BIOS 3010: Ecology. Laboratory 7. Dr Stephen Malcolm, Dept. Biological Sciences, WMU

Size: px
Start display at page:

Download "BIOS 3010: Ecology. Laboratory 7. Dr Stephen Malcolm, Dept. Biological Sciences, WMU"

Transcription

1 BIOS 3010: Ecology Laboratory 7 Dr Stephen Malcolm, Dept. Biological Sciences, WMU Goldenrod galls: An analysis of herbivory and natural enemy attack through 3 trophic levels. Goldenrod (Solidago altissima/ S. canadensis) Bios 3010: Ecology labs 7 and 8 Page - 1

2 FIELD OBSERVATIONS Introduction Goldenrod is a familiar and abundant feature of the autumn landscape in southwestern Michigan. As such it supports an intriguing and predictable community of interacting organisms and provides a wealth of opportunities to examine various concepts in ecology. In particular, the goldenrod gall fly Eurosta solidaginis commonly attacks Canadian or tall goldenrod as a gall-making herbivore and supports a complex of natural enemies that include insect parasitoids and bird predators. Because the 'ball galls' of E. solidaginis are obvious and common, the system offers useful opportunities to measure various ecological concepts, including: (1) density dependence (2) spatial distribution of herbivore and natural enemy attack (3) impact of herbivory on host plant reproduction (4) impact of natural enemy attack on host plant reproduction, mediated via the herbivore Background As long ago as 1947, George Varley published an influential paper on the population trends and mortality factors of the knapweed gall-fly in England. His work coincided with Deevey's life table research and together they showed the importance of mortality and fecundity schedules for descriptions of animal population growth and fluctuation. The knapweed gall-fly system is remarkably similar to the goldenrod ball gall system and offers us the opportunity to gather some insight into how a system operates - especially one that bridges the three trophic levels of plant, herbivore and natural enemies. The plant-herbivore interaction: The common round galls, or 'ball galls' on Canadian goldenrod, Solidago canadensis (or tall goldenrod, S. altissima = S. canadensis var scabra), are caused by one species of tephritid fly, Eurosta solidaginis. The short-lived adult fly emerges from the gall in late May to early June, mates and then lays eggs on the terminal buds of goldenrod (Abrahamson et al., 1983; Abrahamson & Weis, 1997). After 7-12 days the larva emerges and bores into the meristematic tissue and initiates the formation of a ball gall. By mid September the larva is full grown (note: timing may vary according to the accumulation of day-degrees = Bios 3010: Ecology labs 7 and 8 Page - 2

3 physiological time integrating temperature and time) and it overwinters as a diapausing larva. The larva pupates inside the gall the following April. Please view the attached PowerPoint presentation about the system. Natural enemies of the goldenrod gall fly: Two hymenopteran parasitoids in the family Eurytomidae can cause 40-60% mortality of Eurosta solidaginis larvae (Abrahamson, 1977; Abrahamson et al., 1983; Abrahamson & Weis, 1997). Eurytoma obtusiventris causes Eurosta to pupate in mid August instead of April and its larva eats the fly and remains inside the puparium until spring. Another eurytomid wasp, Eurytoma gigantea, eats the fly larva and also eats some of the gall before pupating and emerging in the spring. In addition a predatory beetle larva, Mordellistena unicolor (Mordellidae) bores in the wall of the gall and occasionally eats the fly larva. As well as these insect parasitoids, bird predators peck open the galls to feed on the larvae of Eurosta. Both black-capped chickadees, Parus atricapillus, and downy woodpeckers, Picoides pubescens, peck open large galls (Abrahamson et al., 1989). The exercise: Please view more figures here. The presence of ball galls on goldenrod may vary with plant distribution and abundance so that plant age (distribution in time), distance between plants (distribution in space) and plant density (abundance) will influence the occurrence of ball galls. In turn, these spatial and temporal differences will influence attack by natural enemies because of variation in their costs of foraging and attacking the gall-making herbivore. Gall diameters may vary with plant age and size and possibly with plant density (because of intraspecific competition for resources). Larger, thick walled galls may also provide better protection for the gall fly from wasp parasitoids than smaller, thin-walled galls - the wasp parasitoids are tiny and have ovipositors of limited length to penetrate the gall wall and lay an egg in or on the fly larva. We know from Abrahamson et al. (1989) that the wasp parasitoid Eurytoma obtusiventris and the beetle predator, Mordellistena unicolor, can attack galls of all diameters, but that the wasp, Eurytoma gigantea, prefer to attack small galls and the bird predators prefer to attack large galls. In addition, the birds are vulnerable to attack by their natural enemies, such as Cooper's and sharp-shinned hawks and so the distance of galls from cover, or the height of a gall from the ground might also influence whether or not chickadees and woodpeckers will peck open the galls for the fly larvae. Bios 3010: Ecology labs 7 and 8 Page - 3

4 In summary, therefore, you should aim to tell a story centered on the goldenrod gall fly and its ball gall that shows how features of the plant population influence attack of the fly inside its gall by natural enemies at the third trophic level. Methods The class should divide into 5 groups of approximately 4 people in each group. Each group should identify two 10m x 10m quadrat areas of goldenrod - one with an edge within 10m of shrub or tree cover and the other with an edge no less than 30m from shrub or tree cover. A) Make the following measurements with a tape and add the data to the linked datasheet: (1) Distance of the quadrat edge nearest to cover should be measured for each 100m 2 quadrat area. (2) In each 100m 2 quadrat the goldenrod stems should either be counted as an absolute estimate of stems.100m -2, or subsampled with randomly selected, smaller quadrats if the density is extremely high. (3) In each 100m 2 area, 20 measurements should be taken of the nearest neighbor distance measured at ground level between the two stem bases that are closest. (4) For these same 20 plants also measure their height from ground level to the highest point of each plant and their diameter at ground level. Make sure that these measurements are of ungalled plants. B) Locate all plants with ball galls: Identify all plants with ball galls of the goldenrod gall fly, Eurosta solidaginis (see figure 1b) and check the identity of the plants as either Solidago canadensis canadensis, with sparse pubescence, 2-3 mm flowers and sharply serrate leaves, or Solidago canadensis scabra (=Solidago altissima) with relatively dense pubescence, flowers larger than mm and sparsely toothed leaves (Note: "ball galls" are large, obviously round galls that should not be confused with "elliptical galls" or "rosette galls." Elliptical galls are caused by larvae of the moth, Gnorismoschema gallaesolidaginus, and are usually found lower down the stem of goldenrod than the ball gall. This means that elliptical galls are initiated earlier than ball galls. Bios 3010: Ecology labs 7 and 8 Page - 4

