Physiology and Diversity of Prokaryotes WS 2009/2010 ( PHOTOTROPHS. Martin Könneke. Lithotrophic Processes

Size: px
Start display at page:

Download "Physiology and Diversity of Prokaryotes WS 2009/2010 (www.icbm.de/pmbio/) PHOTOTROPHS. Martin Könneke. Lithotrophic Processes"

Transcription

1 Physiology and Diversity of Prokaryotes WS 2009/2010 ( PHOTOTROPHS Martin Könneke Lithotrophic Processes Elektronendonor Oxidized product Process/ organism H 2 H + (H 2 O) Knallgas reaction/ Ralstonia NH + 4 NO - 3 Nitrification (2 types) NH + 4 NO - 2 Ammonia oxidizer (Nitroso-) NO - 2 NO - 3 Nitrite oxidizer (Nitro-) CH 4 CO 2 Methane oxidizer (Methylo-) H 2 S, S SO 2-4 Sulfur oxidizer/thiobacillus, Beggiatoa Fe 2+ Fe 3+ Iron oxidation/thiobacillus H 2 O O 2 Photosynthesis

2 Lithotrophic processes are essential for the reoxidation of reduced electron acceptors! All chemolithotrophes are prokaryotes! Almost all known lithotrophes are autotroph! Energieform Elektronendonor Kohlenstoffquelle Chemo- Organo- heterotroph Photo- Litho- autotroph

3 CO 2 fixation pathways At present, 6 different pathways are known, just a single one within the Eukarya Differ with regard to energy requirement, end products and oxygene sensitivity Calvin Cycle Reductive (reverse) citric acid cycle Reductive acetyl-coa pathway 3-Hydroxypropionate cycle ( 2 variations)

4 CO 2 fixation: Calvin Cyclus Most widespead carbon fixation pathway (RubisCO most abundant enzyme on Earth) Occurs in chloroplast, cyanobacteria, and most chemolithoautotrophic bacteria Some bacteria contain speciallized compartements, carboxysome, with high RubisCO concentration Reduces CO 2 even at high oxygen concentrations Can also funtion as oxygenase CO 2 fixation via the Calvin Cyclus (Calvin-Bassham-Benson-cylcle) Key enzyme: RubisCO Ribulosebisphosphat-Carboxylase/Oxygenase Used by all plants, cyanobacteria, and most of the aerobic chemolithoautotrophic bacteria Reduction of CO 2 to the oxidation state of sugar: CO ATP + 4[H]! <CH 2 O> + H 2 O + 3 ADP + 3 P i - IV 0

5 CO 2 Fixierung: Calvin Cyclus RubisCO CO 2 Fixierung: Calvin Cyclus 15 C 3 C Phosphoribulokinase 3 C 18 C 15 C RubisCO

6 CO 2 fixation: Calvin Cyclus Key enzyme: RubisCO Ribulosebisphosphat-Carboxylase/Oxygenase Requirements for the synthesis of 3-phosphate glycerine aldehyde 3 CO ATP + 6 NADPH carbon energy reducing power Energy expensive pathway! Reductive (reverse) citric acid cycle Represents the reversion of the citric acid cycle Replacement of 3 enzymes: 1) ATP-citrate lyase instead of the citrate synthase 2)!-ketoglutarate-synthase instead of "- ketoglutaratedehydrogenase 3) Fumarate synthase instead of succinate dehydrogenase Final product of the cycle is acetyl-coa, that is further carboxylized to pyruvate. A third step is the ATP dependent conversion to triose-phosphate.

7 Reductive citric acid pathway Reductive citric acid pathway

8 Reductive (reverse) citric acid cycle Present in: Phototrophic green sulfur bacteria (e.g. Chlorobium limicola) Sulfate reducers (Desulfobacter hydrogenophilus) Knallgas bacteria (Hydrogenobacter thermophilus) Thermophilic, sulfur-reducing archaea (Thermoproteus neutrophilus) The acetyl-coa pathway - In contrast to other carbon fixation pathways, not a cycle - two linear reaction series resulting in A) a methyl- and B) a carbonyl group - key enzyme: CO-DH (Carbon monooxide dehydrogenase) CO 2 + H 2! CO + H 2 O - The CO 2 reduction must be considered as bifunctional pathway: A) energy metabolism B) C-fixation for biosynthesis

9 Reductive acetyl-coa pathway

10 3-Hydroxypropionate cycle Reduction of bicarbonate to gyoxylate Bicarbonate fixing enzymes are: acetyl-coa carboxylase and propionyl-coa carboxylase 3-hydroxypropionyl-CoA as characteristic intermediate Recycling of the primary carbonate acceptor acetyl-coa 3-Hydroxypropionate cycle

11 3-Hydroxypropionate cycle 3-Hydroxypropionate cycle At present only found in the green nonsulfur phototrophic members of the genus Chloroflexus and in thermophilic Crenarchaeota (Metallosphaera) Suggested to be oldest pathway of autotrophy in anoxygenic phototrophes

