OBJECTIVES OUTCOMES FORMATIVE ASSESSMENT SUMMATIVE ASSESSMENT

Size: px
Start display at page:

Download "OBJECTIVES OUTCOMES FORMATIVE ASSESSMENT SUMMATIVE ASSESSMENT"

Transcription

1 GOAL: A great diversity of metabolic and biochemical are seen among the Bacteria, Archaea, and Eukarya yet some common metabolic pathways exist across all domains. OBJECTIVES OUTCOMES FORMATIVE ASSESSMENT SUMMATIVE ASSESSMENT Students will be able to identify the sources of energy used by different prokaryotes (i.e. chemotrophs vs. phototrophs) Brainstorm: what do we remember about how organisms acquire carbon and energy? PLANT? ANIMAL? FUNGI? Where do plants/animals acquire carbon for synthesis of organic compounds? energy for metabolic? (A) (B) (C) (D) photolithoautotrophs photoorganoheterotrophs chemolithoautotrophs chemoorganoheterotrophs The cyanobacteria (and their close relatives the chloroplasts) carry out oxygenic photosynthesis. Thiomicrospira crunogena were discovered in the hydrothermal vents where they oxidize iron at high temperatures and pressures and use the energy from that process to produce organic compounds. Chloroflexus aurantiacus, a green non-sulfur bacterium, can absorb light energy for the production of ATP but must still obtain small organic molecules like acetate from the environment for anabolic. Describe the major nutritional types seen among the prokaryotes (i.e. chemoheterotrophs, chemoautotrophs, photoheterotrophs, photoautotrophs) Define auto/heterotroph Define photo/chemotroph Compare/contrast aerobic/anaerobic Compare/contrast anaerobic/fermentation 5. Organisms that use inorganic compounds like elemental iron, sulfur, or carbon dioxide as their reduced electron donor are referred to as (A) organotrophs (B) lithotrophs (C) autotrophs (D) heterotrophs Students will be able to identify the sources of carbon used by different prokaryotes (i.e. autotrophs vs. heterotrophs) Clicker questions: ID nutritional type of specific organisms based on descriptions of metabolism Post lecture questions on nutritional types using examples of specific organisms, particularly those that can change their nutritional type

2 Compare and contrast different respiratory in prokaryotes and eukaryotes the difference between aerobic and anaerobic respiration the difference between fermentation and anaerobic respiration describe how differences in the electron transport can lead to differences in net energy production Brainstorm: Generalized diagrams of respiratory process used to elicit discussion on differences/ similarities of respiration in various organisms. Identify components of anaerobic respiration Define electron transport chain Identify anabolic and catabolic Pair/share: given a final electron acceptor for one unusual microbe, speculate on oxidized respiratory product Quiz questions on respiration/fermentation 1. Which of the following is the best definition for fermentation? (A) a process where an energy source is oxidized and degraded with the use of oxygen as an exogenous electron acceptor (B) a process where an energy source is oxidized and degraded with the use of a molecule other than oxygen as an exogenous electron acceptor (C) a process where an energy source is oxidized and degraded with the use of oxygen as an engodenous electron acceptor (D) a process where an energy source is oxidized and degraded with the use of a molecule other than oxygen as an endogenous electron acceptor 2. The oxidase-negative bacteria Enterobacter aerogenes produces fewer ATP per NADH than the oxidase-positive Pseudomonas aeruginosa because (A) it has a shorter electron transport chain (B) it has a longer electron transport chain (C) it has a branched electron transport chain (D) it lacks an electron transport chain 3. Bradyrhizobium japonicum possesses the genes for nitrate reductase which allows it to use nitrate as a final electron acceptor. This process is best described as (A) assimilatory nitrate reduction involved with aerobic respiration (B) assimilatory nitrate reduction involved with anaerobic respiration (C) dissimilatory nitrate reduction involved with aerobic respiration (D) dissimilatory nitrate reduction involved with anaerobic respiration 4. When several electron acceptors are present in the environment, microorganisms will use these acceptors in succession starting with the electron acceptor with the most positive reduction potential, (A) nitrate (B) oxygen (C) carbon dioxide (D) sulfate 5. Several members of the Clostridium sp. are capable of performing a unique fermentation called the Strickland reaction which involves the fermentation of (A) polysaccharides (B) amino acids (C) fatty acids (D) glycerol 6. Heterolactic fermentation result in the formation of fermentation products which include (A) butanediol, only (B) lactic acid, only (C) ethyl alcohol, only (D) lactic and a mixture of other products