5 Rosette galls are caused by the midge, Rhopalomyia solidaginis, which causes a proliferation of leaves at the tip of the growing stem forming a dense rosette. Code number each galled plant according to its 100m 2 quadrat and record the following: (1) The number of ball galls, elliptical galls and rosette galls in each 100m 2 quadrat. (2) The nearest neighbor distance of each galled plant to (a) its nearest galled neighbor and (b) to its nearest ungalled neighbor. (3) The height of each galled plant from ground level to the highest point and its diameter at ground level. (4) The height of the center point of each gall from ground level (5) For all galled plants, and the sample of 20 plants in A(4) above, measure (a) their basal stem diameter in mm with calipers. Use this measurement plus stem height (A4 above) to calculate (b) an index of plant biomass as, basal area (basal stem diameter x p) x stem height. (Note: make sure that measurements are attributed to code numbered plants). C) Collection of plant material for further analysis. (1) Carefully cut the 20 ungalled plant stems from each 100m 2 quadrat in A(4) and B(5) at ground level. (2) Carefully cut all galled plant stems (include any elliptical and rosette galls with the ball galls) from each 100m 2 quadrat in A(4) and B(5) at ground level. OBSERVATIONS Methods: Using the material you have collected, cut each gall from the plant stems and make sure that you know its coded identity. Then carefully dissect each ball gall and record the presence of the following (use the two sets of linked illustrations 1 and 2): (1) Intact larvae of Eurosta solidaginis, the goldenrod gall fly (see figure 2) (2) Large puparium of the goldenrod gall fly that should contain the larva or puparium of the wasp parasitoid Eurytoma obtusiventris (the internal parasite that causes premature pupation at about mid August in Eurosta), see figure 1. The parasite's puparium is Bios 3010: Ecology labs 7 and 8 Page - 5

6 about 7.4 x 2.2 mm and is several times smaller than the host larva or the true puparium of the host. (3) White fleshy larva of the external parasite Eurytoma gigantea (see figure 3). This parasite consumes that gall fly larva by the end of August and remains in the cavity until spring when it pupates. The gall fly cavity is usually enlarged by Eurytoma gigantea and is filled with large, black pellets of excreted frass. (4) Slender white larvae of the beetle, Mordellistena unicolor (see figure 4) this may occur in the gall as either an inquiline (a codweller in the gall) or more usually as a predator of Eurosta (record whether Eurosta has been eaten if you find this beetle). (5) Evidence of bird predation - a conical hole to the center of the gall caused by black-capped chickadees or downy woodpeckers. Check to see whether Eurosta or any other larva is present or absent - i.e. whether predation was successful or whether it was aborted prior to reaching the gall insect's chamber. Chickadees may make a larger, more ragged hole than the neat, conical hole made by downy woodpeckers (see figure 5). (6) Unknown mortality or unformed gall etc. Communication of your results Tabulate all your results from both field and laboratory observations and hand your results during the lab to your TA. We will tabulate the class results for all <15 independent replicates of the experiment (results from 5 groups of <4 people for 3 labs) and return these collated results to you. You should then use these class results and the references listed below to write a 4 page paper discussing the ecological implications of the results from the two labs. In other words, communicate the story - science is not worth doing until it has been communicated (even Darwin had to be cajoled and bullied to publish)! References (with library locations) Abrahamson, W.G Solidago canadensis galls: A study of interacting natural populations. Pages in L.B. Crowder (editor), Ecological Lab Experiences: An Ideas Forum. Department of Zoology, Michigan State University, East Lansing, Michigan. (not available - all the information is in this handout) Abrahamson, W.G., Armbruster, P.O., & Maddox, G.D Numerical relationships of the Solidago altissima stem gall insect-parasitoid guild food chain. Oecologia 58: (QH540.O33x) Abrahamson, W.G., Sattler, J.F., McCrea, K.D., & Weis, A.E Variation in selection pressures on the goldenrod gall fly and the competitive Bios 3010: Ecology labs 7 and 8 Page - 6

7 interactions of its natural enemies. Oecologia 79: (QH540.O33x) Abrahamson, W.G., & Weis, A.E Evolutionary ecology across three trophic levels. Goldenrods, gallmakers, and natural enemies. Princeton University Press, Princeton, NJ. 456 pages (QL 537.T42 A ) Varley, G.C The natural control of population balance in the knapweed gall-fly (Urophora jacaena). The Journal of Animal Ecology 16: (QL750.J65 - worth looking at as a classic and its relevance to our considerations of population dynamics, rather than for its immediate relevance to this exercise) Weis, A.E., & Abrahamson, W.G Potential selective pressures by parasitoids on a plant-herbivore interaction. Ecology 66(4): (QH540.E3) Weis, A.E., & Abrahamson, W.G Evolution of host-plant manipulation by gall makers: Ecological and genetic factors in the Solidago-Eurosta system. The American Naturalist 127: (QH1.A5) Bios 3010: Ecology labs 7 and 8 Page - 7

Biology Principles of Ecology Oct. 20 and 27, 2011 Natural Selection on Gall Flies of Goldenrod. Introduction

Biology Principles of Ecology Oct. 20 and 27, 2011 Natural Selection on Gall Flies of Goldenrod. Introduction 1 Biology 317 - Principles of Ecology Oct. 20 and 27, 2011 Natural Selection on Gall Flies of Goldenrod Introduction The determination of how natural selection acts in contemporary populations constitutes

More information

Symbiosis. Theft and Sharing in the Northwoods

Symbiosis. Theft and Sharing in the Northwoods Symbiosis Theft and Sharing in the Northwoods What is Symbiosis? living together A close living relationship between two different types of organisms At least one member of the pair benefits. The other

More information

Species Interactions in Goldenrod Communities What can we learn from studying ecological interactions between organisms of different species?

