Radiation Studies in Lens culinaris: Ultrastructure of Chloroplast in the Leaves of the Normal and Mutated Plants1

Size: px
Start display at page:

Download "Radiation Studies in Lens culinaris: Ultrastructure of Chloroplast in the Leaves of the Normal and Mutated Plants1"

Transcription

1 Cytologia 44: 13-19, 1979 Radiation Studies in Lens culinaris: Ultrastructure of Chloroplast in the Leaves of the Normal and Mutated Plants1 S. S. N. Sinha Department of Botany, Ranchi University, Ranchi, India Received March 10, 1977 During the last few years, a number of papers dealing with the fine structure of the chloroplast have been published (Muhlethaler 1955, Von Wettstein 1957 a and b, Sager 1959, Weir 1961, Menke 1962 and Thomson 1965). They have de scribed grana and stroma lamellae in different plants. Von Wettstein (1960, a and b) in barely, Walles (1965) in Helianthus annus and Boynton (1966) in Tomato have dealt with the fine structure of chloroplast in the leaves of chlorophyll mutants. In the present work efforts have been made to study the fine structure of chlo roplast in the normal green leaf and in the leaf of a mutated plant (whitish yellow in colour) found in the M2 generation of a population grown from irradiated seeds of Lens culinaris with a dose of 12kr. gamma rays. Experimental work Plants were raised in greenhouse (Temp. 22 Ž }2ß, day-light supplemented by mercury vapour lamp 500 watts). When the plants were three weeks old, the mature leaves measuring about 5mm in length were collected from different parts of the plants. Selected leaf areas, which were without any distortion and fully flattened, were cut into small peices (1 ~2mm) They were fixed with osmic tetraoxide (ph 7.2) using phosphate buffer for 2 hours at 0 Ž. This was followed by dehydration in a graded series ( %) of alcohols at minimum interval of half an hour. Three changes of absolute alcohol at 45 minutes interval were made and the tissue was allowed to come to room temperature. The tissue was gradually in filtrated with Epon solution and allowed to stand overnight in 100% resin. Then it was transferred to freshly prepared Epon and was embedded in small capsules. These capsules were left for 48 hours in an incubator at 60 Ž. The sections were cut on an LKB Ultratome III with glass knives. The sections were examined and photographed on Siemens Elmiskop IA, operating at 80kv with double condenser and a 20ƒÊ objective aperture. The thickness of the section varied between 40mƒÊ and 50mƒÊ judged by their interference colour (grey, gold). Results Chloroplasts from green leaves of normal plants are lens shaped in most 1 Part of the Ph. D. thesis.

2 14 S. S. N. Sinha Cytologia 44 Fig. 1. Section of the leaf of control plant showing membrane (M), peristome (P), grana (G), electron dense globuli (GL) and stroma lamellae (SL). ~70,000.

3 1979 Radiation Studies in Lens culinaris: Ultrastructure of Chloroplast 15 Fig. 2. Section of the leaf of mutant plant showing grana (G) and osmophillic globules (OG). ~ 70,000.

4 16 S. S. N. Sinha cytologia 44 cases. (Fig. 1) The chloroplasts are surrounded by a two-fold membrane (M), beneath the membrane (M) is peristome (Pr) (Wettstein's term). Grana (G) and Stroma lamellae (SI) are aggregated in layers, traversing the entire chloroplast in a more or less regular way, parallel to the longer axis of the chloroplast. In most cases, the grana and stroma lamellae occupy about 50% of the chloroplast, the rest being stroma. Occasionally a granum oblique or at right angle to the longer axis of the chloroplast is formed. The grana lamellae are nearly 70 to 90A thick and are stacked in groups of 15 thylakoids. The stroma lamellae are thinner than the grana lamellae (40 to 45A). Electron dense globuli (Gl) which vary from 400 to 1200A in diameter occur in stroma. They seem to be carotinoid in nature or they might be lipids (Fig. 1). Starch grains are frequently present and in most cases are more than one. Chooroplast from leaves of M2 mutants (Fig. 2) are irregular in shape, char acterised by projections and invaginations. The plastids contain swollen grana with expanded thylakoid cavities, between the grana the stroma lamellae seen degenerated into small vesicles still more or less linearly disposed. Plastids which are nearly normal in shape contain degenerated vesicular lamellar material arranged in primary layers. The vesicle become more dispersed towards the periphery of the plastids. The grana when present are composed of many aggregated grana lamellae which are distorted. Grana structure is variable, it may be the morphology of a stack of thylakoids with distorted shape or presumably a mass of barely resolvable lamellae. Intermediate stages can be seen. Partially or diffused grana exist adjacent or connected to grana of nearly normal structures. Grana are interconnected by stroma lamellae in some cases, but generally these are vesiculate and feebly developed and grana are to some extent isolated from each other. Incipient grana can be located along the primary lamellar layers. Abnormally large and irregularly constituted grana are common, whereas chlo roplast with a few primary lamellar layers, lacking grana are frequent. Osmiophilic globules are present, often in groups. Such a group of globules regularly arranged in three rows occupies a site A on the degenerated stroma lamellae. This site appears to be that of a degenerated granum. The same plate at B shows similar globules present at such a site. In mutant chloroplasts the osmiophilic globules are always regularly arranged in this way at or near the end of the granum in rows of two or more, whereas in the normal plastids they are scattered. In the leaves of the mutant plants (Fig. 2) the mature plastids with conditions ranging from the total absence of ultrastructures upto fully developed deformed grana and stroma lamellae, and situation intermediate between the two have been recorded. Such plastids with differential development of ultrastructures inside may lie side by side in the same cell of the leaf. Starch grains are totally absent. Discussion The existing difference between the chloroplasts of the normal leaves and leaves from the mutant plants may be attributed to the change in the nature of genes,

