtaining Energy

More information

Introduction differential centrifugation microcentrifuge. Supplies needed (besides kit):

Introduction differential centrifugation microcentrifuge. Supplies needed (besides kit): I. Mitochondria Isolation Introduction(modified from the Pierce Chemical Co Instructions) This lab has two parts: (I) first we isolate the mitochondria, then (II) we measure the activity of a mitochondrial

More information

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation Cellular Energetics Photosynthesis, Cellular Respiration and Fermentation TEKS B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized parts that

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 107 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 107 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 107 Week 6 Procedure 7.2 Label test tubes well, including group name 1) Add solutions listed to small test tubes 2)

More information

UNIT 2: CELLS Chapter 4: Cells and Energy

UNIT 2: CELLS Chapter 4: Cells and Energy CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

4 GETTING READY TO LEARN Preview Key Concepts 4.1 Chemical Energy and ATP All cells need chemical energy.

4 GETTING READY TO LEARN Preview Key Concepts 4.1 Chemical Energy and ATP All cells need chemical energy. CHAPTER 4 Cells and Energy GETTING READY TO LEARN Preview Key Concepts 4.1 Chemical Energy and ATP All cells need chemical energy. 4.2 Overview of Photosynthesis The overall process of photosynthesis produces

More information

Illuminating Photosynthesis

Illuminating Photosynthesis Name: Block: Date: Student #: Photosynthesis & Cellular Respiration Internet Activity Illuminating Photosynthesis Go to lps.org and enter the jump code P4BR into the search box in the upper right corner.

More information

TCA Cycle. Voet Biochemistry 3e John Wiley & Sons, Inc.

TCA Cycle. Voet Biochemistry 3e John Wiley & Sons, Inc. TCA Cycle Voet Biochemistry 3e Voet Biochemistry 3e The Electron Transport System (ETS) and Oxidative Phosphorylation (OxPhos) We have seen that glycolysis, the linking step, and TCA generate a large number

More information

AP Biology Day 16. Monday, September 26, 2016

AP Biology Day 16. Monday, September 26, 2016 AP Biology Day 16 Monday, September 26, 2016 CW/HW Assignments 1. Ch. 9 Guided Reading 2. Ch. 9 Video Cornell Notes (2) PLANNER 1. Ch. 9 Video Cornell Notes (weebly) 2. Study & schedule test retake! unit

More information

GR QUIZ WITH ANS KEY Cellular Processes. Part I: Multiple Choice. 1. In leaf cell, the synthesis of ATP occurs in which of the following?

GR QUIZ WITH ANS KEY Cellular Processes. Part I: Multiple Choice. 1. In leaf cell, the synthesis of ATP occurs in which of the following? GR QUIZ WITH ANS KEY Cellular Processes Part I: Multiple Choice 1. In leaf cell, the synthesis of ATP occurs in which of the following? I. Ribosomes II. Mitochondria III. Chloroplasts A. I only B. II only

More information

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully. Outline: Metabolism Part I: Fermentations Part II: Respiration Part III: Metabolic Diversity Learning objectives are: Learn about respiratory metabolism, ATP generation by respiration linked (oxidative)

More information

Cell Energetics - Practice Test

Cell Energetics - Practice Test Name: Class: _ Date: _ Cell Energetics - Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the source of energy used

More information

Energy Metabolism exergonic reaction endergonic reaction Energy of activation

Energy Metabolism exergonic reaction endergonic reaction Energy of activation Metabolism Energy Living things require energy to grow and reproduce Most energy used originates from the sun Plants capture 2% of solar energy Some captured energy is lost as metabolic heat All energy

More information

Chapter 4: Energy From the sun to you in two easy steps

Chapter 4: Energy From the sun to you in two easy steps Chapter 4: Energy From the sun to you in two easy steps Lectures by Mark Manteuffel, St. Louis Community College Learning Objectives Understand and be able to explain the following: How energy flows from

More information

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI.

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Chapter 6 Energy & Metabolism I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Metabolism I. Flow of Energy in Living

More information

Bio102 Problems Photosynthesis

Bio102 Problems Photosynthesis Bio102 Problems Photosynthesis 1. Why is it advantageous for chloroplasts to have a very large (in surface area) thylakoid membrane contained within the inner membrane? A. This limits the amount of stroma

More information

Giving you the energy you need!