Species Interactions in Goldenrod Communities What can we learn from studying ecological interactions between organisms of different species? Species Interactions in Goldenrod Communities What can we learn from studying ecological interactions between organisms of different species? [Most of the ideas and resources for this lab came from educational

More information

Gibbs: The Investigation of Competition

Gibbs: The Investigation of Competition ESSAI Volume 5 Article 21 1-1-2007 The Investigation of Competition Between Eurosta Solidaginis (Fitch) and Rhopalomyia Solidaginis (Loew), Two Gall makers of Solidago Altissima (Asteraceae) Jessica Gibbs

More information

Goldenrod Galls and the Scientific Method

Goldenrod Galls and the Scientific Method Goldenrod Galls and the Scientific Method Overview Groups of students are given several goldenrod stems with galls. They are asked to make observations, come up with questions and make hypotheses. They

More information

Student lab provided by George Wolfe, Director, Loudoun County Public Schools, Academy of Science, Sterling, VA

Student lab provided by George Wolfe, Director, Loudoun County Public Schools, Academy of Science, Sterling, VA Gall Size Effect on the Inhabitance of Parasites and Parasitoids in the Goldenrod Plant Abstract: We calculated volumes and examined species inside the galls in an effort to determine if gall size has

More information

Investigating the Factors That Determine the Distribution of the Stem-Galling Tephritid Fly in an Old Field in Northeastern Illinois

Investigating the Factors That Determine the Distribution of the Stem-Galling Tephritid Fly in an Old Field in Northeastern Illinois ESSAI Volume 2 Article 16 Spring 2004 Investigating the Factors That Determine the Distribution of the Stem-Galling Tephritid Fly in an Old Field in Northeastern Illinois Marsella Jorgolli College of DuPage

More information

Tatia Bauer. University of Michigan Biological Station. EEB 381 General Ecology. August 19, Cathy Bach

Tatia Bauer. University of Michigan Biological Station. EEB 381 General Ecology. August 19, Cathy Bach The densities of goldenrod galls (Eurosta solidaginis) and their goldenrod host plants (Solidago canadensis) while directly related to each other, are not impacted by soil nitrogen or soil moisture Tatia

More information

Factors That Affect Eurosta Solidaginis Distribution in Naturalized Areas of Northeastern Illinois

Factors That Affect Eurosta Solidaginis Distribution in Naturalized Areas of Northeastern Illinois ESSAI Volume 1 Article 26 Spring 2003 Factors That Affect Eurosta Solidaginis Distribution in Naturalized Areas of Northeastern Illinois Rachel Meek College of DuPage Follow this and additional works at:

More information

DIVERGENCE OF EUROSTA SOLIDAGINIS IN RESPONSE TO HOST PLANT VARIATION AND NATURAL ENEMIES

DIVERGENCE OF EUROSTA SOLIDAGINIS IN RESPONSE TO HOST PLANT VARIATION AND NATURAL ENEMIES ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2010.01167.x DIVERGENCE OF EUROSTA SOLIDAGINIS IN RESPONSE TO HOST PLANT VARIATION AND NATURAL ENEMIES Timothy P. Craig 1,2 and Joanne K. Itami 1 1 Department of

More information

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences D. POPULATION & COMMUNITY DYNAMICS Week 13. Herbivory, predation & parasitism: Lecture summary: Predation:

More information

Musk thistle and Canada thistle

Musk thistle and Canada thistle Musk thistle and Canada thistle Musk thistle, Carduus nutans Identification & origins Eurasian origin Sometimes called the nodding thistle : long slender stems bear heavy flowers Flowers are broader at

More information

HOST-PLANT GENOTYPIC DIVERSITY MEDIATES THE DISTRIBUTION OF AN ECOSYSTEM ENGINEER

HOST-PLANT GENOTYPIC DIVERSITY MEDIATES THE DISTRIBUTION OF AN ECOSYSTEM ENGINEER Notes Ecology, 88(8), 2007, pp. 2114 2120 Ó 2007 by the Ecological Society of America HOST-PLANT GENOTYPIC DIVERSITY MEDIATES THE DISTRIBUTION OF AN ECOSYSTEM ENGINEER KERRI M. CRAWFORD, 1 GREGORY M. CRUTSINGER,

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 7: Dynamics of Predation. Lecture summary: Categories of predation. Linked prey-predator cycles. Lotka-Volterra model. Density-dependence.