5 1979 Radiation Studies in Lens culinaris: Ultrastructure of Chloroplast 17 controlling the development of chloroplasts. But it appears that possibly such an abnormality is caused by genetic blocking of the production of some enzyme controlling the development of the lamellar system. If so it is remarkable that in the same mutant plant, or in the same cell plastids with degenerated or structureless grana are present side by side with plastids whose grana are fully developed. The total absence of ultrastructures inside some mature plastids seems to indicate that such a block may come into action at the earliest stage of development. The diffuse internal structure of the grana concerned cannot be attributed to poor fixation because its occurrence is very common and other organelles-nuclei, mitochondria etc. exhibit normal morphology in the same cell. The possibility of oblique sections cannot be ruled out, but as they are very numerous in mutant leaves as compared with the controls, the possibility of grana being disintegrated cannot be ignored completely. Vesicles present in the chloroplast may be the outcome of lamellar disintegration Shaw and Manocha (1965), Von Wettstein (1959 b) and Menke (1962) have pointed out the possibility of the localization of the chlorophyll molecule within the parti tion formed by the fused margins of adjacent thylakoids comprising the chloroplst grana. The presence of degenerating grana with no chlorophyll in the leaves of the mutant plants is in accordence with these findings. Robbelen (1959) with lutescens mutants of Arabidopsis has demonstrated a secondary destruction of previously formed chloroplast lamellae by separation of the thylakoids. Complete degeneration of the lamellar system follows. Such a type of degeneration can be compared with the vesiculate degeneration observed here. The presence of osmiophilic globules in definite rows near the end of the granum may also be associated with the development of the lamellar system, the linear array of globules possibly indicating the line of potential lamellar materials. Chlorosis is induced in leaves of normal genotype of several plants species by mineral deficiencies, Shaw and Manocha (1965) by induced senescence in detached leaf of wheat and Thomson et al. (1966) by treatment with ozone on bean leaves have shown a relationship between disruption of the lamellar system of chloroplast and chlorosis. The large grana, larger than the controls, in the leaves of the mutant plants appear to have developed by an abnormal function of the grana development system. The early stages of grana formation located along the "primary layers indicate the fact that the formation of the granum starts in the normal way, but then is ar rested perhaps due to enzyme starvation, at a particular stage, the consequence of gene mutation, either it is little developed or it is abnormal. The total absence of ultrastructure indicates that such a block can be effective at a very early stage of grana development. Von Wettstein (1957 a and b, 1959 a and b) has pointed out that in barley the different mutants albina, xantha and viridis show blocks at different stages of de velopment of ultrastructures of plastids. Leyfort (1957) and Boynton (1966) in tomato has reported such blocks at different points in the developmental chain of the plastid structure in the leaves of the mutant plants. From the above results it may be concluded that irradiation causes changes in

6 18 S. S. N. Sinha Cytologia 44 the nature of the gene or genes controlling chloroplast development. Such a change brings disturbances in the development of the grana and consequently the chlo rophyll synthesis is blocked at a particular stage, causing the leaves to suffer from chlorosis. Most of the plastids grow upto maturity in spite of lack of differentia tion in the linner structure. Thus the growth of the entire chloroplast appears to be independent of its ultrastructural differentiation. Such a result has been reported by Von Wettstein (1959 a and b) also. In lentils the very rare occurrence of xantha or albina mutants may be due to more than one gene responsible for controlling the development of the ultrastructure of plastids. The presence of mature plastids with differential development of ultra structure in the same cell of the leaf may be due to such a mutation being effective at individual level. Summary Leaves of a mutant plant (whitish yellow in colour) were studied with electron microscope. The ultrastructure of the plastids of the chlorophyll mutants showed deformed or degenerated grana with disintegration of stroma lamellae. This may be attributed to the changes in the nature of the gene, controlling the development of the chloroplast. Such an abnormality may be caused by genetic blocking of the production of some enzyme controlling the development of the lamellar system. Complete degeneration of the lamellar system follows. Vesicles present in the chloroplast may be the out come of lamellar disintegration. In lentil the very rare occurrence of xantha or albina mutants may be due to more than one gene respon sible for controlling the development of the ultrastructures of plastids. Acknowledgement I express my heartfelt thanks to Professor M. B. E. Godward for her kindness during the preparation of the thesis. Bibliography Boynton, J. E Chloroplast deficient mutant in tomato requiring vitamin B I. Hereditas 56: Leyfort, M Structure fine die chloroplast normal chez Lycopersicum esculentum: liaisons grana. C. R. Acad. Sc. 244: Menke, W Structure and chemistry of plastids. Ann. Rev. Plant Physiology. 13: Muhlethaler, H Structure of chloroplast. Int. Rev. Cytol. 4: Robbelen, C Untersuchungen uber die Entwicklung der submikroscopishen Chloroplasten -structur in Elattfarbmutanten von Arabidopsis thaliana. Z. Vererbungslehre. 90: Sager, R The architecture of the chloroplast in relation to its photosynthetic activities. Brookhaven Symposium in Biology 11: Shaw, M. and Manocha, M. S Fine structure in detached senescing wheat leaves. Cand. Journ. Bot. 43: Thomson, W. W The ultrastructure of Phaseolus vulgaris chloroplast. Journal of Expt. Botany 16:

7 1979 Radiation Studies in Lens culimaris: Ultrastructure of Chloroplast 19 Thomson et al Effect of ozone on the fine structure of the palisade parenchyma cells of bean leaves. Cand. Journ. Bot. 44: Von Wettstein 1957.a. Chlorophyll letale und der submikroskopische Formwechsel der Plastiden. Expt. Cell Research 12: b. Genetic and submicroscopic cytology of plastids. Hereditas 43: a. The effect of genetic factors on the submicroscopic structure of the chloroplast, J. Ultrastructure Research 3: b. The formation of plastids structures. Brookhaven Symposium in Biology. 2: a. Multiple allelism in induced chlorophyll mutants II. Error in the aggregation of the lamellar discs in the chloroplast, Hereditas 46: b. Multiple allelism in induced Chlorophyll mutants of barley. Hereditas 46: Walles, B Plastids structure of carotenoids deficient mutants of sunflower. Hereditas 53: Weir, T. E The ultramicrostructure of starch free Chloroplast of fully expanded leaves of Nicotiana rustica. American J. Bot. 48:

THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L.

THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L. New Phytol (1974) 73, 139-142. THE BEHAVIOUR OF CHLOROPLASTS DURING CELL DIVISION OF ISOETES LACUSTRIS L. BY JEAN M. WHATLEY Botany School, University of Oxford (Received 2 July 1973) SUMMARY Cells in

More information

Parenchyma Cell. Magnification 2375X

Parenchyma Cell. Magnification 2375X Parenchyma Cell The large size of parenchyma cells is due in part to their relatively large vacuole (V) and in part also to the large number of chloroplasts (Cp) they contain. From a crimson clover, Trifolium

More information

Ontogeny of Chloroplast in Satsuma Mandarin Young Leaves Sprayed with Urea

Ontogeny of Chloroplast in Satsuma Mandarin Young Leaves Sprayed with Urea Pakistan Journal of Biological Sciences, 2 (2): 571-574, 1999 Research Article Ontogeny of Chloroplast in Satsuma Mandarin Young Leaves Sprayed with Urea S.E. Aguja, P. Mohammad, M. Shiraishi* and T. Saga*

More information

Light and Photosynthesis. Supplemental notes Lab 4 Horticultural Therapy

Light and Photosynthesis. Supplemental notes Lab 4 Horticultural Therapy Light and Photosynthesis Supplemental notes Lab 4 Horticultural Therapy Light The Electromagnetic Spectrum is a continuum of all electromagnetic waves arranged according to frequency and wavelength, the

More information

Photosynthesis. light

Photosynthesis. light Photosynthesis light 6CO + 6H 0 C 6 H 1 O 6 + 6O light Carbon dioxide + water sugar + oxygen Chlorophyll pigment that absorbs light energy Absorbs red and blue light Reflects green and yellow light Chlorophyll

More information

THE CHLOROPLASTS OF EQUISETUM TELMATEIA ERHR.: A POSSIBLE DEVELOPMENTAL SEQUENCE

THE CHLOROPLASTS OF EQUISETUM TELMATEIA ERHR.: A POSSIBLE DEVELOPMENTAL SEQUENCE Keu- Phytol. (1971) 70, 1095-1102. THE CHLOROPLASTS OF EQUISETUM TELMATEIA ERHR.: A POSSIBLE DEVELOPMENTAL SEQUENCE BY JEAN M. WHATLEY Botany Department, University of London, King's College, Strand, London,

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Chloroplasts and Mitochondria Plant cells and some Algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process known as Photosynthesis.

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Name: Chloroplasts and Mitochondria Plant cells and some algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process known as

More information

AN OVERVIEW OF PHOTOSYNTHESIS. Copyright 2009 Pearson Education, Inc.

AN OVERVIEW OF PHOTOSYNTHESIS. Copyright 2009 Pearson Education, Inc. AN OVERVIEW OF PHOTOSYNTHESIS Copyright 2009 Pearson Education, Inc. Introduction: Plant Power Plants use water and atmospheric carbon dioxide to produce a simple sugar and liberate oxygen Earth s plants

More information

8.2 Photosynthesis Overview

8.2 Photosynthesis Overview 8.2 Photosynthesis Overview Chlorophyll and Chloroplasts What role do pigments play in the process of photosynthesis? Photosynthetic organisms capture energy from sunlight with pigments. Light Energy from

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Name Date Your # Chloroplasts and Mitochondria Plant cells and some Algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process

More information

SPECIALIZED ENTITIES WITHIN CYTOSOL

SPECIALIZED ENTITIES WITHIN CYTOSOL ORGANELLES ORGANELLES + SPECIALIZED ENTITIES WITHIN CYTOSOL ORGANELLES ORGANELLES SPECIALIZED ENTITIES WITHIN CYTOSOL --- ISOLATE NON-COMPATIBLE BIO-CHEMICAL REACTIONS ORGANELLES TRUE PLANT CYTOLOGY INTERCELLULAR

More information

Overview of Photosynthesis

Overview of Photosynthesis Overview of Photosynthesis Most autotrophs (organisms that create their own food), make organic compounds (sugars/glucose) using a process called photosynthesis. This process occurs only in plants. Overview

More information

Lesson Overview. 8.2 Photosynthesis: An Overview

Lesson Overview. 8.2 Photosynthesis: An Overview 8.2 Photosynthesis: An Overview Light Energy from the sun travels to Earth in the form of light. Sunlight is a mixture of different wavelengths Light Our eyes see the different wavelengths of the visible

More information

CHAPTER 6 STUDY GUIDE. phosphate work. energy adenosine In order for organisms to carry out life processes their cells need (1).

