f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy.

Size: px
Start display at page:

Download "f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy."

Transcription

1 Problem Set 2-Answer Key BILD1 SP16 1) How does an enzyme catalyze a chemical reaction? Define the terms and substrate and active site. An enzyme lowers the energy of activation so the reaction proceeds at a faster rate than if it were uncatalyzed. The enzyme accomplishes this by bringing reactants into closer contact within the active site and facilitating bond breakage or union. The substrate is the molecule bound by the active site of the enzyme and converted into product. The active site is that portion of the enzyme that binds with the substrate molecule to initiate the formation of product. 2) Label the terms A thru E on the energy diagram curve at the right. A = products; B = G; C = transition state C or unstable intermediate; D = energy of activation (EA); E = substrates or reactants a) Endergonic b) No, the reaction requires an infusion of E energy. c) G > 0 as G = GProducts GReactants. D A B d) Yes, this reaction is reversible. The reaction can go in the forward manner where the reactant goes to form the product and it can also proceed in the reversed manner where the product is used to form the reactant. The energy diagram suggests that the reverse reaction may be more favorable than the forward. e) Adding an enzyme will lower the activation energy, the amount of energy needed to overcome the energy barrier, and therefore decrease D. An enzyme, by definition, will speed up the rate of the reaction in both the forward and the reverse reactions, as a result does not change the Gibbs free energy of the reactants (E) and the products (A). f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy. 1

2 3) At the right is a temperature sensitivity curve for a particular enzyme. a) The Gibbs Free Energy Equation states that G = H T S. The activity of the enzyme increases, and the reaction becomes more favorable, because the Gibbs Free Energy decreases at (T) increases. Enzyme Activity TEMPERATURE b) Beyond an optimal temperature, too much heat will cause noncovalent, ionic, and hydrogen bonds to break. The enzyme will unfold and become inactive, in a process called denaturation. c) A curve of enzyme activity over varying ph s will look similar to the curve for temperature. This is because ph affects the ionization of the side chains the amino acids, which in turn will affect the structure of the protein. 4) Is protein synthesis an endergonic or exergonic reaction? Is S positive or negative? Protein synthesis is an endergonic process (a more complex molecule is being made from smaller and less complex molecules and G is positive). S is negative because there is less disorder (more order) in a polypeptide than in its individual amino acids. 5) When NaOH is dissolved in water, the solution becomes hot. When CsCl is dissolved in water the solution becomes cold. Indicate for each reaction whether it is exergonic or endergonic and whether G, H, and S are positive or negative (i.e. + or -). For NaOH: G is negative exergonic; H is negative exothermic; and S is positive. That is why the solution becomes very hot. For CsCL: G is negative exergonic; H is positive endothermic; and S is positive. The dissociation of the CsCl salt into solvated ions in solution is an endothermic process ( H > 0). Therefore it takes up heat. However, it is strongly favored entropically because the ions are dispersed randomly in solution. In this case, T x S is greater than H so the reaction is spontaneous even though it is endothermic. Thus, the beaker gets cold. 2

3 6) What are the three principle ways RNA differs structurally from DNA? RNA is usually single stranded whereas DNA is double stranded. RNA contains the nucleotides ACGU whereas DNA contains ACGT. RNA contains a ribose sugar whereas DNA contains deoxyribose. 7) THINKING ABOUT THERMODYNAMICS (a) Draw a phospholipid bilayer. Using what you know about the two laws of thermodynamics, explain why the formation of this ordered structure occurs spontaneously? The second law of thermodynamics, states that every process increases entropy in the universe. Given ONE phospholipid, water is attracted to and hydrogen bonds with the hydrophilic head of a phospholipid and forms an ordered cage around the hydrophobic tails of the phospholipid. Therefore, in this situation water is ordered. When MANY phospholipids are present, a bilayer is formed with the hydrophobic tails all placed together and the hydrophilic heads exposed to the water. Although the phospholipids become ordered by the formation of a bilayer, the water becomes highly disordered. (b) ATP is hydrolyzed to form ADP and Pi. Draw the reaction schematically. What are the reactants? Speculate on why you think that ATP hydrolysis has a negative Gibbs Free Energy? ATP + H2O ADP + Pi + energy ΔG= -7.3 kcal reactants ATP hydrolysis has a negative Gibbs free energy because the phosphoester bond is broken, releasing energy ΔH<0. The reaction is also increasing entropy by creating two molecules from one ΔS>0. Also, the negative charges accompanying the phosphate groups repel each other and want to separate. 3