More information

Exploring Matthaei s Ecosystems

Exploring Matthaei s Ecosystems Name: Exploring Matthaei s Ecosystems As you walk on the trails, look for evidence of each of the following components of an ecosystem. Draw and describe what you observed and where you found it. Component

More information

AN EXAMPLE OF PARASITOID FORAGING: TORYMUS CAPITE

AN EXAMPLE OF PARASITOID FORAGING: TORYMUS CAPITE 1 AN EXAMPLE OF PARASITOID FORAGING: TORYMUS CAPITE (HUBER; HYMEMOPTERA: TORYMIDAE [CHALCIDOIDEA]) ATTACKING THE GOLDENROD GALL-MIDGE ASTEROMYIA CARBONIFERA (O. S.; DIPTERA: CECIDOMYIIDAE) Richard F. Green

More information

Agapanthus Gall Midge update (Hayley Jones, Andrew Salisbury, Ian Waghorn & Gerard Clover) all images RHS

Agapanthus Gall Midge update (Hayley Jones, Andrew Salisbury, Ian Waghorn & Gerard Clover) all images RHS Agapanthus Gall Midge update 20.10.2015 (Hayley Jones, Andrew Salisbury, Ian Waghorn & Gerard Clover) all images RHS Background The agapanthus gall midge is an undescribed pest affecting Agapanthus that

More information

Do parasitoids diversify in response to host-plant shifts by herbivorous insects?

Do parasitoids diversify in response to host-plant shifts by herbivorous insects? Ecological Entomology (2001) 26, 347±355 Do parasitoids diversify in response to host-plant shifts by herbivorous insects? JAMES T. CRONIN 1 andwarren G. ABRAHAMSON 2 1 Department of Biology, University

More information

STABILIZING SELECTION ON HUMAN BIRTH WEIGHT

STABILIZING SELECTION ON HUMAN BIRTH WEIGHT STABILIZING SELECTION ON HUMAN BIRTH WEIGHT See Box 8.2 Mapping the Fitness Landscape in Z&E FROM: Cavalli-Sforza & Bodmer 1971 STABILIZING SELECTION ON THE GALL FLY, Eurosta solidaginis GALL DIAMETER

More information

BIOS 3010: Ecology Lecture 11: Processes: Herbivory. 2. Basic feeding guilds of herbivores: 3. Effects of herbivores on plants:

BIOS 3010: Ecology Lecture 11: Processes: Herbivory. 2. Basic feeding guilds of herbivores: 3. Effects of herbivores on plants: BIOS 3010: Ecology Lecture 11: Processes: Herbivory Lecture summary: Feeding guilds. Effects of herbivores on plants: Distribution and abundance. Compensation. Recruitment. Fecundity. Plant defense. Diversity.

More information

Kansas State University Department of Entomology Newsletter

Kansas State University Department of Entomology Newsletter Kansas State University Department of Entomology Newsletter For Agribusinesses, Applicators, Consultants, Extension Personnel & Homeowners Department of Entomology 123 West Waters Hall K-State Research

More information

Insects and Plants 3/7/2012. Coevolution. Coevolution. Reciprocal evolution

Insects and Plants 3/7/2012. Coevolution. Coevolution. Reciprocal evolution and Plants Butterflies and Plants: a study in coevolution By Ehrlich & Raven A classic! Coevolution Reciprocal evolution The hawk moth (Xanthopan morganii) visiting the Madagascar Star Orchid (Angraecum

More information

Gypsy Moth Defoliation Harpers Ferry, Va

Gypsy Moth Defoliation Harpers Ferry, Va Gypsy Moth Defoliation Harpers Ferry, Va Common Bad Bugs Eastern Tent Caterpillar Bagworm Japanese Beetles Aphids Scale Insects Borers Eastern Tent Caterpillar Bagworm Japanese Beetles Aphids Soft Scales

More information

Arthropod Containment in Plant Research. Jian J Duan & Jay Bancroft USDA ARS Beneficial Insects Research Unit Newark, Delaware

Arthropod Containment in Plant Research. Jian J Duan & Jay Bancroft USDA ARS Beneficial Insects Research Unit Newark, Delaware Arthropod Containment in Plant Research Jian J Duan & Jay Bancroft USDA ARS Beneficial Insects Research Unit Newark, Delaware What we do at USDA ARS BIIRU - To develop biological control programs against

More information

The Demographic Performance of the Capitulum Weevil, Larinus latus, on Onopordum Thistles in its Native and Introduced Ranges

The Demographic Performance of the Capitulum Weevil, Larinus latus, on Onopordum Thistles in its Native and Introduced Ranges Proceedings of the X International Symposium on Biological Control of Weeds 4-14 July 1999, Montana State University, Bozeman, Montana, USA Neal R. Spencer [ed.]. pp. 739-745 (2000) 739 The Demographic

More information

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology Biology 11 Unit 1: Fundamentals Lesson 1: Ecology Objectives In this section you will be learning about: ecosystem structure energy flow through an ecosystem photosynthesis and cellular respiration factors

More information

biotic factors camouflage carnivore chloroplast

biotic factors camouflage carnivore chloroplast non-living parts of an organism's environment Eg air currents, temperature, moisture, light, and soil type special features about an organism that help it survive and reproduce living things that is different

More information

Additional Case Study: Calculating the Size of a Small Mammal Population

Additional Case Study: Calculating the Size of a Small Mammal Population Student Worksheet LSM 14.1-2 Additional Case Study: Calculating the Size of a Small Mammal Population Objective To use field study data on shrew populations to examine the characteristics of a natural

More information

ILLUSTRATED GUIDE TO THE PLANT GALLS OF THE ROEMER ARBORETUM AT SUNY GENESEO

ILLUSTRATED GUIDE TO THE PLANT GALLS OF THE ROEMER ARBORETUM AT SUNY GENESEO ILLUSTRATED GUIDE TO THE PLANT GALLS OF THE ROEMER ARBORETUM AT SUNY GENESEO KATHRYN ALEYA WEISS Abstract- The Roemer Arboretum on the SUNY Geneseo Campus is an excellent area to study the formation of

More information

Chapter 6 Reading Questions

Chapter 6 Reading Questions Chapter 6 Reading Questions 1. Fill in 5 key events in the re-establishment of the New England forest in the Opening Story: 1. Farmers begin leaving 2. 3. 4. 5. 6. 7. Broadleaf forest reestablished 2.