CHAPTER 6 STUDY GUIDE. phosphate work. energy adenosine In order for organisms to carry out life processes their cells need (1). CHAPTER 6 STUDY GUIDE THE FLOW OF ENERGY Section 6.1 Energy for Cells In your textbook, read about ATP. Use each of the terms below just once to complete the passage: released exergonic endergonic ATP

More information

122-Biology Guide-5thPass 12/06/14. Topic 1 An overview of the topic

122-Biology Guide-5thPass 12/06/14. Topic 1  An overview of the topic Topic 1 http://bioichiban.blogspot.com Cellular Functions 1.1 The eukaryotic cell* An overview of the topic Key idea 1: Cell Organelles Key idea 2: Plasma Membrane Key idea 3: Transport Across Membrane

More information

(Ficus cayica ) Changes of Chloroplast Ultrastructure. Greening under Light in Etiolated. Fig Leaves

(Ficus cayica ) Changes of Chloroplast Ultrastructure. Greening under Light in Etiolated. Fig Leaves J. Japan. Soc. Hort. Sci. 59 (2) : 333-340. 1990. Changes of Chloroplast Ultrastructure and Plastid Nucleoids during Greening under Light in Etiolated Fig Leaves (Ficus cayica ) Naosuke N1i1 and Tsuneyoshi

More information

Photosynthesis. (in C 3 plants)

Photosynthesis. (in C 3 plants) Photosynthesis (in C 3 plants) WHAT DO I REMEMBER FROM GCSE ABOUT PHOTOSYNTHESIS? PS WS Photosynthesis uses sunlight energy to create complex organic compounds, initially glucose, from inorganic compounds.

More information

INFLUENCE OF LEAF DIFFERENTIATION ON THE DEVELOPMENTAL PATHWAY OF COLEUS CHLOROPLASTS

INFLUENCE OF LEAF DIFFERENTIATION ON THE DEVELOPMENTAL PATHWAY OF COLEUS CHLOROPLASTS New Phytol. (1982) 92, 273-278 277 INFLUENCE OF LEAF DIFFERENTIATION ON THE DEVELOPMENTAL PATHWAY OF COLEUS CHLOROPLASTS BY P. JACOB VARKEY AND MATHEW J. NADAKAVUKAREN Biological Sciences Department, Illinois

More information

Fig (1):Layers of seconday cell wall

Fig (1):Layers of seconday cell wall Dr. Alaa J. Taha, Dr. Rana Alroomi and Dr. Hadeel Al-Newani :Secondary cell wall Although the secondary wall commonly is thought of as being deposited after the increase in surface area of the primary

More information

Section 2: Photosynthesis

Section 2: Photosynthesis Section 2: Photosynthesis Preview Bellringer Key Ideas Harvesting Light Energy Two Electron Transport Chains Producing Sugar Factors that Affect Photosynthesis Summary Bellringer Write down the primary

More information

Unit 8: Energy Conversions in Cells

Unit 8: Energy Conversions in Cells Unit 8: Energy Conversions in Cells Name: Period: Test Date: 1 Table of Contents Title of Page Page Number Due Date Unit 8 Warm-Ups 3-4 Notes 5-6 Chloroplast (Read and color) 7-8 Starch Production in Photosynthesis

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Chloroplasts and Mitochondria Plant cells and some Algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process known as Photosynthesis.

More information

TUBULAR ELEMENTS-A NEW STRUCTURE IN BLUE-GREEN ALGAL CELLS

TUBULAR ELEMENTS-A NEW STRUCTURE IN BLUE-GREEN ALGAL CELLS J. Cell Sci. 38, 303-308 (i977) 303 Printed in Great Britain Company of Biologists Limited TUBULAR ELEMENTS-A NEW STRUCTURE IN BLUE-GREEN ALGAL CELLS Z. N. TAHMIDA KHAN AND M. B. E. GODWARD Department

More information

Grana stacking is normal in two insect-induced cecidomyiid galls deficient in light-harvesting complex II (LHCII)

Grana stacking is normal in two insect-induced cecidomyiid galls deficient in light-harvesting complex II (LHCII) Grana stacking is normal in two insect-induced cecidomyiid galls deficient in light-harvesting complex II (LHCII) Chi-Ming Yang 1 * and Man-Miao Yang 2 1 Institute of Botany, Academia Sinica, Nankang,

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell Prokaryotic Cells No nucleus Archaea & Eubacteria One circular chromosome Extremely small Eukaryotic Cells Has a nucleus!!! Membrane-bound organelles Plants, Animals, Fungi, &

More information

AUTORADIOGRAPHIC EVIDENCE FOR THE RAPID DISINTEGRATION OF ONE CHLOROPLAST IN THE ZYGOTE OF THE GREEN ALGA ULVA MUTABILIS

AUTORADIOGRAPHIC EVIDENCE FOR THE RAPID DISINTEGRATION OF ONE CHLOROPLAST IN THE ZYGOTE OF THE GREEN ALGA ULVA MUTABILIS J. Cell Sci. ia, 385-389 (i973) 385 Printed in Great Britain AUTORADIOGRAPHIC EVIDENCE FOR THE RAPID DISINTEGRATION OF ONE CHLOROPLAST IN THE ZYGOTE OF THE GREEN ALGA ULVA MUTABILIS T. BRATEN Electron

More information

light-dependent reactions (i.e., light reactions)

light-dependent reactions (i.e., light reactions) LEARNING OBJECTIVES By the end of this lecture you will be able to: 1. Understand that ENERGY can be transformed from one form to another. 2. Know that energy exist in two forms; free energy - available