4 8) Match the terms on the left with the properties on the right. (there may be more than one answer) A. Competitive inhibitor 1 C Modifies an amino acid at the active site B. Noncompetitive inhibitor 2_B, D, C_ Prevents conversion of an enzyme to its active form. C. Irreversible Inhibitor 3 A, C Resembles the substrate in shape. D. Allosteric Inhibitor 4_B,C,D, E_ Functions at a location on the enzyme distant from the active site. E. Allosteric Activator 5 E Increases activity of the enzyme 9) Enzymes are remarkably specific. Below are two very related hormones. What mechanisms could be used by an enzyme to allow it to specifically recognize Cortisol and its complex ring structure, but preclude binding to Testosterone An enzyme is specific for one substrate because of the side chains on the amino acids that make up the active site. Both Cortisol and Testosterone could participate in Van der Waals attractions with the active site through interactions with the hydrophobic ring structure at #4. Also, potentially, They could both hydrogen bond with the active site amino acid side chains at #5. For an enzyme to specifically recognize Cortisol and not Testosterone, there would need to be polar amino acids present in the active site that would need to hydrogen bond at #1, #2, and #3. Testosterone is unable to hydrogen bond at these sites and would therefore be rejected by the enzyme. 4

5 10) A metabolic pathway converts A into B, then B into C, then C into D, and finally D into E. E is a molecule that is needed by the cell, and used for many purposes. (a) Draw this simple metabolic pathway. A B C D E (b) How many distinct enzymes would you expect to participate in this metabolic pathway? Four different enzymes would participate in this pathway, one for each step. (c) EBC (the enzyme that catalyzes B into C) is regulated in an allosteric fashion. Both an allosteric activator and an allosteric inhibitor of EBC exist among the pathway molecules. What could you guess about the possible identities of the positive and negative regulators, if you assume that they "make sense" in terms of controlling the pathway to provide more product when it is needed, and less product when it is not needed. Molecule A would be an allosteric activator and molecule E would be an allosteric inhibitor. When more product is needed molecule A is in excess and will speed up EBC by activating it to produce more of molecule E. When there is too much product, molecule E will act as an inhibitor to slow down EBC and less product will be made. (d) Plot a curve showing the affects the allosteric activator and the allosteric inhibitor on the reaction rate of enzyme, EBC. activator reaction rate normal inhibitor [substrate] 11) An enzyme, Cutase, cuts the dipeptide GLY-GLY, separating it into two amino acids. a) Cutase uses a hydrolysis reaction. Water is added to split the peptide bond between Gly and Gly. 5

6 b) The 2 nd Law of Thermodynamics states that all processes contribute to the increasing entropy of the universe. Cutase cuts the dipeptide Gly Gly into two amino acids and thereby increasing entropy. An increase in entropy done by Cutase will increase T S, which will make G < 0. c) A competitive inhibitor will have a similar shape as the substrate and will compete with the substrate for access to the binding sites. Molecule I is Alanine (Ala), which has a similar shape to amino acid, Glycine (Gly). Molecule I is most likely the competitive inhibitor. CH 3 NH 2 - C-COOH H Molecule I CH 3 -CH 3 -CH 2 -CH-CH 3 CH 3 Molecule II 12) Briefly described how a competitive inhibitor decreases activity. How can you distinguish it from a non-competitive inhibitor? Plot the rate vs. substrate curves for both in your answer. The Km (amount of substrate to reach half of Vmax(max rate)) rate will increase because adding a competitive inhibitor will compete with the substrate for binding to active sites. At higher substrate concentrations, reaction curve approaches the same end point as a reaction curve without a competitive inhibitor. See curve below on the left, line a). Adding large amounts of the competitive inhibitor will reduce the reaction curve even further. See curve below on the left, line b). Competitive Non-competitive 6