Giving you the energy you need! Giving you the energy you need! Use your dominant hand Open and close the pin (with your thumb and forefinger) as many times as you can for 20 seconds while holding the other fingers straight out! Repeat

More information

ETC/CHEMIOSIS. By: Leslie, Kelsey, Morgan

ETC/CHEMIOSIS. By: Leslie, Kelsey, Morgan ETC/CHEMIOSIS By: Leslie, Kelsey, Morgan WHY THIS IS IMPORTANT House Clip SO3E7 The Son of a Coma Guy- Time: 32:00 Patient was visiting his father who was in a vegetative state for 10 years, and his only

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration What you will learn: GPS Standard SB3a Explain the cycling of energy through the processes of photosynthesis and respiration. IN OTHER WORDS Photosynthesis and Cellular

More information

Respiration and Photosynthesis. The Ying and Yang of Life.

Respiration and Photosynthesis. The Ying and Yang of Life. Respiration and Photosynthesis The Ying and Yang of Life. Why? You ve always been told that you must eat and breathe. Why? In this unit we will attempt to answer those questions. 1 st Law of Thermodynamics

More information

ΔG o' = ηf ΔΕ o' = (#e ( V mol) ΔΕ acceptor

ΔG o' = ηf ΔΕ o' = (#e ( V mol) ΔΕ acceptor Reading: Sec. 19.1 Electron-Transfer Reactions in Mitochondria (listed subsections only) 19.1.1 Electrons are Funneled to Universal Electron Acceptors p. 692/709 19.1.2 Electrons Pass through a Series

More information

Photosynthesis and Cellular Respiration Practice Test Name

Photosynthesis and Cellular Respiration Practice Test Name Photosynthesis and Cellular Respiration Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which H+ has just passed through the

More information

Unit 8 Cell Metabolism. Foldable Notes

Unit 8 Cell Metabolism. Foldable Notes Unit 8 Cell Metabolism Foldable Notes Silently read pages 94-96 of your biology textbook Middle Inside Top Vocabulary 1. ATP 2. ADP 3. Product 4. Reactant 5. Chloroplast 6. Mitochondria 7. Heterotroph

More information

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D.

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D. Biochemical bases for energy transformations Biochemical bases for energy transformations Nutrition 202 Animal Energetics R. D. Sainz Lecture 02 Energy originally from radiant sun energy Captured in chemical

More information

ATP: Energy for Life ATP. Chapter 6. What Is ATP? What Does ATP Do for You? Photosynthesis. Cell Respiration. Chemical Structure of ATP

ATP: Energy for Life ATP. Chapter 6. What Is ATP? What Does ATP Do for You? Photosynthesis. Cell Respiration. Chemical Structure of ATP Chapter 6 Photosynthesis : Energy for Life Cell Respiration What Is? Energy used by all Cells Chemical Structure of Adenine Base Adenosine Triphosphate Organic molecule containing highenergy Phosphate

More information

NAME ONE THING we have in common with plants. If

NAME ONE THING we have in common with plants. If Cellular Respiration NAME ONE THING we have in common with plants. If you said cellular respiration, you are right. That is one thing we have in common with plants, slugs, slime mold, and spiders. Living

More information

Unit 1C Practice Exam (v.2: KEY)

Unit 1C Practice Exam (v.2: KEY) Unit 1C Practice Exam (v.2: KEY) 1. Which of the following statements concerning photosynthetic pigments (chlorophylls a and b, carotenes, and xanthophylls) is correct? (PT1-12) a. The R f values obtained

More information

Review Questions - Lecture 5: Metabolism, Part 1

Review Questions - Lecture 5: Metabolism, Part 1 Review Questions - Lecture 5: Metabolism, Part 1 Questions: 1. What is metabolism? 2. What does it mean to say that a cell has emergent properties? 3. Define metabolic pathway. 4. What is the difference

More information

AQA Biology A-level Topic 5: Energy transfers in and between organisms

AQA Biology A-level Topic 5: Energy transfers in and between organisms AQA Biology A-level Topic 5: Energy transfers in and between organisms Notes Photosynthesis Photosynthesis is a reaction in which light energy is used to produce glucose in plants. The process requires

More information

Chapter 5. Table of Contents. Section 1 Energy and Living Things. Section 2 Photosynthesis. Section 3 Cellular Respiration