More information

Photosynthesis Prep Test

Photosynthesis Prep Test Photosynthesis Prep Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What are the three parts of an ATP molecule? a. adenine, thylakoid, and a phosphate

More information

Edexcel (A) Biology A-level

Edexcel (A) Biology A-level Edexcel (A) Biology A-level Topic 5: On the Wild Side Notes Ecosystems and Succession Ecosystem - all the organisms living in a particular area, known as the community, as well as all the non-living elements

More information

Photosynthesis: An Overview. Lesson Overview. Lesson Overview. 8.2 Photosynthesis: An Overview

Photosynthesis: An Overview. Lesson Overview. Lesson Overview. 8.2 Photosynthesis: An Overview Lesson Overview 8.2 Photosynthesis: An Overview Chlorophyll and Chloroplasts What role do pigments play in the process of photosynthesis? Photosynthetic organisms capture energy from sunlight with pigments.

More information

Today s materials: Cell Structure and Function. 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote. What is a cell?

Today s materials: Cell Structure and Function. 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote. What is a cell? Today s materials: 1. Prokaryote and Eukaryote 2. DNA as a blue print of life Prokaryote and Eukaryote Achadiah Rachmawati What is a cell? Cell Structure and Function All living things are made of cells

More information

Introduction to Botany. Lecture 3

Introduction to Botany. Lecture 3 Introduction to Botany. Lecture 3 Alexey Shipunov Minot State University August 30th, 2010 Taxonomic pyramid Monday test Name at least one function of proteins in plasma membrane Monday test What will

More information

PHOTOSYNTHESIS Chapter 6

PHOTOSYNTHESIS Chapter 6 PHOTOSYNTHESIS Chapter 6 5.1 Matter and Energy Pathways in Living Systems Chapter 5 Photosynthesis & Cellular Respiration 1 2 5.1 Matter and Energy Pathways in Living Systems In this section you will:

More information

Unit 1 Matter & Energy for Life. Biology Photosynthesis

Unit 1 Matter & Energy for Life. Biology Photosynthesis Unit 1 Matter & Energy for Life Biology 2201 3.2 The Process of Photosynthesis Photosynthesis The process by which an organism captures the energy of the sun to convert CO 2 and water into glucose. Light

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs Capture from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic molecules (occurs

More information

PHOTOSYNTHESIS GR 11 LIFE SCIENCES

PHOTOSYNTHESIS GR 11 LIFE SCIENCES PHOTOSYNTHESIS GR 11 LIFE SCIENCES Definition: Photosynthesis is the process where the energy of the sunlight is used by green plants (and some animals) to bond molecules together to form carbohydrates

More information

Class IX: Biology Chapter 5: The fundamental unit of life. Chapter Notes. 1) In 1665, Robert Hooke first discovered and named the cells.

Class IX: Biology Chapter 5: The fundamental unit of life. Chapter Notes. 1) In 1665, Robert Hooke first discovered and named the cells. Class IX: Biology Chapter 5: The fundamental unit of life. Key learnings: Chapter Notes 1) In 1665, Robert Hooke first discovered and named the cells. 2) Cell is the structural and functional unit of all

More information

Photosynthesis and Cellular Respiration Unit

Photosynthesis and Cellular Respiration Unit Photosynthesis and Cellular Respiration Unit All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs: organisms that can make their own

More information

Energy can be transformed from one form to another

Energy can be transformed from one form to another LEARNING OBJECTIVES By the end of this lecture you will be able to: Photosynthesis 1. Understand that ENERGY can be transformed from one form to another. 2. Know that energy exist in two forms; free energy

More information

Energy Converion: Mitochondria and Chloroplasts. Pınar Tulay, Ph.D.

Energy Converion: Mitochondria and Chloroplasts. Pınar Tulay, Ph.D. Energy Converion: Mitochondria and Chloroplasts Pınar Tulay, Ph.D. pintulay@gmail.com Energy Conversion Prokaryotes use plasma membrane to produce adenosine triphosphate (ATP) used in the cell function

More information

Ultrastructure and Pigments of Ivy (Hedera Helix L.) Varieties with Green and Variegated Leaves

Ultrastructure and Pigments of Ivy (Hedera Helix L.) Varieties with Green and Variegated Leaves Caryologia International Journal of Cytology, Cytosystematics and Cytogenetics ISSN: 0008-7114 (Print) 2165-5391 (Online) Journal homepage: http://www.tandfonline.com/loi/tcar20 Ultrastructure and Pigments

More information

Class XI Chapter 8 Cell The Unit of Life Biology

Class XI Chapter 8 Cell The Unit of Life Biology Question 1: Which of the following is not correct? (a) Robert Brown discovered the cell. (b) Schleiden and Schwann formulated the cell theory. (c) Virchow explained that cells are formed from pre-existing

More information

Name # Class Date Regents Review: Cells & Cell Transport

Name # Class Date Regents Review: Cells & Cell Transport Name # Class Date Regents Review: Cells & Cell Transport 1. All of the following are true regarding cells except? A) All cells have genetic material B) All cells have cell walls C) All cells have plasma

More information

Photosynthesis. Light-dependent Reactions

Photosynthesis. Light-dependent Reactions Photosynthesis Light-dependent Reactions video http://www.youtube.com/watch?v=hj_wkgnl 6MI&feature=related Overview Photosynthesis transforms the radiant energy from the sun into the chemical energy of

More information

Question 1: Which of the following is not correct? (a) Robert Brown discovered the cell. (b) Schleiden and Schwann formulated the cell theory. (c) Virchow explained that cells are formed from pre-existing

More information

A.P. Biology Photosynthesis Sheet 1 - Chloroplasts

A.P. Biology Photosynthesis Sheet 1 - Chloroplasts A.P. Biology Photosynthesis Sheet 1 - Chloroplasts Name Chloroplasts Are chloroplasts... Membrane-bound or non-membrane bound? Large or small organelles? Found in all plant cells? Found in animal cells?