7 Adding a non-competitive inhibitor will bind reversibly to second site and the enzymes will change its 3-D conformation blocking its ability to bind the substrate. Km will BE UNCHANGED and Vmax will decrease. Note: although reversible both Vmax and Km are affected why? It is a non-competitive inhibitor and that also reflects the inability of the substrate to compete for the inhibitors binding site. Can a Non-competitive inhibitor bind irreversibly? 13) Why is hemoglobin (binds O 2 ) regulated by cooperative regulation? Draw the rate vs. substrate curve. Hemoglobin uses Cooperative regulation - a type of allosteric regulation where the binding of a substrate (in this case O2) to a subunit of the enzyme will result in a conformational change in the other subunits. The reaction curve for a cooperative enzyme would look sigmoidal. 14) For the reaction shown below, which form is oxidized and which form is reduced? Does this reaction occur in animals or in ferns? Explain. NADP+ + 2H + NADPH + H NADP + is oxidized, whereas NADPH gains electrons and is therefore reduced. NADPH is a coenzyme electron carrier in plants, so this reaction occurs in ferns, NOT animals 15) If the inner mitochondrial membrane was permeable to H +, how would it affect the production of ATP? A gradient of H+ could not be produced and therefore the efficiency of the ATP synthase to produce ATP would be severely diminished. Note the directionality of the H+ gradient is important that s why in the normal case H+ conc. increase in the inner mitochondrial space so that they can flow 7

8 down their conc. Gradient through the ATP synthase into the Matrix providing the energy to make the ATP key to Chemiosmosis! 16) ATP can be synthesized 2 ways in the cell. The first way is by substrate level phosphorylation. The second is by oxidative phosphorylation. (a) Describe the key differences and similarities between these two methods of ATP synthesis. Substrate level phosphorylation is when the enzyme kinase transfers a Pi from an high energy intermediate to ADP, creating ATP. Substrate level phosphorylation occurs in glycolysis and the Krebs cycle of respiration. Oxidative phosphorylation also creates ATP from ADP and Pi, however, in this case the energy comes originally from NADH, a product of glycolysis and the Krebs cycle. NADH is oxidized and the H+ and e- removed. The e- are delivered to the electron transport chain, which couples movement of the e- to pumping of the H+ across the inner mitochondrial membrane. This buildup of charged H+ in the intermembrane space provides the proton motive force for ATP synthase. ATP synthase couples movement of the H+ from high concentration in the intermembrane space to low concentration in the matrix. This movement releases energy, which is harvested by ATP synthase to join ADP and Pi to create ATP. (b) Define Chemiosmosis. What is a proton motive force and what does it have to do with chemiosmosis? Chemiosmosis is a process that couples H + transport to ATP synthesis. As mentioned above, the intermembrane space of mitochondria has a high concentration of H + that want to cross the membrane due to both high concentration and charges repelling each other, but they cannot because the membrane is IMPERMEABLE. ATP synthase uses the energy released by the H+ s movement across the membrane to create ATP. (c) Why do we need NADH? During respiration NADH functions as an electron carrier and the oxidation of NADH by oxygen releases 53 kcal of energy. NADH is produced during the glycolysis and Krebs cycle of respiration. NADH is oxidized to NAD+ and the freed electrons (e-) and protons (H+) are used as described above to make ATP. 8

9 17) There are two types of fermentation, one that occurs in muscle and other tissues and another that is seen commonly in yeast and bacteria. (a) How do these two processes differ? Fermentation follows glycolysis under anaerobic conditions. The process creates NAD + and allows glycolysis to continue making ATP in the absence of oxygen. Fermentation in muscles and other tissues produces lactic acid, while fermentation in yeast and bacteria produces ethanol. (b) What would be the consequence if organisms were unable to undergo fermentation and could only undergo respiration? An organism unable to undergo fermentation would die as there would be no more NAD+ to continue Glycolysis in the absence of ) In photosynthesis there are stages termed light reactions and dark reactions. (a) What are the products of the light reactions? The light reactions produce oxygen, NADPH, and ATP. (b) What are the products of the dark reactions? The dark reactions produce NADP, ADP, and sugar. (c) Why can t plants produce glucose in the dark? Plants cannot produce glucose in the dark because the dark reactions require the products of the light reactions (ATP and NADPH). (d) Which reactions involve chemiosmosis, light or dark? List two MAJOR differences between this chemiosmosis process when compared to that seen in respiration. The light reactions involve chemiosmosis. The electron carriers in respiration are NAD + and FAD, but in photosynthesis, NADP + carries the electrons for chemiosmosis. In photosynthesis, there are two different systems of electron flow, noncyclic and cyclic, but in respiration, there is only one. Chemiosmosis occurs across the inner membrane of the mitochondria in respiration and in photosynthesis, it takes place across the thylakoid membrane of the chloroplast. 9