12 Acetyl-CoA Acetyl-CoA HCO - 3 Acetyl-CoA carboxylase (Nmar_0272, 0273, 0274) Malonyl-CoA Malonyl-CoA reductase Malonate semialdehyde reductase (unknown) Succinyl-CoA Methylmalonyl-CoA 3-Hydroxybutyryl-CoA Crotonyl-CoA hydratase (Nmar_1308) Crotonyl-CoA 3-Hydroxypropionate 3-Hydroxypropionyl-CoA synthetase 4-Hydroxybutyrate 3-Hydroxypropionyl-CoA dehydratase Acryloyl-CoA reductase (unknown) Propionyl-CoA HCO 3 - Acetoacetyl-CoA!-ketothiolase (Nmar_0841 or Nmar_1631) Acetoacetyl-CoA 3-Hydroxybutyryl-CoA dehydrogenase (Nmar_1028) Propionyl-CoA carboxylase (Nmar_0272, 0273, 0274) Methylmalonyl-CoA epimerase Methylmalonyl-CoA mutase (Nmar_0953, 0954, 0958) The 3OH-propionate/ 4 OH-butyrate cycle in Crenarchaeota 4-Hydroxybutyryl-CoA dehydratase (Nmar_0207) 4-Hydroxybutyryl-CoA 4-Hydroxybutyryl-CoA synthetase (Nmar_0206) Succinate semialdehyde reductase (Nmar_1110 or Nmar_0161) Succinate-semialdehyde Succinyl-CoA reductase (Nmar_1608)

13

14 Photosynthetic organisms Distinction between light and dark reaction Light reaction conserve energy of light into chemical energy (ATP) Dark reaction involves the consumption of ATP for fixation of CO 2 Depending on electron donor: Oxygen-producing: oxygenic Non oxygen-producing: anoxigenic Oxygenic photosynthesis 2e - 2H + Water serves as electron donor

15 Anoxygenic photosynthesis Hydrogen sulfide (or sulfur) serves as electron donor

16

17 Structure of a chloroplast Arrangement of light-harvesting Chlorophylls versus reaction center

18 Phylogenetic affiliation of phototrophic bacteria Oxigenic photosynthetic bacteria Cyanobacteria - Only bacteria which gain energy by oxigenic photosynthesis (formation of O 2 ) - Large and heterogeneous group of bacteria - Major primary producer in many habitats (aquatic and terrestrial habitats, symbiotic with Eukaryotes) - Ancestor of chloroplasts (Endosymbiosis theory) - Many can fix N 2 (Heterocyst or temporal seperation) - Occur as unicellular and filamentous forms

19 Absorption spectrum of cyanobacterium

20

21

22 Phototrophic purple bacteria - gain energy by anoxic photosynthesis (no formation of O 2 ) - contain bacteriochlorophyll and a variety of carotonoids - electron carriers are arranged in specific intracytoplasmatic photosynthetic membranes (increase of pigment density) - electron carriers are in the order of more electronegative to higher electropositive reduction potential Intracytoplasmic membranes in anoxygenic phototrophs

23 Phototrophic purple sulfur bacteria Purple sulfur bacteria e.g. Chromatium okenii Gamma proteobacteria Habitat: stratified lakes Electron donor: reduced sulfur compounds H 2 S, S 0, S 2 O 3 2- Sulfur can be stores in globules inside the cell Mixotrophic: CO 2 fixation (Calvin Cyclus), organic acids Phototrophic purple sulfur bacteria Purple sulfur bacteria Ectothiorhodospira sp., Halorhodospira sp. Gamma proteobacteria Habitats: sola lakes, marine environments halophilic = salt-loving Produce sulfur outside the cell Electron donor: reduced sulfur compounds H 2 S, S 0, S 2 O 3 2- Mixotrophic: CO 2 fixation (Calvin Cyclus), organic compounds

24 Phototrophic purple nonsulfur bacteria e.g. Rhodospirillum rubrum Alpha or beta proteobacteria Electron donor: hydrogen, sulfur, organic substrates (no storage of sulfur) Some can grow in the dark by fermentation, anaerobic respiration, or aerobic respiration Can also fix N 2 Mixotrophic: CO 2 fixation (Calvin Cyclus), organic compounds

25 Vesicular photosymthetic membranes Rhodobacter capsulatus Anoxygenic photosynthesis in purple bacteria Only 1 light reaction!

26 Arrangement of protein complex in phototrophic purple bacteria Green sulfur bacteria z.b. Chlorobium limicola Phylum green sulfur bacteria All isolates are obligate anaerobic and phototrophic contain chlorosoms (location of photosynthesis) electron donors: reduced sulfur compounds H 2 S, S 0, S 2 O 3 2- produced sulfur resides outside the cells Mixotrophic: CO 2 fixation (reverse citric acid cycle) organic compounds (photoheterotrophy)

27 Chlorosomes in green sulfur bacteria Chlorophyl-rich bodies, connected to cytoplasma membrane Model of chlorosome structure (green sulfur and green nonsulfur bacteria)