More information

Joseph Geissler. Newark Science Park High School Mrs. Paulose

Joseph Geissler. Newark Science Park High School Mrs. Paulose Joseph Geissler Newark Science Park High School Mrs. Paulose Structure of leaf Structure of a chloroplast Importance of photosynthesis General equation of photosynthesis Light vs dark reactions Definitions

More information

Chapter 8 Notes Photosynthesis

Chapter 8 Notes Photosynthesis Name: Date: Chapter 8 Notes Photosynthesis Section 8-2 & 8-3 Photosynthesis: An Overview (p. 204-214) The study of energy capture and use begins with. Photosynthesis is the process in which plants use

More information

6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2

6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2 6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2 Process Location Reactants (Starting) Products (Ending) Light Reactions Calvin Cycle Introduction to Photosynthesis Mrs. Meyer Target SWBAT describe the reactants

More information

Photosynthesis: Location

Photosynthesis: Location Photosynthesis: Location The chloroplast is the location of photosynthesis. * The thylakoids have a disc shape and are bound by a membrane. They contain chlorophyll. * These thylakoid discs are arranged

More information

Warm-Up Pairs Discuss the diagram What Where Which Why

Warm-Up Pairs Discuss the diagram What Where Which Why Warm-Up In Pairs Discuss the diagram What is it? Where does it come from? Which parts can you label? (in pencil) Why do you think you will learn about it? 5 m Eukaryote: Organelles, Structure and Function

More information

APPENDIX- 1 LESSON TRANSCRIPTS FOR WEB SITE LEARNING

APPENDIX- 1 LESSON TRANSCRIPTS FOR WEB SITE LEARNING APPENDIX- 1 LESSON TRANSCRIPTS FOR WEB SITE LEARNING LESSON - 1 PHOTOSYNTHESIS The objectives of the lesson: 1. The pupil acquires the knowledge of photosynthesis. 2. The pupil understands the significance

More information

Light reaction. Dark reaction

Light reaction. Dark reaction Photosynthesis Light reaction Dark reaction Electro-magnetic irradiance and sunlight CO 2 and O 2 fixation by Rubisco Oxygenic photosynthesis was established in Cyanobacteria Localisation of the

More information

Tissues, cells and molecular studies

Tissues, cells and molecular studies 1 Module 1 Tissues, cells and molecular studies In this module you will be able to integrate your knowledge of the use of the light microscope with an understanding of cell structure. The difference between

More information

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko Chapter 7 Photosynthesis: Using Light to Make Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean

More information

REGENERATION OF CHLOROPLAST STRUCTURE IN TALBOTIA ELEGANS: A DESICCATION TOLERANT PLANT

REGENERATION OF CHLOROPLAST STRUCTURE IN TALBOTIA ELEGANS: A DESICCATION TOLERANT PLANT New Phytol. (1918)81,651-662. REGENERATION OF CHLOROPLAST STRUCTURE IN TALBOTIA ELEGANS: A DESICCATION TOLERANT PLANT By N. D. HALLAM and D. F. GAFF Botany Department, Monash University, Gay ton, Victoria

More information

Heterotrophs: Organisms that depend on an external source of organic compounds

Heterotrophs: Organisms that depend on an external source of organic compounds Heterotrophs: Organisms that depend on an external source of organic compounds Autotrophs: Organisms capable of surviving on CO2 as their principle carbon source. 2 types: chemoautotrophs and photoautotrophs

More information

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs Sample Questions: Chapter 7 1 Which of these types of organisms produce the biosphere's food supply? A autotrophs and heterotrophs B consumers and heterotrophs C heterotrophs D autotrophs E consumers 2

More information

Outcome: Explain the process of photosynthesis.

Outcome: Explain the process of photosynthesis. Outcome: Explain the process of photosynthesis. Warm-up: 1. Compare the two types of cells. Give examples for each. 2. Using double bubble map, differentiate plants and animal cells. 3. What organelles

More information

Chapter 10. Photosynthesis

Chapter 10. Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost

More information

Biology: Life on Earth

Biology: Life on Earth Teresa Audesirk Gerald Audesirk Bruce E. Byers Biology: Life on Earth Eighth Edition Lecture for Chapter 4 Cell Structure and Function Copyright 2008 Pearson Prentice Hall, Inc. Chapter 4 Outline 4.1 What

More information

Photolysis of water During the photolysis of water, photons of split water forming oxygen gas (O 2 ), (hydrogen ions or protons) and.