AP Bio-Ms.Bell Unit#3 Cellular Energies Name

AP Bio-Ms.Bell Unit#3 Cellular Energies Name AP Bio-Ms.Bell Unit#3 Cellular Energies Name 1. Base your answer to the following question on the image below. 7. Base your answer to the following question on Which of the following choices correctly

More information

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6 Metabolism: Energy and Enzymes Chapter 6 Forms of Energy Outline Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration 1 2 Forms

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy 6 Pathways that Harvest and Store Chemical Energy Energy is stored in chemical bonds and can be released and transformed by metabolic pathways. Chemical energy available to do work is termed free energy

More information

Biological Chemistry and Metabolic Pathways

Biological Chemistry and Metabolic Pathways Biological Chemistry and Metabolic Pathways 1. Reaction a. Thermodynamics b. Kinetics 2. Enzyme a. Structure and Function b. Regulation of Activity c. Kinetics d. Inhibition 3. Metabolic Pathways a. REDOX

More information

Metabolism and Enzymes

Metabolism and Enzymes Energy Basics Metabolism and Enzymes Chapter 5 Pgs. 77 86 Chapter 8 Pgs. 142 162 Energy is the capacity to cause change, and is required to do work. Very difficult to define quantity. Two types of energy:

More information

Energy Transformation. Metabolism = total chemical reactions in cells.

Energy Transformation. Metabolism = total chemical reactions in cells. Energy Transformation Metabolism = total chemical reactions in cells. metabole = change Metabolism is concerned with managing the material and energy resources of the cell -Catabolism -Anabolism -Catabolism

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Metabolism and enzymes

Metabolism and enzymes Metabolism and enzymes 4-11-16 What is a chemical reaction? A chemical reaction is a process that forms or breaks the chemical bonds that hold atoms together Chemical reactions convert one set of chemical

More information

Unit 3: Cell Energy Guided Notes

Unit 3: Cell Energy Guided Notes Enzymes Unit 3: Cell Energy Guided Notes 1 We get energy from the food we eat by breaking apart the chemical bonds where food is stored. energy is in the bonds, energy is the energy we use to do things.

More information

Metabolism: Energy and Enzymes. February 24 th, 2012

Metabolism: Energy and Enzymes. February 24 th, 2012 Metabolism: Energy and Enzymes February 24 th, 2012 1 Outline Forms of Energy Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration

More information

Energy Exchanges Exam: What to Study

Energy Exchanges Exam: What to Study Energy Exchanges Exam: What to Study Here s what you will need to make sure you understand in order to prepare for our exam: Free Energy Conceptual understanding of free energy as available energy in a

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reactions, light-dependent, Calvin cycle, thylakoid, photosystem II, oxygen, light-harvesting, two, chloroplasts,

More information

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels Cellular Respiration: Harvesting Chemical Energy 9.1 Catabolic pathways yield energy by oxidizing organic fuels 9.2 Glycolysis harvests chemical energy by oxidizing glucose to pyruvate 9.3 The citric acid

More information

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow,

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, Chapter 6 6.1 Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, repair, reproduce, etc. 2. Kinetic energy is energy of motion;

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism I. All of an organism=s chemical reactions taken together is called metabolism. A. Metabolic pathways begin with a specific molecule, which is then altered in a series of

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reectlons, light-dependent, Calvin cycle, thylakoid, oxygen, light-harvesting, two, chloroplasts, photosynthesis,

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

Chapter 6: Energy Flow in the Life of a Cell

Chapter 6: Energy Flow in the Life of a Cell Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The Capacity to do Work Types of Energy: 1) Kinetic Energy = Energy of movement Light (movement of photons) Heat (movement of particles)

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

Metabolism Review. A. Top 10

Metabolism Review. A. Top 10 A. Top 10 Metabolism Review 1. Energy production through chemiosmosis a. pumping of H+ ions onto one side of a membrane through protein pumps in an Electron Transport Chain (ETC) b. flow of H+ ions across

More information

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI.