28 Green Sulfur bacteria Consortia "Chlorochromatium aggregatum" Symbiosis between Phototrophic green sulfur bacterium (epibiont) and a chemotrophic beta proteobacterium (by J. Overmann, mikrobiologischer-garten.de) Green nonsulfur bacteria ( Chloroflexi ) e.g. Chloroflexus aurantiacus All isolated members are thermophilic Formation of thick microbial mats in hot habitats. Electron donor: H 2 and organic compounds CO 2 fixation via 3-hydroxypropionate cycle Heterotrophic with organic acids In the dark, chemoorganotrophic by aerobic respiration

29 Green nonsulfur bacteria ( Chloroflexi ) Chloroflexus aurantiacus Heliobacteria z.b. Heliobacillus chlorum contain bacteriochlorophyl g! Strict anaerobic, N 2 -fixation! Anoxygenic phototrophic Gram-positive bacteria! Spore-forming Electron donor: H 2 and pyruvate (fermentation) Mixotrophic: CO 2 fixation (reverse citric acid cycle) organic compounds

30 Bundles of cells of Heliophilum fasciatum Spore formation Heliobacterium gestii

31 Physiological properties of phototrophic Bacteria Cyanobacteria Purplebacteria Green Sulfur bacteria Green non- Sulfur bacteria Heliobacter PS-type PS I and II PS II PS I PS II PS I Pigments Chl a (b) BChl a, b BChl a, c, (d, e) BChl a, c BCHl g Autotrophy + (+) + +/- -(?) Physiology Photoauto- Lithoauto- Photoauto- Lithoauto- Organohetero- Photoauto- Lithoauto- Photoauto- Lithoauto- Organohetero- Photoauto- Organohetero- CO 2 fixation Calvin-cycle Calvin-cycle Reductive TCA 3OH-Propionate None? Electron donor H 2 O H 2 S/ organic H 2 S H 2 / organic Organic Adapted from Fuchs and Schlegel Allgemeine Mikrobiologie Comparison of electron flow

Microbiology Helmut Pospiech.

Microbiology Helmut Pospiech. Microbiology 28.03.2018 Helmut Pospiech http://www.thescientificcartoonist.com/?p=107 Energy metabolism of Microorganisms Fermentation ADP +Pi Motility ATP Active transport (nutrient uptake) Lactic Acid

More information

chapter five: microbial metabolism

chapter five: microbial metabolism chapter five: microbial metabolism Revised 9/22/2016 oxidation-reduction redox reaction: coupled reactions e- donor oxidized donor Ox Red ADP + P i ATP Ox Red reduced A chemical A redox reactions aerobic

More information

Photosynthesis Harness light energy and use it to move electrons through an electron transport chain. Electron carriers are arranged, in order of

Photosynthesis Harness light energy and use it to move electrons through an electron transport chain. Electron carriers are arranged, in order of Photosynthesis Harness light energy and use it to move electrons through an electron transport chain. Electron carriers are arranged, in order of increasing electro positivity within a membrane. Through

More information

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism BBS2710 Microbial Physiology Module 5 - Energy and Metabolism Topics Energy production - an overview Fermentation Aerobic respiration Alternative approaches to respiration Photosynthesis Summary Introduction

More information

Alternative Pathways for CO 2 Assimilation in Photosynthetic Microorganisms

Alternative Pathways for CO 2 Assimilation in Photosynthetic Microorganisms Alternative Pathways for CO 2 Assimilation in Photosynthetic Microorganisms Robert E. Blankenship Washington University in St. Louis Departments of Biology and Chemistry Biological Capture & Utilization

More information

A word of caution about a little knowing Lab organisms limit the view of the world of microbiology

A word of caution about a little knowing Lab organisms limit the view of the world of microbiology Diversity The world of living things (Figure from Madigan et al. 2002) Microbes in all three domains Two of the domains are exclusively prokaryotic and microbial The third contains both unicellular and

More information

BIOLOGY 345 Midterm II - 15 November 2010 PART I. Multiple choice questions (4 points each, 32 points total).

BIOLOGY 345 Midterm II - 15 November 2010 PART I. Multiple choice questions (4 points each, 32 points total). BIOLOGY 345 Name Midterm II - 15 November 2010 PART I. Multiple choice questions (4 points each, 32 points total). 1. Considering the multitude of potential metabolic processes available to Bacteria and

More information

Name Date Class. Photosynthesis and Respiration

Name Date Class. Photosynthesis and Respiration Concept Mapping Photosynthesis and Respiration Complete the Venn diagram about photosynthesis and respiration. These terms may be used more than once: absorbs, Calvin cycle, chlorophyll, CO 2, H 2 O, Krebs

More information

Physiological diversity

Physiological diversity Physiological diversity Principles Energetic considerations Biochemical pathways Organisms Ecological relevance Physiological diversity Sulfate- and nitrate reducers (5. Nov.) Methanogens and homoacetogens

More information

OBJECTIVES OUTCOMES FORMATIVE ASSESSMENT SUMMATIVE ASSESSMENT

OBJECTIVES OUTCOMES FORMATIVE ASSESSMENT SUMMATIVE ASSESSMENT GOAL: A great diversity of metabolic and biochemical are seen among the Bacteria, Archaea, and Eukarya yet some common metabolic pathways exist across all domains. OBJECTIVES OUTCOMES FORMATIVE ASSESSMENT