More information

Honors Biology Ecology Concept List

Honors Biology Ecology Concept List 1. For each pair of terms, explain how the meanings of the terms differ. a. mutualism and commensalism b. parasitism and predation c. species richness and species diversity d. primary succession and secondary

More information

Some are beneficial... biological noxious weed control can be elusive and long term

Some are beneficial... biological noxious weed control can be elusive and long term Some are beneficial... biological noxious weed control can be elusive and long term The flower-feeding beetle Brachypterolus pulicarius was brought to North America by accident in 1919, probably in a shipment

More information

Types of Consumers. herbivores

Types of Consumers. herbivores no energy = no life Types of Consumers herbivores herbivore us vegetation to swallow or devour Types of Consumers herbivores the organisms that eat plants carnivores carnivore us flesh to swallow or devour

More information

Holly Meehan 1 INTRODUCTION

Holly Meehan 1 INTRODUCTION Monitoring the dynamics of Galerucella spp. and purple loosestrife (Lythrum salicaria) in the Goodyear Swamp Sanctuary and along the Otsego Lake shoreline, summer 25 Holly Meehan 1 INTRODUCTION Monitoring

More information

Tree and Shrub Insects

Tree and Shrub Insects Aphids Aphids are small soft-bodied insects that suck plant juices. High aphid populations can cause leaves to yellow, curl, or drop early. The most bothersome aspect of aphids is the honeydew they produce.

More information

Grade 7 Lesson Instructions Friend or Foe? Preparation: Background information: Activity:

Grade 7 Lesson Instructions Friend or Foe? Preparation: Background information: Activity: Instructions Friend or Foe? You can use monarchs to teach about many things! Stone Mountain Memorial Association (SMMA) uses the monarch butterfly to help students apply their knowledge in other contexts

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603)

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) NCEA Level 3 Biology (91603) 2013 page 1 of 6 Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) Assessment Criteria

More information

Community ecology. Abdulhafez A Selim, MD, PhD

Community ecology. Abdulhafez A Selim, MD, PhD Community ecology Abdulhafez A Selim, MD, PhD Community ecology is very complex Niches The term 'Niche' was coined by the naturalist Joseph Grinnell in 1917, in his paper "The niche relationships of the

More information

Predator behavior influences predator-prey population dynamics. Predator behavior influences predator-prey population dynamics

Predator behavior influences predator-prey population dynamics. Predator behavior influences predator-prey population dynamics Predator behavior influences predator-prey population dynamics There are two types of predator behavior (responses to prey) that add stability to these predator-prey population dynamics: 1. Numerical response

More information

A bagworm is very lovely

A bagworm is very lovely A bagworm is very lovely ミノムシ いとあはれなり Dr. Ryo ARAKAWAA Entomological Lab. Kochi Univ. Bagworm (Minomushi) Eumeta variegata (=E. japonica) Bagworm Larva of psychid moth (Lepidoptera: Psychidae) World: 1,700

More information

Question #01. Feedback on Each Answer Choice. Solution. Ecology Problem Drill 20: Mutualism and Coevolution

Question #01. Feedback on Each Answer Choice. Solution. Ecology Problem Drill 20: Mutualism and Coevolution Ecology Problem Drill 20: Mutualism and Coevolution Question No. 1 of 10 Question 1. The concept of mutualism focuses on which of the following: Question #01 (A) Interaction between two competing species

More information

STEREOCHEMISTRY OF HOST PLANT MONOTERPENES AS MATE LOCATION CUES FOR THE GALL WASP Antistrophus rufus

STEREOCHEMISTRY OF HOST PLANT MONOTERPENES AS MATE LOCATION CUES FOR THE GALL WASP Antistrophus rufus Journal of Chemical Ecology, Vol. 30, No. 2, February 2004 ( C 2004) Originally published online January 14, 2004, Rapid Communications, pp. RC125 129 (http://www.kluweronline.com/issn/0098-0331) STEREOCHEMISTRY

More information

Introduction interspecific interactions

Introduction interspecific interactions Introduction There are different interspecific interactions, relationships between the species of a community (what s the definition of a community again?). While you re at it, what s the definition of

More information

Lecture 8 Insect ecology and balance of life

Lecture 8 Insect ecology and balance of life Lecture 8 Insect ecology and balance of life Ecology: The term ecology is derived from the Greek term oikos meaning house combined with logy meaning the science of or the study of. Thus literally ecology

More information

UNIT 5. ECOSYSTEMS. Biocenosis Biotope Biotic factors Abiotic factors

UNIT 5. ECOSYSTEMS. Biocenosis Biotope Biotic factors Abiotic factors UNIT 5. ECOSYSTEMS 1. Define: ecosystem, biocenosis, biotope, abiotic factor, biotic factor 2. Complete using this word: ecosphere, biosphere, ecology, ecosystem a) The is all of the living thing on Earth.

More information

Chapter 6 Population and Community Ecology. Thursday, October 19, 17

Chapter 6 Population and Community Ecology. Thursday, October 19, 17 Chapter 6 Population and Community Ecology Module 18 The Abundance and Distribution of After reading this module you should be able to explain how nature exists at several levels of complexity. discuss

More information

FACTORS FOR INSECTS ABUNDANCE. 1. More number of species: In the animal kingdom more than 85 per cent of the species

FACTORS FOR INSECTS ABUNDANCE. 1. More number of species: In the animal kingdom more than 85 per cent of the species FACTORS FOR INSECTS ABUNDANCE Measures of dominance 1. More number of species: In the animal kingdom more than 85 per cent of the species belongs to insect group. Total number of insects described so far

More information

Review Quizzes Chapters 45-50

Review Quizzes Chapters 45-50 Review Quizzes Chapters 45-50 1) Which of the following is a non-density-dependent factor that affects a population? a. spread of disease b. space c. earthquake d. food e. mating and reproduction 1) Which

More information

Ecology Student Edition. A. Sparrows breathe air. B. Sparrows drink water. C. Sparrows use the sun for food. D. Sparrows use plants for shelter.