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Chapter 6 Energy & Metabolism I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Metabolism I. Flow of Energy in Living

More information

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions Name: KEY CP Biology Unit 5 Cell Energy Study Guide Vocabulary to know: ATP ADP Aerobic Anaerobic ATP Synthases Cellular Respiration Chlorophyll Chloroplast Electron Carriers Electron Transport Chain Fermentation

More information

Introduction to Metabolism (Or Energy Management) Chapter 8

Introduction to Metabolism (Or Energy Management) Chapter 8 Introduction to Metabolism (Or Energy Management) Chapter 8 Metabolism of the chemical reactions in the organism Building up molecules Breaking down molecules Managing energy and materials Route to end-product

More information

Energy Metabolism exergonic reaction endergonic reaction Energy of activation

Energy Metabolism exergonic reaction endergonic reaction Energy of activation Metabolism Energy Living things require energy to grow and reproduce Most energy used originates from the sun Plants capture 2% of solar energy Some captured energy is lost as metabolic heat All energy

More information

Center for Academic Services & Advising

Center for Academic Services & Advising March 2, 2017 Biology I CSI Worksheet 6 1. List the four components of cellular respiration, where it occurs in the cell, and list major products consumed and produced in each step. i. Hint: Think about

More information

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation Cellular Energetics Photosynthesis, Cellular Respiration and Fermentation TEKS B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized parts that

More information

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions Energy, Enzymes, and Metabolism Lecture Series 6 Energy, Enzymes, and Metabolism B. ATP: Transferring Energy in Cells D. Molecular Structure Determines Enzyme Fxn Energy is the capacity to do work (cause

More information

Lectures by Kathleen Fitzpatrick

Lectures by Kathleen Fitzpatrick Chapter 10 Chemotrophic Energy Metabolism: Aerobic Respiration Lectures by Kathleen Fitzpatrick Simon Fraser University Figure 10-1 Figure 10-6 Conversion of pyruvate The conversion of pyruvate to acetyl

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Key Concepts 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 8.2 The free-energy change of a reaction tells us

More information

Be sure to understand:

Be sure to understand: Learning Targets & Focus Questions for Unit 6: Bioenergetics Chapter 8: Thermodynamics Chapter 9: Cell Resp Focus Q Ch. 10: Photosynthesis Chapter 8 (141-150) 1. I can explain how living systems adhere

More information

Review Questions - Lecture 5: Metabolism, Part 1

Review Questions - Lecture 5: Metabolism, Part 1 Review Questions - Lecture 5: Metabolism, Part 1 Questions: 1. What is metabolism? 2. What does it mean to say that a cell has emergent properties? 3. Define metabolic pathway. 4. What is the difference

More information

2. The study of is the study of behavior (capture, storage, usage) of energy in living systems.

2. The study of is the study of behavior (capture, storage, usage) of energy in living systems. Cell Metabolism 1. Each of the significant properties of a cell, its growth, reproduction, and responsiveness to its environment requires. 2. The study of is the study of behavior (capture, storage, usage)

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D.

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D. Biochemical bases for energy transformations Biochemical bases for energy transformations Nutrition 202 Animal Energetics R. D. Sainz Lecture 02 Energy originally from radiant sun energy Captured in chemical

More information

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars 4.2 8.2 Overview Photosynthesis: of Photosynthesis An Overview Photosynthesis process by which plants make food using energy from the sun Plants are autotrophs that make their own source of chemical energy.

More information

AP Biology Energy Exam Study Guide. Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis

AP Biology Energy Exam Study Guide. Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis AP Biology Energy Exam Study Guide Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis 1. In which orientation must these two amino acids be brought together to form a dipeptide bond?

More information

An Introduction to Metabolism. Chapter 8

An Introduction to Metabolism. Chapter 8 An Introduction to Metabolism Chapter 8 METABOLISM I. Introduction All of an organism s chemical reactions Thousands of reactions in a cell Example: digest starch use sugar for energy and to build new

More information

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation Objectives INTRODUCTION TO METABOLISM. Chapter 8 Metabolism, Energy, and Life Explain the role of catabolic and anabolic pathways in cell metabolism Distinguish between kinetic and potential energy Distinguish

More information

Metabolism and Energy. Mrs. Stahl AP Biology

Metabolism and Energy. Mrs. Stahl AP Biology Metabolism and Energy Mrs. Stahl AP Biology The Energy of Life The living cell is a miniature chemical factory where thousands of reactions occur The cell extracts energy stored in sugars and other fuels

More information

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP:

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP: Understanding How Living Things Obtain and Use Energy. Cell Energy: The Big Picture Most Autotrophs produce food (sugar) using light energy during Photosynthesis. Then, both Autotrophs and Heterotroph