More information

Lecture 2 Carbon and Energy Transformations

Lecture 2 Carbon and Energy Transformations 1.018/7.30J Fall 2003 Fundamentals of Ecology Lecture 2 Carbon and Energy Transformations READINGS FOR NEXT LECTURE: Krebs Chapter 25: Ecosystem Metabolism I: Primary Productivity Luria. 1975. Overview

More information

Microbial Biogeochemistry

Microbial Biogeochemistry Microbial Biogeochemistry Chemical reactions occurring in the environment mediated by microbial communities Outline Metabolic Classifications. Winogradsky columns, Microenvironments. Redox Reactions. Microbes

More information

Anaerobic processes. Annual production of cells a -1 Mean generation time in sediments

Anaerobic processes. Annual production of cells a -1 Mean generation time in sediments Anaerobic processes Motivation Where are they? Number of prokaryotes on earth 4-6 * 10 30 Cells in open ocean 1.2 * 10 29 in marine sediments 3.5 * 10 30 in soil 2.6 * 10 29 sub-terrestrial 0.5 2.5 * 10

More information

The Tree of Life. Metabolic Pathways. Calculation Of Energy Yields

The Tree of Life. Metabolic Pathways. Calculation Of Energy Yields The Tree of Life Metabolic Pathways Calculation Of Energy Yields OCN 401 - Biogeochemical Systems 8/27/09 Earth s History (continental crust) 170 Oldest oceanic crust Ga = billions of years ago The Traditional

More information

MICROBIAL METABOLISM: AUTOTROPHS

MICROBIAL METABOLISM: AUTOTROPHS MICROBIAL METABOLISM: AUTOTROPHS Overview of Autotrophy Imagine being hungry, walking outside, taking off your shirt, lying in the sun for a few hours, becoming totally full (fat even!), and being done

More information

Review Questions - Lecture 5: Metabolism, Part 1

Review Questions - Lecture 5: Metabolism, Part 1 Review Questions - Lecture 5: Metabolism, Part 1 Questions: 1. What is metabolism? 2. What does it mean to say that a cell has emergent properties? 3. Define metabolic pathway. 4. What is the difference

More information

Lecture 10. Proton Gradient-dependent ATP Synthesis. Oxidative. Photo-Phosphorylation

Lecture 10. Proton Gradient-dependent ATP Synthesis. Oxidative. Photo-Phosphorylation Lecture 10 Proton Gradient-dependent ATP Synthesis Oxidative Phosphorylation Photo-Phosphorylation Model of the Electron Transport Chain (ETC) Glycerol-3-P Shuttle Outer Mitochondrial Membrane G3P DHAP

More information

MINIREVIEW. Ecological Aspects of the Distribution of Different Autotrophic CO 2 Fixation Pathways. Ivan A. Berg*

MINIREVIEW. Ecological Aspects of the Distribution of Different Autotrophic CO 2 Fixation Pathways. Ivan A. Berg* APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 2011, p. 1925 1936 Vol. 77, No. 6 0099-2240/11/$12.00 doi:10.1128/aem.02473-10 Copyright 2011, American Society for Microbiology. All Rights Reserved. MINIREVIEW

More information

Physiological diversity. Recommended text books. Physiological diversity. Sulfate and nitrate reducers. ! Principles. ! Energetic considerations

Physiological diversity. Recommended text books. Physiological diversity. Sulfate and nitrate reducers. ! Principles. ! Energetic considerations Physiological diversity Recommended text books! Principles! Energetic considerations! Biochemical pathways! Organisms! Ecological relevance Physiological diversity! Sulfate- and nitrate reducers (11. Nov.)!

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

Red Layer Microbial Observatory Biology In-Lab Workshop Photosynthetic Microbes from Local Rivers & Beyond

Red Layer Microbial Observatory Biology In-Lab Workshop Photosynthetic Microbes from Local Rivers & Beyond Red Layer Microbial Observatory Biology 507 - In-Lab Workshop Photosynthetic Microbes from Local Rivers & Beyond Schedule of Activities Session One 1. Microbial Diversity & the RLMO Program 2. Photosynthetic

More information

Chapter 10: PHOTOSYNTHESIS

Chapter 10: PHOTOSYNTHESIS Chapter 10: PHOTOSYNTHESIS 1. Overview of Photosynthesis 2. Light Absorption 3. The Light Reactions 4. The Calvin Cycle 1. Overview of Photosynthesis Chapter Reading pp. 185-190, 206-207 What is Photosynthesis?