Ecology Student Edition. A. Sparrows breathe air. B. Sparrows drink water. C. Sparrows use the sun for food. D. Sparrows use plants for shelter. Name: Date: 1. Which of the following does not give an example of how sparrows use resources in their environment to survive? A. Sparrows breathe air. B. Sparrows drink water. C. Sparrows use the sun for

More information

Figure 2 If birds eat insects that feed on corn, which pyramid level in the diagram would birds occupy? 1. A 3. C 2. B 4. D

Figure 2 If birds eat insects that feed on corn, which pyramid level in the diagram would birds occupy? 1. A 3. C 2. B 4. D Ecology Week 1 Assignment. This week's assignment will count as a quiz grade. Please speak to Mr. Roes about any questions that you would like help on! 1. The fact that no organism exists as an entity

More information

Herbivory: the consumption of plant parts (generally leaves and roots) by animals

Herbivory: the consumption of plant parts (generally leaves and roots) by animals Herbivory: the consumption of plant parts (generally leaves and roots) by animals >25% of all species on earth are herbivores >50% of all organisms are plant and herbivores, so their interactions have

More information

Ch 4 Ecosystems and Communities. 4.2 Niches and Community Interactions

Ch 4 Ecosystems and Communities. 4.2 Niches and Community Interactions Ch 4 Ecosystems and Communities 4.2 Niches and Community Interactions The Niche The conditions in which an organisms lives, and how it interacts with its environment (in the trees, on the ground, inside

More information

Academic Year Second Term. Science Revision sheets

Academic Year Second Term. Science Revision sheets Academic Year 2015-2016 Second Term Science Revision sheets Name: Date: Grade:3/ Q1 : Choose the letter of the choice that best answer the questions 1. Which of these is what a plant does that makes more

More information

chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question.

chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question. chatper 17 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If a mutation introduces a new skin color in a lizard population, which factor might determine

More information

Adaptation. Biotic and Abiotic Environments. Eric R. Pianka

Adaptation. Biotic and Abiotic Environments. Eric R. Pianka Adaptation Eric R. Pianka To survive and reproduce, all living organisms must adjust to conditions imposed on them by their environments. An organism's environment includes everything impinging upon it,

More information

Community Structure. Community An assemblage of all the populations interacting in an area

Community Structure. Community An assemblage of all the populations interacting in an area Community Structure Community An assemblage of all the populations interacting in an area Community Ecology The ecological community is the set of plant and animal species that occupy an area Questions

More information

Soybean stem fly outbreak in soybean crops

Soybean stem fly outbreak in soybean crops Soybean stem fly outbreak in soybean crops By Kate Charleston Published: April 10, 2013 An estimated 4,000 ha of soybeans near Casino in Northern NSW have been affected to varying degrees by soybean stem

More information

Chapter 6 Population and Community Ecology

Chapter 6 Population and Community Ecology Chapter 6 Population and Community Ecology Friedland and Relyea Environmental Science for AP, second edition 2015 W.H. Freeman and Company/BFW AP is a trademark registered and/or owned by the College Board,

More information

Whitney Cranshaw Colorado State University

Whitney Cranshaw Colorado State University Natural and Biological Controls of Shade Tree Insect Pests Whitney Cranshaw Colorado State University Natural Controls Natural Enemies Abiotic (Weather) Controls Topographic Limitations Temperature Extremes

More information

Joseph Priestly ECOSYSTEMS. Part

Joseph Priestly ECOSYSTEMS. Part ECOSYSTEMS Part 2 Joseph Priestly Joseph Priestly was an English clergyman and scientist. He noticed that if he put a burning candle in a jar, the candle went out after a few minutes and when he put a

More information

Some Animals Are More Equal than Others: Trophic Cascades and Keystone Species

Some Animals Are More Equal than Others: Trophic Cascades and Keystone Species Some Animals Are More Equal than Others: Trophic Cascades and Keystone Species NAME DATE This handout supplements the short film Some Animals Are More Equal than Others: Trophic Cascades and Keystone Species.

More information

Populations and Ecosystems. 1. Two different species with the same ecological niche are placed in the same habitat. These two species will most likely

Populations and Ecosystems. 1. Two different species with the same ecological niche are placed in the same habitat. These two species will most likely Name: ate: 1. Two different species with the same ecological niche are placed in the same habitat. These two species will most likely. have different food requirements. compete for the same environmental

More information

Unpack the Standard: Students will categorize relationships between organisms that are competitive or mutually beneficial.

Unpack the Standard: Students will categorize relationships between organisms that are competitive or mutually beneficial. Unpack the Standard: Students will categorize relationships between organisms that are competitive or mutually beneficial. Competition Among Organisms Competition occurs when organisms of the same or different

More information

BIOS 3010: Ecology Lecture 12: Decomposition and Detritivory: 2. Decomposers and detritivores: 3. Resources of decomposers: Lecture summary:

BIOS 3010: Ecology Lecture 12: Decomposition and Detritivory: 2. Decomposers and detritivores: 3. Resources of decomposers: Lecture summary: BIOS 3010: Ecology Lecture 12: Decomposition and Detritivory: Lecture summary: Decomposers & detritivores: Resources. Characteristics. Model of detritivory. Size of detritivores. Diversity & abundance.

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 14: Roles of competition, predation & disturbance in community structure. Lecture summary: (A) Competition: Pattern vs process.

More information

Aphid and ladybird beetle abundance depend on the interaction of spatial effects and genotypic diversity

Aphid and ladybird beetle abundance depend on the interaction of spatial effects and genotypic diversity DOI 10.1007/s00442-011-2080-3 PLANT-ANIMAL INTERACTIONS - ORIGINAL PAPER Aphid and ladybird beetle abundance depend on the interaction of spatial effects and genotypic diversity Mark A. Genung Gregory

More information

Levels of Organization in Ecosystems. Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem.