More information

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways Chapter 8: An Introduction to Metabolism 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways 1. Energy & Chemical Reactions 2 Basic Forms of Energy Kinetic Energy (KE) energy in motion

More information

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6 Energy and Metabolism Chapter 6 Flow of Energy Energy: the capacity to do work -kinetic energy: the energy of motion -potential energy: stored energy Energy can take many forms: mechanical electric current

More information

Chapter 8 Notes. An Introduction to Metabolism

Chapter 8 Notes. An Introduction to Metabolism Chapter 8 Notes An Introduction to Metabolism Describe how allosteric regulators may inhibit or stimulate the activity of an enzyme. Objectives Distinguish between the following pairs of terms: catabolic

More information

AHL Topic 8 IB Biology Miss Werba

AHL Topic 8 IB Biology Miss Werba CELL RESPIRATION & PHOTOSYNTHESIS AHL Topic 8 IB Biology Miss Werba TOPIC 8 CELL RESPIRATION & PHOTOSYNTHESIS 8.1 CELL RESPIRATION 1. STATE that oxidation involves the loss of electrons from an element,

More information

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction.

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction. Human Physiology - Problem Drill 04: Enzymes and Energy Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as needed, (3) Pick the answer,

More information

Metabolism, Energy and Life - 1

Metabolism, Energy and Life - 1 Metabolism, Energy and Life - 1 Thousands of chemical reactions occur in our cells and tissues to keep us alive (and hopefully healthy). Monomers are assembled into the macromolecules we need for cell

More information

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V.

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Chapter 8 Introduction to Metabolism Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes Overview: The Energy of Life Figure 8.1 The living cell is a miniature

More information

Ground Rules of Metabolism CHAPTER 6

Ground Rules of Metabolism CHAPTER 6 Ground Rules of Metabolism CHAPTER 6 Antioxidants You ve heard the term. What s the big deal? Found naturally in many fruits and vegetables Added to many products What do they actually do? Antioxidants

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism AP Biology Reading Guide Name Chapter 8: An Introduction to Metabolism Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2.

More information

Chapter 5. Energy Flow in the Life of a Cell

Chapter 5. Energy Flow in the Life of a Cell Chapter 5 Energy Flow in the Life of a Cell Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education, Inc.. Review

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 1 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Photosynthesis and Cellular Respiration Practice Test Name

Photosynthesis and Cellular Respiration Practice Test Name Photosynthesis and Cellular Respiration Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which H+ has just passed through the

More information

ATP ATP. The energy needs of life. Living economy. Where do we get the energy from? 9/11/2015. Making energy! Organisms are endergonic systems

ATP ATP. The energy needs of life. Living economy. Where do we get the energy from? 9/11/2015. Making energy! Organisms are endergonic systems Making energy! ATP The energy needs of life rganisms are endergonic systems What do we need energy for? synthesis building biomolecules reproduction movement active transport temperature regulation 2007-2008

More information

Cellular Energetics Review

Cellular Energetics Review Cellular Energetics Review 1. What two molecules are formed when a phosphate is removed from ATP? 2. Describe how photosynthesis and cellular respiration are reverse processes. 3. What is the function

More information

Lecture 7: Enzymes and Energetics

Lecture 7: Enzymes and Energetics Lecture 7: Enzymes and Energetics I. Biological Background A. Biological work requires energy 1. Energy is the capacity to do work a. Energy is expressed in units of work (kilojoules) or heat energy (kilocalories)

More information

Chapter 6: Energy and Metabolism

Chapter 6: Energy and Metabolism Chapter 6: Energy and Metabolism Student: 1. Oxidation and reduction reactions are chemical processes that result in a gain or loss in A) atoms. B) neutrons. C) electrons. D) molecules. E) protons. 2.

More information

Chapter 6: Energy Flow in the Life of a Cell

Chapter 6: Energy Flow in the Life of a Cell Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The capacity to do work Types of Energy: 1) Potential Energy = Stored energy Positional (stored in location of object) Chemical (stored

More information

2.A.2- Capture and Storage of Free Energy

2.A.2- Capture and Storage of Free Energy 2.A.2- Capture and Storage of Free Energy Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis. EU 2.A- Growth, reproduction

More information

REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS A. Top 10 If you learned anything from this unit, you should have learned: 1. Energy production through chemiosmosis a. pumping of H+