More information

Be sure to understand:

Be sure to understand: Learning Targets & Focus Questions for Unit 6: Bioenergetics Chapter 8: Thermodynamics Chapter 9: Cell Resp Focus Q Ch. 10: Photosynthesis Chapter 8 (141-150) 1. I can explain how living systems adhere

More information

Metabolism Review. A. Top 10

Metabolism Review. A. Top 10 A. Top 10 Metabolism Review 1. Energy production through chemiosmosis a. pumping of H+ ions onto one side of a membrane through protein pumps in an Electron Transport Chain (ETC) b. flow of H+ ions across

More information

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body METABOLISM What is metabolism? METABOLISM Total of all chemical reactions occurring within the body Categories of metabolic reactions Catabolic reactions Degradation pathways Anabolic reactions Synthesis

More information

Chapter 5. Table of Contents. Section 1 Energy and Living Things. Section 2 Photosynthesis. Section 3 Cellular Respiration

Chapter 5. Table of Contents. Section 1 Energy and Living Things. Section 2 Photosynthesis. Section 3 Cellular Respiration Photosynthesis and Cellular Respiration Table of Contents Section 1 Energy and Living Things Section 2 Photosynthesis Section 3 Cellular Respiration Section 1 Energy and Living Things Objectives Analyze

More information

Chapter 8.1. How Organisms Obtain Energy

Chapter 8.1. How Organisms Obtain Energy Chapter 8.1 How Organisms Obtain Energy Main Idea All living organisms use energy to carry out all biological processes. Energy Energy is the ability to do work. Quick Review: Heterotrophs are organisms

More information

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration Ch. 4 Cells and Energy Photosynthesis and Cellular Respiration 1 2 4.1 Chemical Energy and ATP Living organisms need energy Most comes indirectly from sun! Some change sunlight into organic compounds Others

More information

Harvesting energy: photosynthesis & cellular respiration part 1

Harvesting energy: photosynthesis & cellular respiration part 1 Harvesting energy: photosynthesis & cellular respiration part 1 Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular

More information

Photosynthesis and Cellular Respiration Unit

Photosynthesis and Cellular Respiration Unit Photosynthesis and Cellular Respiration Unit All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs: organisms that can make their own

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) 3. Plant structures: organ, tissue, cells, sub-cellular organelle,

More information

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation Cellular Energetics Photosynthesis, Cellular Respiration and Fermentation TEKS B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized parts that

More information

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration AP Biology - Problem Drill 08: Photosynthesis No. 1 of 10 #01 1. What term does the statement below refer to? In a photosynthesis process, an electron is excited from P700 and delivered to its receptor,

More information

1 Which of the following organisms do NOT carry on photosynthesis?

1 Which of the following organisms do NOT carry on photosynthesis? 1 Which of the following organisms do NOT carry on photosynthesis? plants algae some bacteria 2 3 animals The correct description of the relationship between photosynthesis and the living world is. herbivores,

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Photosynthesis occurs in plants, algae, certain other

More information

Unit 1C Practice Exam (v.2: KEY)

Unit 1C Practice Exam (v.2: KEY) Unit 1C Practice Exam (v.2: KEY) 1. Which of the following statements concerning photosynthetic pigments (chlorophylls a and b, carotenes, and xanthophylls) is correct? (PT1-12) a. The R f values obtained

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

1. Which of the following species have strains that are capable of undergoing the process of conjugation?

1. Which of the following species have strains that are capable of undergoing the process of conjugation? Biology 3340 Summer 2005 Second Examination Version A Name Be sure to put your name on the mark-sense sheet as well Directions: Write your name in the correct space on the mark-sense sheet and the exam

More information

Respiration and Photosynthesis

Respiration and Photosynthesis Respiration and Photosynthesis Cellular Respiration Glycolysis The Krebs Cycle Electron Transport Chains Anabolic Pathway Photosynthesis Calvin Cycle Flow of Energy Energy is needed to support all forms

More information

Where does most of our society s energy come from (think of fossil fuels), how does that energy become fixed for human use?

Where does most of our society s energy come from (think of fossil fuels), how does that energy become fixed for human use? Where does most of our society s energy come from (think of fossil fuels), how does that energy become fixed for human use? The Photosynthesis equation 6 CO 2 + 12 H 2 O + Light energy C 6 H 12 O 6 +

More information

SC/BIOL Photosynthesis (2006): Syllabus page 1 of 5

SC/BIOL Photosynthesis (2006): Syllabus page 1 of 5 SC/BIOL 4160 3.0 Photosynthesis (2006): Syllabus page 1 of 5 LECTURES I. GEOLOGICAL HISTORY OF PHOTOSYNTHESIS A. Macrofossil Evidence 1. Stromatolites structural and functional stratification of oxygenic

More information

THE BASICS OF PHOTOSYNTHESIS

THE BASICS OF PHOTOSYNTHESIS THE BASICS OF PHOTOSYNTHESIS Almost all plants are photosynthetic autotrophs, as are some bacteria and protists Autotrophs generate their own organic matter through photosynthesis Sunlight energy is transformed

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) (Autotrophs: photo-autotrophs, chemo-autotrophs, electro-autotrophs,

More information

Oxidative Phosphorylation versus. Photophosphorylation

Oxidative Phosphorylation versus. Photophosphorylation Photosynthesis Oxidative Phosphorylation versus Photophosphorylation Oxidative Phosphorylation Electrons from the reduced cofactors NADH and FADH 2 are passed to proteins in the respiratory chain. In eukaryotes,

More information

Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Overview. Photosynthesis

Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Photosynthesis Photosynthesis Overview Chapter 8 Energy for all life on Earth ultimately comes from photosynthesis. 6CO2 + 12H2O C6H12O6 + 6H2O + 6O2 Oxygenic photosynthesis is carried out by: cyanobacteria,

More information

Lecture Series 13 Photosynthesis: Energy from the Sun

Lecture Series 13 Photosynthesis: Energy from the Sun Lecture Series 13 Photosynthesis: Energy from the Sun Photosynthesis: Energy from the Sun A. Identifying Photosynthetic Reactants and Products B. The Two Pathways of Photosynthesis: An Overview C. Properties

More information

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg UNIT 2: Metabolic Processes Chapter 5: Photosynthesis: The Energy of Life pg. 210-240 5.2: Pathways of Photosynthesis pg. 220-228 Light Dependent Reactions Photosystem II and I are the two light capturing

More information

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select.