Levels of Organization in Ecosystems. Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem. Levels of Organization in Ecosystems Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem. Population A population is a group of individuals of

More information

Welcome to Principles of Entomology!

Welcome to Principles of Entomology! Welcome to Principles of Entomology! ENY 3005/5006 Course Packet and Study Guides 10: Insects & Plants Over 360,000 species of insects feed on Angiosperms (the flowering plants), and insects have fed on

More information

Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü. PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL

Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü. PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL Ecology & Ecosystems Principles of Ecology Ecology is the study of the interactions

More information

BIOS 3010: Ecology Lecture 14: Life Histories: 2. Components of life histories: Growth, fecundity and survivorship. 3. Components of life histories:

BIOS 3010: Ecology Lecture 14: Life Histories: 2. Components of life histories: Growth, fecundity and survivorship. 3. Components of life histories: BIOS 3010: Ecology Lecture 14: Life Histories: Lecture summary: Components of life histories: Growth. Fecundity. Survivorship. Reproductive value. Trade-offs. r- and K-selection. Habitat templates. Clutch

More information

Desert Patterns. Plants Growth and reproduction Water loss prevention Defenses. Animals Growth and reproduction Water loss prevention Defenses

Desert Patterns. Plants Growth and reproduction Water loss prevention Defenses. Animals Growth and reproduction Water loss prevention Defenses Desert Patterns Plants Growth and reproduction Water loss prevention Defenses Animals Growth and reproduction Water loss prevention Defenses Abiotic Features Introduction A major emphasis in ecology is

More information

Biology 322 Fall 2009 Wasp Genetics: Genetic Heterogeneity and Complementation Revisted

Biology 322 Fall 2009 Wasp Genetics: Genetic Heterogeneity and Complementation Revisted Biology 322 Fall 2009 Wasp Genetics: Genetic Heterogeneity and Complementation Revisted Required Reading: Deaf by Design Nature 431: 894-896 October 21, 2004 http://fire.biol.wwu.edu/trent/trent/naturedeafdesign.pdf

More information

Dectes Stem Borer: A Summertime Pest of Soybeans

Dectes Stem Borer: A Summertime Pest of Soybeans Dectes Stem Borer: A Summertime Pest of Soybeans Veronica Johnson* and Cerruti R 2 Hooks $ University of Maryland Dept. of Entomology * Graduate student and $ Associate professor and Extension Specialist

More information

1. competitive exclusion => local elimination of one => competitive exclusion principle (Gause and Paramecia)

1. competitive exclusion => local elimination of one => competitive exclusion principle (Gause and Paramecia) Chapter 54: Community Ecology A community is defined as an assemblage of species living close enough together for potential interaction. Each member of same community has a particular habitat and niche.

More information

Groups of organisms living close enough together for interactions to occur.

Groups of organisms living close enough together for interactions to occur. Community ecology: First, let's define a community: Groups of organisms living close enough together for interactions to occur. First we probably want to describe the community a bit, so we look at: Biodiversity

More information

Rapid Global Invasion by Quadrastichus erythrinae (Eulophidae), the Erythrina Gall Wasp and the Hawaii Biological Control Success

Rapid Global Invasion by Quadrastichus erythrinae (Eulophidae), the Erythrina Gall Wasp and the Hawaii Biological Control Success Rapid Global Invasion by Quadrastichus erythrinae (Eulophidae), the Erythrina Gall Wasp and the Hawaii Biological Control Success Leyla Kaufman, Mark Wright, Russell Messing, Dan Rubinoff, Juliana Yalemar

More information

University of Groningen. Seasonal timing in a warming world Salis, Lucia

University of Groningen. Seasonal timing in a warming world Salis, Lucia University of Groningen Seasonal timing in a warming world Salis, Lucia IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the

More information

A population is a group of individuals of the same species, living in a shared space at a specific point in time.

A population is a group of individuals of the same species, living in a shared space at a specific point in time. A population is a group of individuals of the same species, living in a shared space at a specific point in time. A population size refers to the number of individuals in a population. Increase Decrease

More information

What is insect forecasting, and why do it

What is insect forecasting, and why do it Insect Forecasting Programs: Objectives, and How to Properly Interpret the Data John Gavloski, Extension Entomologist, Manitoba Agriculture, Food and Rural Initiatives Carman, MB R0G 0J0 Email: jgavloski@gov.mb.ca

More information

PERFORMANCE OF NATURAL ENEMIES REARED ON ARTIFICIAL DIETS J.E. Carpenter 1 and S. Bloem 2 1

PERFORMANCE OF NATURAL ENEMIES REARED ON ARTIFICIAL DIETS J.E. Carpenter 1 and S. Bloem 2 1 Performance of natural enemies reared on artificial diets 143 PERFORMANCE OF NATURAL ENEMIES REARED ON ARTIFICIAL DIETS J.E. Carpenter 1 and S. Bloem 2 1 U.S. Department of Agriculture, Agricultural Research

More information

ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT

ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT Stephen D. Cockfield and Daniel L. Mahr Department of Entomology University of Wisconsin-Madison

More information

Principles of Ecology

Principles of Ecology Principles of Ecology What is Ecology? Ecology is the study of interactions that occur between organisms and their environment Biosphere Recall that the biosphere includes all living things In order to

More information

Investigating Use of Biocontrol Agents to Control Spotted Knapweed

Investigating Use of Biocontrol Agents to Control Spotted Knapweed Investigating Use of Biocontrol Agents to Control Spotted Knapweed Target Grade Level: 5 th Created and Adapted by: Rachel Loehman UNIVERSITY OF MONTANA GK-12 PROGRAM 1 Investigating Use of Biocontrol