Photolysis of water During the photolysis of water, photons of split water forming oxygen gas (O 2 ), (hydrogen ions or protons) and. A2 Light-dependent reactions of photosynthesis: ATP; thylakoid; energy; Pi; electrons; grana; reduce; electron; water; chlorophyll; transport; oxidising; carriers; ADP; oxygen; NADP; light; H + ; The light

More information

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November Name: Class: Date: 2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of 02-09 November 1 Which of the following statements is true for all cells? a They use solar energy

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information

Key Concepts In this session we will focus on summarising what you need to know about: Photosynthesis the process

Key Concepts In this session we will focus on summarising what you need to know about: Photosynthesis the process GRADE 11 LIFE SCIENCES SESSION 1: PHOTOSYNTHESIS Key Concepts In this session we will focus on summarising what you need to know about: process of photosynthesis using words and symbols: importance of

More information

I. Energy for Life. Energy in Ecosystems Did you know you were solar powered? IN: 11/4/2018. Fill in the blanks to complete the reaction: C H O + 6 2

I. Energy for Life. Energy in Ecosystems Did you know you were solar powered? IN: 11/4/2018. Fill in the blanks to complete the reaction: C H O + 6 2 11/4/2018 Energy in Ecosystems Did you know you were solar powered? IN: Fill in the blanks to complete the reaction: Light 6 2 + 6 2 Chlorophyll C H O + 6 2 Write the equation for photosynthesis in words.

More information

Photosynthesis Lecture 7 Fall Photosynthesis. Photosynthesis. The Chloroplast. Photosynthetic prokaryotes. The Chloroplast

Photosynthesis Lecture 7 Fall Photosynthesis. Photosynthesis. The Chloroplast. Photosynthetic prokaryotes. The Chloroplast Photosynthesis Lecture 7 Fall 2008 Photosynthesis Photosynthesis The process by which light energy from the sun is converted into chemical energy 1 Photosynthesis Inputs CO 2 Gas exchange occurs through

More information

THE EFFECTS OF STARVATION ON THE SYMBIOTIC CHLOROPLASTS IN ELYS IA VIRIDIS: A FINE STRUCTURAL STUDY

THE EFFECTS OF STARVATION ON THE SYMBIOTIC CHLOROPLASTS IN ELYS IA VIRIDIS: A FINE STRUCTURAL STUDY New Phytol. (1980) 84, 375-379 275 THE EFFECTS OF STARVATION ON THE SYMBIOTIC CHLOROPLASTS IN ELYS IA VIRIDIS: A FINE STRUCTURAL STUDY BY C. R. HAWES* AND A. H. COBBf Department of Botany, University of

More information

13. The diagram below shows two different kinds of substances, A and B, entering a cell.

13. The diagram below shows two different kinds of substances, A and B, entering a cell. Name 1. In the binomial system of nomenclature, which two classification groups provide the scientific name of an organism? A) kingdom and phylum B) phylum and species C) kingdom and genus D) genus and

More information

Photosynthesis. 1) Heterotrophs: 2) Autotrophs: 3) Phytoplankton:

Photosynthesis. 1) Heterotrophs: 2) Autotrophs: 3) Phytoplankton: CAPE BIO UNIT 2 Lesson 1-10 th Sept 2012 1 Define the following: Photosynthesis 1) Heterotrophs: 2) Autotrophs: 3) Phytoplankton: Photosynthesis is simply the process by which organisms convert solar energy

More information

8.1 Photosynthesis and Energy

8.1 Photosynthesis and Energy BIOL 100 Ch. 8 1 8.1 Photosynthesis and Energy Photosynthesis and Energy Photosynthesis Making food from light energy Photoautotrophs Use CO2 and water to make sugars Made life possible as we know it Provides

More information

The main form of energy from the sun is in the form of electromagnetic radiation. Visible radiation (white light) used for photosynthesis ROY G.

The main form of energy from the sun is in the form of electromagnetic radiation. Visible radiation (white light) used for photosynthesis ROY G. PHOTOSYNTHESIS The main form of energy from the sun is in the form of electromagnetic radiation Visible radiation (white light) used for photosynthesis ROY G. BIV The electromagnetic spectrum A Red Object

More information

INDIAN PIPE NON-PSYN PLANT

INDIAN PIPE NON-PSYN PLANT INDIAN PIPE P NON-PSYN PLANT INDIAN PIPE ^ PARASITISM COMMENSALISM SYMBIOSIS COMMENSALISM ONE SPECIES BENEFITS ONE SPECIES UNAFFECTED SYMBIOSIS COMMENSALISM AFRICAN SAVANNA C COMMENSALISM ^ MUTUALISM SYMBIOSIS

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs self-feeders Capture free energy from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic

More information

Student Workbook BIOLOGY. for NGSS

Student Workbook BIOLOGY. for NGSS Student Workbook BIOLOGY for NGSS LS1.A Cell Specialization & Organization Key terms base-pairing rule cell DNA eukaryotic cell gene hierarchical structure nucleotide organelle organ system prokaryotic

More information

Photosynthesis. Intermediate 2 Biology

Photosynthesis. Intermediate 2 Biology Photosynthesis Intermediate 2 Biology Learning Objectives - Energy Fixation State that photosynthesis a series of enzymecontrolled reactions by which green plants make their own food. State that sunlight

More information

Energy Transfer. Photosynthesis

Energy Transfer. Photosynthesis Energy Transfer Photosynthesis Energy All living organisms use energy. Energy is needed for metabolism to function. When organisms use energy they use it in the chemical form, ATP (adenosine triphosphate)

More information

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP The chemical energy used for most cell processes is carried by ATP. Molecules in food store chemical

More information

THYLAKOID GRANUM / GRANA

THYLAKOID GRANUM / GRANA THYLAKOID GRANUM / GRANA THYLAKOID GRANUM + STACKED THYLAKOID VESICLES THYLAKOID GRANUM THYLAKOID GRANUM + STACKED THYLAKOID VESICLES --- SITE: LIGHT RXT THYLAKOID GRANUM THYLAKOID GRANUM G STACKED THYLAKOID