3 how electron transport chains function not only in catabolic like respiration but also in autotrophic Brainstorm: Generalized diagrams of autotrophic used to elicit discussion on differences/ similarities of autotrophy in various organisms. 1. The energy source which provides the electrons for this electron transport chain is (A) the ferrous ion, an exogenous electron donor (B) NADH, an exogenous electron donor (C) oxygen, an endogenous electron donor (D) the ferrous ion, an endogenous electron donor Compare and contrast different types of autotrophy seen in prokaryotes and eukaryotes differentiate between the chemoautotrophy and photoautotrophy with regard to the source of electrons used in each process. the role of oxygen in oxygenic photosynthesis and the difference between oxygenic and anoxygenic photosynthesis. differentiate between various types of carbon fixation. Compare/contrast light & dark reactions Define photosystem I/II Compare/contrast cyclic/noncyclic photophosphorylation Clicker questions: ID type of photosynthesis for specific organisms based on descriptions of metabolism, nutrients, light Quiz question on photosynthesis 2. The NADPH generated in this reaction is used (A) as a carbon source (B) as a source of protons for carbon fixation (C) as an energy source (D) as a cellular waste product 3. The electron transport chain shown here is involved in (A) chemolithoautotrophy (B) photolithoautotrophy (C) chemoorganoheterotrophy (D) photoorganoheterotrophy 1. Anoxygenic photosynthesizers differ from oxygenic photosynthesizers because anoxygenic photosynthesizers (A) always use both photosystems during photosynthesis (B) split water molecules to obtain the protons needed for carbon fixation (C) produce oxygen as a byproduct (D) are likely to use elemental hydrogen or H2S as a proton source 2. Unlike noncyclic photosynthesis, cyclic photosynthesis involves the production of (A) NADPH and oxygen (B) NADPH, oxygen, and ATP (C) oxygen and ATP (D) ATP, only 3. Rhodopsin-based phototrophy is different from chlorophyll-based phototrophy because in rhodopsin-based systems (A) the same molecule absorbs light energy and serves as an electron transport chain (B) the pigment used is bacteriochlorophyll instead of chlorophyll (C) the same molecule absorbs light energy and produces organic compounds (D) none of the above 4. All of the following are carbon fixation pathways found in bacteria EXCEPT (A) the Ljungdahl-Wood pathway (B) the Calvin-Benson cycle (C) the reductive TCA cycle (D) the Entner-Douderoff Pathway

4 Explain central metabolism Students will be able to explain the role of central metabolism and the difference between central metabolism and other metabolic Students will be able to discuss how central metabolism shows the evolutionary relationship between organisms in all three domains of life. Identify anabolic and catabolic pp. LEARNING ACTIVITY DISCUSSION: Evolutionary changes that have resulted in new metabolic pathways (i.e. how do all of the additional pathways that we have discussed collect to central metabolism) 1. All of the following are considered parts of central metabolism EXCEPT (A) C, D, and E (B) D only (C) E only (D) D and E (2) Sometimes the evolution of complex metabolic systems is accomplished by changes in only one or two enzymes. These changes create whole new metabolic process from preexisting ones. Explain how one of the following is believed to have evolved, noting the preexisting pathway it evolved from and the changes necessary to create the new pathway: a) TCA cycle (also known as the Kreb s or citric acid cycle) b) Calvin-Benson cycle Understand the role of central metabolism in anabolic as well as catabolic describe the relationships between central metabolism and both catabolic and biosynthetic pathways Questions asking students questions about how various metabolic connect to central metabolism 1. The chemical reaction shown here is best described as (A) deamination (B) transamination (C) decarboxylation (D) transcarboxylation 2. Assimilatory nitrate reduction is essential in many bacteria for (A) the production of amino acids (B) anaerobic respiration (C) chemolithotrophy (D) the production of fatty acids 3. Sometimes the reactions of central metabolism are so much more important for biosynthesis than for catabolism that special pathways exist to ensure that precursor molecules will always be available. These special pathways are called (A) anapleurotic (B) anabolic (C) anammoxisomic (D) endergonic Apply an overall understanding of prokaryotic metabolic to current research in the field. Boyd ES, Schut GJ, Adams MWW, Peters JW Hydrogen Metabolism and the Evolution of Biological Respiration. Microbe 9(9): According to the paper of Boyd, et al., membrane-bound hydrogenases likely formed complexes with proteins that translocated ions across membranes. The hydrogenase pathways are believed to be the ancestors of the modern (A) electron transport chains (B) Kreb s cycle (C) Calvin-Benson cycle