Chapter 5. Table of Contents. Section 1 Energy and Living Things. Section 2 Photosynthesis. Section 3 Cellular Respiration Photosynthesis and Cellular Respiration Table of Contents Section 1 Energy and Living Things Section 2 Photosynthesis Section 3 Cellular Respiration Section 1 Energy and Living Things Objectives Analyze

More information

Cellular Energy: Respiration. Goals: Anaerobic respiration

Cellular Energy: Respiration. Goals: Anaerobic respiration Cellular Energy: Respiration Anaerobic respiration Goals: Define and describe the 3 sets of chemical reactions that comprise aerobic cellular respiration Describe the types of anaerobic respiration Compare

More information

Section 8 1 Energy and Life (pages )

Section 8 1 Energy and Life (pages ) Bio07_TR_U03_CH08.QXD 4/25/06 2:51 PM Page 63 Name Class Date Chapter 8 Photosynthesis Section 8 1 Energy and Life (pages 201 203) Key Concepts Where do plants get the energy they need to produce food?

More information

Cellular Respiration and Photosynthesis

Cellular Respiration and Photosynthesis Cellular Respiration and Photosynthesis Imagine an abandoned house that is falling apart. Restoring order to the house will require an input of energy (for example: hammering nails, applying paint). Living

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

Be sure to understand:

Be sure to understand: Learning Targets & Focus Questions for Unit 6: Bioenergetics Chapter 8: Thermodynamics Chapter 9: Cell Resp Focus Q Ch. 10: Photosynthesis Chapter 8 (141-150) 1. I can explain how living systems adhere

More information

Draw, label, and color

Draw, label, and color Vocab Cell Energy 1. Autotroph 2. ATP (adenosine triphosphate) 3. Chloroplast 4. Photosynthesis 5. Pigment 6. Chlorophyll 7. Thylakoid 8. Photosystem 9. Stroma 10. Light-dependent reactions 11. Calvin

More information

Cellular Respiration. Mitochondria Rule! Mr. Kurt Kristensen

Cellular Respiration. Mitochondria Rule! Mr. Kurt Kristensen Cellular Respiration Mitochondria Rule! Mr. Kurt Kristensen Harvard Biovisions Mitochondria Summer Session Week 1: Cellular Respiration Students should. 1) Understand the locations, and functions of the

More information

Draw, label, and color

Draw, label, and color Vocab Cell Energy 1. Autotroph 2. ATP (adenosine triphosphate) 3. Chloroplast 4. Photosynthesis 5. Pigment 6. Chlorophyll 7. Thylakoid 8. Photosystem 9. Stroma 10. Light-dependent reactions 11. Calvin

More information

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow,

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, Chapter 6 6.1 Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, repair, reproduce, etc. 2. Kinetic energy is energy of motion;

More information

AP Biology Exam Review 5: Enzymes & Metabolism (Photosynthesis & Respiration)

AP Biology Exam Review 5: Enzymes & Metabolism (Photosynthesis & Respiration) Name: Date: AP Biology Exam Review 5: Enzymes & Metabolism (Photosynthesis & Respiration) Helpful Videos and Animations: 1. Bozeman Biology: Photosynthesis and Respiration 2. Bozeman Biology: Photosynthesis

More information

I. Enzymes as Catalysts Chapter 4

I. Enzymes as Catalysts Chapter 4 8/29/11 I. Enzymes as Catalysts Chapter 4 Enzymes and Energy Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Enzymes Activation Energy A class

More information

AP Biology Big Idea 2 Unit Study Guide

AP Biology Big Idea 2 Unit Study Guide Name: Period: AP Biology Big Idea 2 Unit Study Guide This study guide highlights concepts and terms covered in the evolution unit. While this study guide is meant to be inclusive, any term or concept covered

More information

A + B = C C + D = E E + F = A

A + B = C C + D = E E + F = A Photosynthesis - Plants obtain energy directly from the sun - Organisms that do this are autotrophs (make their own food from inorganic forms) - Photosynthesis is a series of chemical reactions where the

More information

Study Guide A. Answer Key. Cells and Energy

Study Guide A. Answer Key. Cells and Energy Cells and Energy Answer Key SECTION 1. CHEMICAL ENERGY AND ATP 1. molecule; food molecules 2. high-energy; lower-energy 3. phosphate group 4. a; d; b; c 5. b; e 6. c; d 7. a; f 8. chemical energy; light

More information