More information

Quantitative characters III: response to selection in nature

Quantitative characters III: response to selection in nature Quantitative characters III: response to selection in nature Selection occurs whenever there is a nonrandom relationship between phenotypes (performances) and fitnesses. But evolution occurs only when

More information

Temporal dynamics in non-additive responses of arthropods to host-plant genotypic diversity

Temporal dynamics in non-additive responses of arthropods to host-plant genotypic diversity Oikos :, 27 doi: 1.1111/j.27.3-1299.16276.x, # The Authors. Journal compilation # Oikos 27 Subject Editor: Lonnie Aarssen, Accepted 28 October 27 Temporal dynamics in non-additive responses of arthropods

More information

BIOS 3010: Ecology Lecture 8: Predator foraging & prey defense. 2. Predation: 3. Predator diet breadth and preference:

BIOS 3010: Ecology Lecture 8: Predator foraging & prey defense. 2. Predation: 3. Predator diet breadth and preference: BIOS 3010: Ecology Lecture 8: Predator foraging & prey defense 1. Lecture Summary: What is predation? Predator diet breadth. Preference & switching. Optimal foraging. Marginal value theorem. Functional

More information

Round One All play. Each question = 1 point

Round One All play. Each question = 1 point Ecology Unit Review Round One All play Each question = 1 point Leaf cells are one type of tree cell. Which process occurs in a live leaf cell? a. Evolution b. Adaptation c. sugar production d. sexual reproduction

More information

1. The graph below represents a change in event A that leads to changes in events B and C.

1. The graph below represents a change in event A that leads to changes in events B and C. 1. The graph below represents a change in event A that leads to changes in events B and C. Which row in the chart best identifies each event in the graph? A) 1 B) 2 C) 3 D) 4 2. A stable ecosystem is characterized

More information

What is wrong with deer on Haida Gwaii?

What is wrong with deer on Haida Gwaii? What is wrong with deer on Haida Gwaii? A school curriculum by the Research Group on Introduced Species 2007 Forests of Haida Gwaii Haida Gwaii is an archipelago. It consists of a great number of islands,

More information

ECOSYSTEMS AND THEIR LIVING COMMUNITIES

ECOSYSTEMS AND THEIR LIVING COMMUNITIES ECOSYSTEMS AND THEIR LIVING COMMUNITIES COMMUNITY Each community is made up of populations of various organisms living in the same location at the same time. community 1 = popln 1 + popln 2 + popln 3 Each

More information

What do plants compete for? What do animals compete for? What is a gamete and what do they carry? What is a gene?

What do plants compete for? What do animals compete for? What is a gamete and what do they carry? What is a gene? How are these animals adapted to their surroundings: - a) Polar bear b) Camel c) Cactus What do plants compete for? What do animals compete for? What is a gamete and what do they carry? What is a gene?

More information

BIOLOGICAL CONTROL OF INVASIVE ALIEN PLANTS IN THE FYNBOS: AN OVERVIEW

BIOLOGICAL CONTROL OF INVASIVE ALIEN PLANTS IN THE FYNBOS: AN OVERVIEW BIOLOGICAL CONTROL OF INVASIVE ALIEN PLANTS IN THE FYNBOS: AN OVERVIEW Fiona Impson University of Cape Town & Plant Protection Research Institute With thanks to; Tony Gordon, John Hoffmann, Carien Kleinjan,

More information

B2 Revision Questions Part 1

B2 Revision Questions Part 1 B2 Revision Questions Part 1 Higher only questions are underlined Question 1 What are the two different ways that things can be classified? Answer 1 Artificially and naturally Question 2 What is natural

More information

Field Identification Guide

Field Identification Guide Field Identification Guide Oriental Chestnut Gall Wasp Image: Gyorgy Csoka Hungary Forest Research Institute, Bugwood.org Funded by the EU s LIFE programme Oriental Chestnut Gall Wasp Dryocosmus kuriphilus

More information

Ecology - the study of how living things interact with each other and their environment

Ecology - the study of how living things interact with each other and their environment Ecology Ecology - the study of how living things interact with each other and their environment Biotic Factors - the living parts of a habitat Abiotic Factors - the non-living parts of a habitat examples:

More information

Biomes, Populations, Communities and Ecosystems Review

Biomes, Populations, Communities and Ecosystems Review Multiple Choice Biomes, Populations, Communities and Ecosystems Review 1. The picture below is a school (group) of Jack fish. What type of distribution does this represent? A) Random B) Even C) Uniform

More information

Mrs. Fanek Ecology Date

Mrs. Fanek Ecology Date Name Period Mrs. Fanek Ecology Date 1. The graph below represents a change in event A that leads to changes in events B and C. Which row in the chart best identifies each event in the graph? A) 1 B) 2

More information

Tolerance. Tolerance. Tolerance 10/22/2010

Tolerance. Tolerance. Tolerance 10/22/2010 Section 4.2 Mrs. Michaelsen Tolerance Every species has its own range of tolerance: The ability to survive and reproduce under a range of environmental circumstances. Tolerance Stress can result when an

More information

Approximate Pacing for First Grade Insects and Plants Unit

Approximate Pacing for First Grade Insects and Plants Unit Approximate Pacing for First Grade Insects and Plants Unit p.1 = Part 1 p.2 = Part 2 p.3 = Part 3 The schedule for this unit is almost COMPLETELY dependent on what the living organisms are doing and where

More information

4. Identify one bird that would most likely compete for food with the large tree finch. Support your answer. [1]

4. Identify one bird that would most likely compete for food with the large tree finch. Support your answer. [1] Name: Topic 5B 1. A hawk has a genetic trait that gives it much better eyesight than other hawks of the same species in the same area. Explain how this could lead to evolutionary change within this species

More information