5 PRE-CLASS ASSIGMENT (D) Emden-Meyerhoff pathway Assign article as reading with guided questions Groups discuss guided questions before class discussion of article. Post discussion of article, back in groups to discuss how article demonstrate evolution of electron transport chains. 2. The Fe-Fe hydrogenases are found in a limited number of strict anaerobic bacteria and a few unicellular eukaryotes but not the archaea, while Ni-Fe hydrogenases are widely distributed in the archaeal and bacterial domains. For this reason, evolutionary biologists believe that (A) Fe-Fe hydrogenases evolved before the divergence of bacteria and (B) Ni-Fe hydrogenases evolved before the divergence of bacteria and (C) both hydrogenases evolved before the divergence of bacteria and (D) both hydrogenases evolved after the divergence of bacteria and 3. The reduction of microbial populations to a safe level as determined by public health standards is known as (A) antisepsis (B) disinfection (C) de-germing (D) sanitation Note: This is the metabolism section for a 300-level microbiology course to mainly to second semester, senior biology majors who have had 7 semesters of bio and 20 credits of chem. I have always tried to build of the knowledge about metabolism that I know was covered in General Biology and that has been reinforced in several other upper level classes. It has become apparent that not all students remember this information in quite the way I think they do and that it will be necessary to have them unpack this information in a way that they can effectively move on to a discussion of the far more complicated and diverse metabolism of microbes. Summative assessment questions shown here are from exams I rewrote this past semester. While many seemed to line up reasonably well with the learning objectives and outcomes, it quickly became apparent that I was missing any formative pieces. I now believe that effective formative assessments will be necessary to get students of effectively review the information they already know about metabolism

chapter five: microbial metabolism

chapter five: microbial metabolism chapter five: microbial metabolism Revised 9/22/2016 oxidation-reduction redox reaction: coupled reactions e- donor oxidized donor Ox Red ADP + P i ATP Ox Red reduced A chemical A redox reactions aerobic

More information

Name Date Class. Photosynthesis and Respiration

Name Date Class. Photosynthesis and Respiration Concept Mapping Photosynthesis and Respiration Complete the Venn diagram about photosynthesis and respiration. These terms may be used more than once: absorbs, Calvin cycle, chlorophyll, CO 2, H 2 O, Krebs

More information

Photosynthesis Harness light energy and use it to move electrons through an electron transport chain. Electron carriers are arranged, in order of

Photosynthesis Harness light energy and use it to move electrons through an electron transport chain. Electron carriers are arranged, in order of Photosynthesis Harness light energy and use it to move electrons through an electron transport chain. Electron carriers are arranged, in order of increasing electro positivity within a membrane. Through

More information

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism BBS2710 Microbial Physiology Module 5 - Energy and Metabolism Topics Energy production - an overview Fermentation Aerobic respiration Alternative approaches to respiration Photosynthesis Summary Introduction

More information

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body METABOLISM What is metabolism? METABOLISM Total of all chemical reactions occurring within the body Categories of metabolic reactions Catabolic reactions Degradation pathways Anabolic reactions Synthesis

More information

Microbial Biogeochemistry

Microbial Biogeochemistry Microbial Biogeochemistry Chemical reactions occurring in the environment mediated by microbial communities Outline Metabolic Classifications. Winogradsky columns, Microenvironments. Redox Reactions. Microbes

More information

Be sure to understand:

Be sure to understand: Learning Targets & Focus Questions for Unit 6: Bioenergetics Chapter 8: Thermodynamics Chapter 9: Cell Resp Focus Q Ch. 10: Photosynthesis Chapter 8 (141-150) 1. I can explain how living systems adhere

More information

Energy Exchanges Exam: What to Study

Energy Exchanges Exam: What to Study Energy Exchanges Exam: What to Study Here s what you will need to make sure you understand in order to prepare for our exam: Free Energy Conceptual understanding of free energy as available energy in a