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select. Section 1: How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration Click on a lesson name to select. Section 1 How Organisms Obtain Energy Transformation of Energy Energy

More information

Chapter 5. The Chloroplast. 5.1 Matter and Energy Pathways in Living Systems. Photosynthesis & Cellular Respiration

Chapter 5. The Chloroplast. 5.1 Matter and Energy Pathways in Living Systems. Photosynthesis & Cellular Respiration Chapter 5 Photosynthesis & Cellular Respiration 5.1 Matter and Energy Pathways in Living Systems Both cellular respiration and photosynthesis are examples of biological processes that involve matter &

More information

Chapter 8 PHOTOSYNTHESIS Chapter # Chapter Title PowerPoint Image Slideshow

Chapter 8 PHOTOSYNTHESIS Chapter # Chapter Title PowerPoint Image Slideshow COLLEGE BIOLOGY PHYSICS Chapter 8 PHOTOSYNTHESIS Chapter # Chapter Title PowerPoint Image Slideshow Figure 8.0 Photosynthesis Figure 8.1 Earth s distribution of photosynthesis as seen via chlorophyll a

More information

Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe.

Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe. Section 1 How Organisms Obtain Energy Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe. Section 1 How Organisms

More information

Biomass Photosynthesis

Biomass Photosynthesis Photosynthesis Page 4.1 4.1 PHOTOSYNTHESIS 4.1.1 Chemotrophs and Autotrophs In the preceding sections we have studied the concept of metabolism and learnt that all living organisms require an external

More information

8 Photosynthesis CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

8 Photosynthesis CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 8 Photosynthesis Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Process That Feeds the Biosphere Photosynthesis

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AP Exam Chapters 9 and 10; Photosynthesis and Respiration Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Carbon dioxide (CO2) is released

More information

Outline - Photosynthesis

Outline - Photosynthesis Outlin Photosynthesis Photosynthesis 1. An Overview of Photosynthesis & Respiration 2. Autotrophs and producers 3. Electromagnetic Spectrum & light energy 4. Chloroplasts: Structure and Function 5. Photosynthetic

More information

Center for Academic Services & Advising

Center for Academic Services & Advising March 2, 2017 Biology I CSI Worksheet 6 1. List the four components of cellular respiration, where it occurs in the cell, and list major products consumed and produced in each step. i. Hint: Think about

More information

Photosynthesis. Chapter 8

Photosynthesis. Chapter 8 Photosynthesis Chapter 8 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by

More information

Prokaryotes Vs. Eukaryotes

Prokaryotes Vs. Eukaryotes The Microbial World Prokaryotes Vs. Eukaryotes Mircrobes of the Ocean Primary Producers Are the organisms that produce bio-mass from inorganic compounds (autotrophs). -Photosynthetic autotrophs Phytoplankton

More information

CHAPTER 13 : PHOTOSYNTHESIS IN HIGHER PLANTS K C MEENA PGT BIOLOGY KV VIKASPURI II SHIFT

CHAPTER 13 : PHOTOSYNTHESIS IN HIGHER PLANTS K C MEENA PGT BIOLOGY KV VIKASPURI II SHIFT CHAPTER 13 : PHOTOSYNTHESIS IN HIGHER PLANTS K C MEENA PGT BIOLOGY KV VIKASPURI II SHIFT Photosynthesis is a Physic o chemical process, uses light energy to synthesis organic compounds (sugar). Importance

More information

Overview of Photosynthesis

Overview of Photosynthesis Overview of Photosynthesis Most autotrophs (organisms that create their own food), make organic compounds (sugars/glucose) using a process called photosynthesis. This process occurs only in plants. Overview

More information

Photosynthesis. Chapter 10. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece

Photosynthesis. Chapter 10. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece Chapter 10 Photosynthesis PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero PREVIEW The Process That Feeds the Biosphere Photosynthesis Is the process

More information

AP Bio-Ms.Bell Unit#3 Cellular Energies Name

AP Bio-Ms.Bell Unit#3 Cellular Energies Name AP Bio-Ms.Bell Unit#3 Cellular Energies Name 1. Base your answer to the following question on the image below. 7. Base your answer to the following question on Which of the following choices correctly

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Energy in the World of Life

Energy in the World of Life Cellular Energy Energy in the World of Life Sustaining life s organization requires ongoing energy inputs Assembly of the molecules of life starts with energy input into living cells Energy Conversion

More information

Ecological aspects of distribution of different autotrophic CO 2 fixation

Ecological aspects of distribution of different autotrophic CO 2 fixation AEM Accepts, published online ahead of print on 7 January 2011 Appl. Environ. Microbiol. doi:10.1128/aem.02473-10 Copyright 2011, American Society for Microbiology and/or the Listed Authors/Institutions.