More information

1. Cell Theory Organelle containing the genetic information of the cell.

1. Cell Theory Organelle containing the genetic information of the cell. GLOSSARY MATCHING GAME The words and definitions are all mixed up. Cut out each word and definition and glue the correct matches into your workbook. Word Definition 1. Cell Theory Organelle containing

More information

UNIT 3 CP BIOLOGY: Cell Structure

UNIT 3 CP BIOLOGY: Cell Structure UNIT 3 CP BIOLOGY: Cell Structure Page CP: CHAPTER 3, Sections 1-3; HN: CHAPTER 7, Sections 1-2 Standard B-2: The student will demonstrate an understanding of the structure and function of cells and their

More information

Bio Ch 6 Photosynthesis Notes

Bio Ch 6 Photosynthesis Notes Bio Ch 6 Photosynthesis Notes I. Photosynthesis Basics A. What is photosynthesis? 1. Photosynthesis is a chemical reaction in which light energy is converted to chemical energy in glucose. 2. It is the

More information

Biology: Life on Earth

Biology: Life on Earth Biology: Life on Earth Eighth Edition Lecture for Chapter 7 Capturing Solar Energy: Photosynthesis Chapter 7 Outline 7.1 What Is Photosynthesis? p. 118 7.2 Light-Dependent Reactions: How Is Light Energy

More information

Name: Period: Date: Photosynthesis Practice Questions

Name: Period: Date: Photosynthesis Practice Questions Name: Date: Photosynthesis Practice Questions 1. The diagram below represents events associated with a biochemical process that occurs in some organisms. 2. The diagram below represents the setup for an

More information

Chapter 7. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes

Chapter 7. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes Chapter 7 hotosynthesis: Using to Make Food oweroint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction lants,

More information

2.1 CELL STRUCTURE. The cell is the smallest unit of living organisms that shows the characteristics of life.

2.1 CELL STRUCTURE. The cell is the smallest unit of living organisms that shows the characteristics of life. 2.1.1 Microscopy The cell is the smallest unit of living organisms that shows the characteristics of life. A general introduction to the microscope. The light microscope All cells are microscopic which

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

Photosynthesis. Chapter 8, Section #2. SC.912.L.18.7 Identify the reactants, products, and basic functions of photosynthesis.

Photosynthesis. Chapter 8, Section #2. SC.912.L.18.7 Identify the reactants, products, and basic functions of photosynthesis. Photosynthesis Chapter 8, Section #2 SC.912.L.18.7 Identify the reactants, products, and basic functions of photosynthesis. Essential Questions 1.What are the two phases of photosynthesis? 2.What is the

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 10 Photosynthesis Lectures by Erin

More information

PARTICLES AND MICROTUBULES IN VASCULAR CELLS OF PINUS STROBUS L. DURING CELL WALL FORMATION

PARTICLES AND MICROTUBULES IN VASCULAR CELLS OF PINUS STROBUS L. DURING CELL WALL FORMATION Neu'Phytol (1971) 70, 1089-1093. PARTICLES AND MICROTUBULES IN VASCULAR CELLS OF PINUS STROBUS L. DURING CELL WALL FORMATION BY LIDIJA MURMANIS Forest Products Laboratory, * Forest Service, U.S. Department

More information

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work)

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work) PHOTOSYNTHESIS Energy can be transformed from one form to another FREE ENERGY (available for work) vs. HEAT (not available for work) THE SUN: MAIN SOURCE OF ENERGY FOR LIFE ON EARTH THE BASICS OF PHOTOSYNTHESIS

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Autotrophs and Heterotrophs Autotrophs are organisms that make their own food. They obtain everything they need by using CO 2 and inorganic compounds from the environment. Heterotrophs

More information

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko Chapter 7 Photosynthesis: Using Light to Make Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) 3. Plant structures: organ, tissue, cells, sub-cellular organelle,

More information

Photosynthesis Overview

Photosynthesis Overview Photosynthesis 1 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by Cyanobacteria

More information

ULTRASTRUCTURAL CHANGES OF PLASTIDS IN FLAX EMBRYOS CULTIVATED IN VITRO

ULTRASTRUCTURAL CHANGES OF PLASTIDS IN FLAX EMBRYOS CULTIVATED IN VITRO New Phytol. (1981) 87, 473 479 473 ULTRASTRUCTURAL CHANGES OF PLASTIDS IN FLAX EMBRYOS CULTIVATED IN VITRO BY MILADA CIAMPOROVA AND ANNA PRETOVA Slovak Acadetny of Sciences, Institute of Experimental Biology

More information

John F. Allen. Cell Biology and Developmental Genetics. Lectures by. jfallen.org

John F. Allen. Cell Biology and Developmental Genetics. Lectures by. jfallen.org Cell Biology and Developmental Genetics Lectures by John F. Allen School of Biological and Chemical Sciences, Queen Mary, University of London jfallen.org 1 Cell Biology and Developmental Genetics Lectures

More information

MORPHOLOGY STUDY EXTERNAL PLANT STRUCTURE

MORPHOLOGY STUDY EXTERNAL PLANT STRUCTURE MORPHOLOGY STUDY EXTERNAL PLANT STRUCTURE TERMINAL BUD ^ P LATERAL BUD TERMINAL BUD SCALE SCAR ANGIOSPERM TWIG MORPHOLOGY TERMINAL BUD SCALE SCAR BUD SCAR TERMINAL BUD SCALE SCAR BUNDLE SCARS PHYLOGENY

More information

Structure of a plant cell *

Structure of a plant cell * OpenStax-CNX module: m20450 1 Structure of a plant cell * Siyavula Uploaders This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 NATURAL SCIENCES 2 Grade

More information