More information

REVIEW 1: BIOCHEMISTRY UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 1: BIOCHEMISTRY UNIT. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 1: BIOCHEMISTRY UNIT A. Top 10 If you learned anything from this unit, you should have learned: 1. All living matter made up of CHONPS 2. Bonds a. covalent bonds are strong b. hydrogen

More information

The Life of a Cell. The Chemistry of Life. A View of the Cell. Cellular Transport and the Cell Cycle. Energy in a Cell

The Life of a Cell. The Chemistry of Life. A View of the Cell. Cellular Transport and the Cell Cycle. Energy in a Cell The Life of a Cell The Chemistry of Life A View of the Cell Cellular Transport and the Cell Cycle Energy in a Cell Chapter 9 Energy in a Cell 9.1: The Need for Energy 9.1: Section Check 9.2: Photosynthesis:

More information

An Introduction to Metabolism

An Introduction to Metabolism CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 6 An Introduction to Metabolism Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Energy of Life The

More information

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully. Outline: Metabolism Part I: Fermentations Part II: Respiration Part III: Metabolic Diversity Learning objectives are: Learn about respiratory metabolism, ATP generation by respiration linked (oxidative)

More information

METABOLISM CHAPTER 04 BIO 211: ANATOMY & PHYSIOLOGY I. Dr. Lawrence G. Altman Some illustrations are courtesy of McGraw-Hill.

METABOLISM CHAPTER 04 BIO 211: ANATOMY & PHYSIOLOGY I. Dr. Lawrence G. Altman  Some illustrations are courtesy of McGraw-Hill. BIO 211: ANATOMY & PHYSIOLOGY I CHAPTER 04 1 Please wait 20 seconds before starting slide show. Mouse click or Arrow keys to navigate. Hit ESCAPE Key to exit. CELLULAR METABOLISM Dr. Lawrence G. Altman

More information

CELL METABOLISM OVERVIEW Keep the big picture in mind as we discuss the particulars!

CELL METABOLISM OVERVIEW Keep the big picture in mind as we discuss the particulars! BIO 211: ANATOMY & PHYSIOLOGY I CHAPTER 04 CELLULAR METABOLISM 1 Please wait 20 seconds before starting slide show. Mouse click or Arrow keys to navigate. Hit ESCAPE Key to exit. Dr. Lawrence G. Altman

More information

Cellular Energy: Respiration. Goals: Anaerobic respiration

Cellular Energy: Respiration. Goals: Anaerobic respiration Cellular Energy: Respiration Anaerobic respiration Goals: Define and describe the 3 sets of chemical reactions that comprise aerobic cellular respiration Describe the types of anaerobic respiration Compare

More information

An Introduction to Metabolism

An Introduction to Metabolism LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 8 An Introduction to Metabolism

More information

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of Enzyme Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of the process are called substrates and the enzyme

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism Chapter 8 Objectives Distinguish between the following pairs of terms: catabolic and anabolic pathways; kinetic and potential energy; open and closed systems; exergonic and

More information

General Biology. The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways

General Biology. The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways Course No: BNG2003 Credits: 3.00 General Biology 5. An Introduction into Cell Metabolism The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Unit 5 Cellular Energy

Unit 5 Cellular Energy Unit 5 Cellular Energy I. Enzymes (159) 1.Are CATALYSTS: Speed up chemical reactions that would otherwise happen too slowly to support life. Catalysts DO NOT make reactions happen that couldn t happen

More information

Cell Energetics. How plants make food and everyone makes energy!

Cell Energetics. How plants make food and everyone makes energy! Cell Energetics How plants make food and everyone makes energy! Carbon Cycle Where did the mitochondria and chloroplast come from? Endosymbiotic Theory Endosymbiotic theory = a theory that some of the

More information

Chapter 6 # METABOLISM PowerPoint Image Slideshow

Chapter 6 # METABOLISM PowerPoint Image Slideshow COLLEGE BIOLOGY PHYSICS Chapter 6 # METABOLISM Chapter Title PowerPoint Image Slideshow Figure 8.1 Metabolism Figure 6.2 Energy from the sun. Plants photosynthesis Herbivores eat those plants Carnivores

More information

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life 8 An Introduction to Metabolism CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes

More information

All organisms require a constant expenditure of energy to maintain the living state - "LIFE".