More information

Energy for Life 12/11/14. Light Absorption in Chloroplasts

Energy for Life 12/11/14. Light Absorption in Chloroplasts Energy for Life Biochemical pathways A series of reactions where the products of one reaction is used in the next reaction Light Absorption in Chloroplasts Chloroplasts Two membranes Grana- layered stacks

More information

CARBON FIXATION IN NITRIFIERS

CARBON FIXATION IN NITRIFIERS CARBON FIXATION IN NITRIFIERS Logan Hodgskiss, MSc PhD student Division of Archaea Biology and Ecogenomics Department of Ecogenomics and Systems Biology University of Vienna, Austria October 4 th, 2017

More information

The Prokaryotic World

The Prokaryotic World The Prokaryotic World A. An overview of prokaryotic life There is no doubt that prokaryotes are everywhere. By everywhere, I mean living in every geographic region, in extremes of environmental conditions,

More information

Change to Office Hours this Friday and next Monday. Tomorrow (Abel): 8:30 10:30 am. Monday (Katrina): Cancelled (05/04)

Change to Office Hours this Friday and next Monday. Tomorrow (Abel): 8:30 10:30 am. Monday (Katrina): Cancelled (05/04) Change to Office Hours this Friday and next Monday Tomorrow (Abel): 8:30 10:30 am Monday (Katrina): Cancelled (05/04) Lecture 10 Proton Gradient-dependent ATP Synthesis Oxidative Phosphorylation Photo-Phosphorylation

More information

Bio102 Problems Photosynthesis

Bio102 Problems Photosynthesis Bio102 Problems Photosynthesis 1. Why is it advantageous for chloroplasts to have a very large (in surface area) thylakoid membrane contained within the inner membrane? A. This limits the amount of stroma

More information

Photosynthesis 1. Light Reactions and Photosynthetic Phosphorylation. Lecture 31. Key Concepts. Overview of photosynthesis and carbon fixation

Photosynthesis 1. Light Reactions and Photosynthetic Phosphorylation. Lecture 31. Key Concepts. Overview of photosynthesis and carbon fixation Photosynthesis 1 Light Reactions and Photosynthetic Phosphorylation Lecture 31 Key Concepts Overview of photosynthesis and carbon fixation Chlorophyll molecules convert light energy to redox energy The

More information

BIOLOGY. Photosynthesis CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. Photosynthesis CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 10 Photosynthesis Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick The Process That Feeds the Biosphere Photosynthesis

More information

MICROBIAL GROUPS CE 421/521

MICROBIAL GROUPS CE 421/521 MICROBIAL GROUPS CE 421/521 Chapter 10 in Vaccari et.al. www.ibuf.coartuja.csic.es www.environmentaleverage.com www.astrosurf.com www.lbl.gov www.library.thinkquest.org www.ecosys.uni-erlangen.de erlangen.de

More information

AHL Topic 8 IB Biology Miss Werba

AHL Topic 8 IB Biology Miss Werba CELL RESPIRATION & PHOTOSYNTHESIS AHL Topic 8 IB Biology Miss Werba TOPIC 8 CELL RESPIRATION & PHOTOSYNTHESIS 8.1 CELL RESPIRATION 1. STATE that oxidation involves the loss of electrons from an element,

More information

Photosynthesis. I. Photosynthesis overview A. Purpose B. Location. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B.

Photosynthesis. I. Photosynthesis overview A. Purpose B. Location. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B. Photosynthesis I. Photosynthesis overview A. Purpose B. Location II. III. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B. Types IV. Light reactions A. Photosystems B. Photophosphorylation

More information

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions Name: KEY CP Biology Unit 5 Cell Energy Study Guide Vocabulary to know: ATP ADP Aerobic Anaerobic ATP Synthases Cellular Respiration Chlorophyll Chloroplast Electron Carriers Electron Transport Chain Fermentation

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP:

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP: Understanding How Living Things Obtain and Use Energy. Cell Energy: The Big Picture Most Autotrophs produce food (sugar) using light energy during Photosynthesis. Then, both Autotrophs and Heterotroph

More information

THIS IS. In photosynthesis A) Carbon gets oxidized B) Carbon gets reduced C) Carbon gets metabolized D) Carbon gets digested

THIS IS. In photosynthesis A) Carbon gets oxidized B) Carbon gets reduced C) Carbon gets metabolized D) Carbon gets digested THIS IS With Your Host... table Column A Column B Column C Column D Column E Column F 100 100 100 100 100 100 200 200 200 200 200 200 300 300 300 300 300 300 400 400 400 400 400 400 In photosynthesis A)

More information

Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Photosynthesis and Biosynthesis

Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Photosynthesis and Biosynthesis Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Photosynthesis and Biosynthesis As described earlier, chemoheterotrophs obtain the energy they need for growth from the catabolism

More information

Chapter 8 Photosynthesis

Chapter 8 Photosynthesis Chapter 8 Photosynthesis 8-1 NRG and Living Things n Where does the NRG we use come from. n Directly or indirectly from the sun n Plants get their NRG directly from the sun n How? n Plants use photosynthesis

More information

CHLOROPLASTS, CALVIN CYCLE, PHOTOSYNTHETIC ELECTRON TRANSFER AND PHOTOPHOSPHORYLATION (based on Chapter 19 and 20 of Stryer )

CHLOROPLASTS, CALVIN CYCLE, PHOTOSYNTHETIC ELECTRON TRANSFER AND PHOTOPHOSPHORYLATION (based on Chapter 19 and 20 of Stryer ) CHLOROPLASTS, CALVIN CYCLE, PHOTOSYNTHETIC ELECTRON TRANSFER AND PHOTOPHOSPHORYLATION (based on Chapter 19 and 20 of Stryer ) Photosynthesis Photosynthesis Light driven transfer of electron across a membrane

More information

Chapter 8: Cellular Energy

Chapter 8: Cellular Energy Chapter 8: Cellular Energy Section 1: How Organisms Obtain Energy Transformation of Energy All cellular activities require Energy!! ( The ability to do work). The study of flow and the transformation of

More information

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per Cell Energy Notes Name Per THE ENDOSYMBIOTIC THEORY The Endosymbiotic theory is the idea that a long time ago, engulfed other prokaryotic cells by. This resulted in the first First proposed by Explains

More information

Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules).

Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules). Photosynthesis Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules). Organisms obtain organic compounds by one

More information

Chapter 10. Photosynthesis

Chapter 10. Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost

More information

A + B = C C + D = E E + F = A

A + B = C C + D = E E + F = A Photosynthesis - Plants obtain energy directly from the sun - Organisms that do this are autotrophs (make their own food from inorganic forms) - Photosynthesis is a series of chemical reactions where the

More information

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source

More information

Sunday, August 25, 2013 PHOTOSYNTHESIS

Sunday, August 25, 2013 PHOTOSYNTHESIS PHOTOSYNTHESIS PREFACE The sun is the ultimate source of energy. The sun powers nearly all life forms. Photosynthesis converts solar energy into chemical energy. Photoautotrophs use solar energy to synthesize

More information

Respiration and Photosynthesis. The Ying and Yang of Life.

Respiration and Photosynthesis. The Ying and Yang of Life. Respiration and Photosynthesis The Ying and Yang of Life. Why? You ve always been told that you must eat and breathe. Why? In this unit we will attempt to answer those questions. 1 st Law of Thermodynamics

More information

Energy Exchanges Exam: What to Study

Energy Exchanges Exam: What to Study Energy Exchanges Exam: What to Study Here s what you will need to make sure you understand in order to prepare for our exam: Free Energy Conceptual understanding of free energy as available energy in a

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 10 Photosynthesis Lectures by Erin

More information

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain a review Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red-660 nm are most important).

More information

Ch. 6 & 7 Photosynthesis & Cellular Respiration

Ch. 6 & 7 Photosynthesis & Cellular Respiration Ch. 6 & 7 Photosynthesis & Cellular Respiration 6.1 Energy Reactions The Cycle of Energy Sun CO 2 H 2 O Photosynthesis (energy stored) Cellular Respiration (energy released) O 2 Glucose Obtaining Energy

More information

ET Life #17. Today: Reminders: Energy of Life. Paper Proposal Due Friday First Mid-term Next Monday

ET Life #17. Today: Reminders: Energy of Life. Paper Proposal Due Friday First Mid-term Next Monday ET Life #17 Today: Energy of Life Reminders: Paper Proposal Due Friday First Mid-term Next Monday Origin of Life: Summary 1. Early Organic Molecules 2. Complex organics developed (mineral templates?).

More information

Energy and the Cell. All living things need energy to survive and do work.

Energy and the Cell. All living things need energy to survive and do work. Energy and the Cell EQ: How do cells acquire energy? EQ: Why is the relationship between plants and animals essential to life? All living things need energy to survive and do work. Organisms who depend

More information

PHOTOSYNTHESIS. Light Reaction Calvin Cycle

PHOTOSYNTHESIS. Light Reaction Calvin Cycle PHOTOSYNTHESIS Light Reaction Calvin Cycle Photosynthesis Purpose: use energy from light to convert inorganic compounds into organic fuels that have stored potential energy in their carbon bonds Carbon

More information

Photosynthesis in Higher Plants

Photosynthesis in Higher Plants Photosynthesis in Higher Plants Very Short Answers Questions: 1. Name the processes which take place in the grana and stroma regions of chloroplasts? A: Grana Light reactions. Trapping light energy, synthesizing

More information

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars 4.2 8.2 Overview Photosynthesis: of Photosynthesis An Overview Photosynthesis process by which plants make food using energy from the sun Plants are autotrophs that make their own source of chemical energy.

More information

Photosynthesis. Chapter 10. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece

Photosynthesis. Chapter 10. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information