All organisms require a constant expenditure of energy to maintain the living state - LIFE. CELLULAR RESPIRATION All organisms require a constant expenditure of energy to maintain the living state - "LIFE". Where does the energy come from and how is it made available for life? With rare exception,

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Dr. Wendy Sera Houston Community College Biology 1406 Key Concepts in Chapter 8 1. An organism s metabolism transforms matter and energy, subject to the laws of

More information

Energy for Life 12/11/14. Light Absorption in Chloroplasts

Energy for Life 12/11/14. Light Absorption in Chloroplasts Energy for Life Biochemical pathways A series of reactions where the products of one reaction is used in the next reaction Light Absorption in Chloroplasts Chloroplasts Two membranes Grana- layered stacks

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP The chemical energy used for most cell processes is carried by ATP. Molecules in food store chemical

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types

More information

Energy in the World of Life

Energy in the World of Life Cellular Energy Energy in the World of Life Sustaining life s organization requires ongoing energy inputs Assembly of the molecules of life starts with energy input into living cells Energy Conversion

More information

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November Name: Class: Date: 2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of 02-09 November 1 Which of the following statements is true for all cells? a They use solar energy

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism Why do organisms need energy? How do organisms manage their energy needs? Defining terms and issues: energy and thermodynamics metabolic reactions and energy transfers

More information

Energy Transformation, Cellular Energy & Enzymes (Outline)

Energy Transformation, Cellular Energy & Enzymes (Outline) Energy Transformation, Cellular Energy & Enzymes (Outline) Energy conversions and recycling of matter in the ecosystem. Forms of energy: potential and kinetic energy The two laws of thermodynamic and definitions

More information

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 8 An Introduction to Metabolism Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick The Energy of Life The living

More information

An Introduction to Metabolism

An Introduction to Metabolism CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 6 An Introduction to Metabolism Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION The

More information

CHAPTER 8. An Introduction to Metabolism

CHAPTER 8. An Introduction to Metabolism CHAPTER 8 An Introduction to Metabolism WHAT YOU NEED TO KNOW: Examples of endergonic and exergonic reactions. The key role of ATP in energy coupling. That enzymes work by lowering the energy of activation.

More information

ATP. Chapter 4. Photosynthesis. Cell Respiration. Energy of Life. All organisms need energy in order to survive

ATP. Chapter 4. Photosynthesis. Cell Respiration. Energy of Life. All organisms need energy in order to survive ATP Chapter 4 Photosynthesis Energy of Life All organisms need energy in order to survive 2 Major groups of organisms: A. autotrophs make their own food Ex: plants B. heterotrophs must eat others living

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Photosynthesis. Chapter 10. Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece

Photosynthesis. Chapter 10. Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece Chapter 10 Photosynthesis Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece Edited by William Wischusen, Louisiana State University

More information

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain a review Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red-660 nm are most important).

More information

An Introduction to Metabolism

An Introduction to Metabolism CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 6 An Introduction to Metabolism Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION The

More information

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per Cell Energy Notes Name Per THE ENDOSYMBIOTIC THEORY The Endosymbiotic theory is the idea that a long time ago, engulfed other prokaryotic cells by. This resulted in the first First proposed by Explains

More information

Chapter 6. Ground Rules Of Metabolism

Chapter 6. Ground Rules Of Metabolism Chapter 6 Ground Rules Of Metabolism Alcohol Dehydrogenase An enzyme Breaks down ethanol and other toxic alcohols Allows humans to drink Metabolism Is the totality of an organism s chemical reactions Arises

More information

Cellular Respiration Stage 4: Electron Transport Chain

Cellular Respiration Stage 4: Electron Transport Chain Cellular Respiration Stage 4: Electron Transport Chain 2006-2007 Cellular respiration What s the point? The point is to make ATP! ATP 2006-2007 ATP accounting so far Glycolysis 2 ATP Kreb s cycle 2 ATP

More information

Cellular Respiration. Pg 231

Cellular Respiration. Pg 231 Cellular Respiration Pg 231 Define cellular respiration. The process by which mitochondria break down food molecules to produce ATP is called cellular respiration. In plants breaking sugar (glucose) to

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism The living cell is a microscopic factory where life s giant processes can be performed: -sugars to amino acids to proteins and vise versa -reactions to dismantle polymers

More information

Ch. 3 Metabolism and Enzymes

Ch. 3 Metabolism and Enzymes Ch. 3 Metabolism and Enzymes Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham Flow of energy through life Life is built on chemical reactions that enable energy to flow through

More information