More information

Cellular Energetics Review

Cellular Energetics Review Cellular Energetics Review 1. What two molecules are formed when a phosphate is removed from ATP? 2. Describe how photosynthesis and cellular respiration are reverse processes. 3. What is the function

More information

Lecture 2 Carbon and Energy Transformations

Lecture 2 Carbon and Energy Transformations 1.018/7.30J Fall 2003 Fundamentals of Ecology Lecture 2 Carbon and Energy Transformations READINGS FOR NEXT LECTURE: Krebs Chapter 25: Ecosystem Metabolism I: Primary Productivity Luria. 1975. Overview

More information

Energy for Life 12/11/14. Light Absorption in Chloroplasts

Energy for Life 12/11/14. Light Absorption in Chloroplasts Energy for Life Biochemical pathways A series of reactions where the products of one reaction is used in the next reaction Light Absorption in Chloroplasts Chloroplasts Two membranes Grana- layered stacks

More information

Energy in the World of Life

Energy in the World of Life Cellular Energy Energy in the World of Life Sustaining life s organization requires ongoing energy inputs Assembly of the molecules of life starts with energy input into living cells Energy Conversion

More information

Chapter 8.1. How Organisms Obtain Energy

Chapter 8.1. How Organisms Obtain Energy Chapter 8.1 How Organisms Obtain Energy Main Idea All living organisms use energy to carry out all biological processes. Energy Energy is the ability to do work. Quick Review: Heterotrophs are organisms

More information

BIOLOGY 345 Midterm II - 15 November 2010 PART I. Multiple choice questions (4 points each, 32 points total).

BIOLOGY 345 Midterm II - 15 November 2010 PART I. Multiple choice questions (4 points each, 32 points total). BIOLOGY 345 Name Midterm II - 15 November 2010 PART I. Multiple choice questions (4 points each, 32 points total). 1. Considering the multitude of potential metabolic processes available to Bacteria and

More information

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation Cellular Energetics Photosynthesis, Cellular Respiration and Fermentation TEKS B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized parts that

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration Ch. 4 Cells and Energy Photosynthesis and Cellular Respiration 1 2 4.1 Chemical Energy and ATP Living organisms need energy Most comes indirectly from sun! Some change sunlight into organic compounds Others

More information

AP Biology Big Idea 2 Unit Study Guide

AP Biology Big Idea 2 Unit Study Guide Name: Period: AP Biology Big Idea 2 Unit Study Guide This study guide highlights concepts and terms covered in the evolution unit. While this study guide is meant to be inclusive, any term or concept covered

More information

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select.

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select. Section 1: How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration Click on a lesson name to select. Section 1 How Organisms Obtain Energy Transformation of Energy Energy

More information

Review Questions - Lecture 5: Metabolism, Part 1

Review Questions - Lecture 5: Metabolism, Part 1 Review Questions - Lecture 5: Metabolism, Part 1 Questions: 1. What is metabolism? 2. What does it mean to say that a cell has emergent properties? 3. Define metabolic pathway. 4. What is the difference

More information

Unit 1C Practice Exam (v.2: KEY)

Unit 1C Practice Exam (v.2: KEY) Unit 1C Practice Exam (v.2: KEY) 1. Which of the following statements concerning photosynthetic pigments (chlorophylls a and b, carotenes, and xanthophylls) is correct? (PT1-12) a. The R f values obtained

More information

Anaerobic processes. Annual production of cells a -1 Mean generation time in sediments

Anaerobic processes. Annual production of cells a -1 Mean generation time in sediments Anaerobic processes Motivation Where are they? Number of prokaryotes on earth 4-6 * 10 30 Cells in open ocean 1.2 * 10 29 in marine sediments 3.5 * 10 30 in soil 2.6 * 10 29 sub-terrestrial 0.5 2.5 * 10

More information

Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe.

Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe. Section 1 How Organisms Obtain Energy Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe. Section 1 How Organisms

More information

X Biology I. Unit 1-4: Cellular Energy

X Biology I. Unit 1-4: Cellular Energy NOTE/STUDY GUIDE: Unit 1-4, Cellular Energy X Biology I, Mr. Doc Miller, M.Ed. North Central High School Name: ID#: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE X Biology I Unit 1-4: Cellular Energy Additional

More information

The Tree of Life. Metabolic Pathways. Calculation Of Energy Yields

The Tree of Life. Metabolic Pathways. Calculation Of Energy Yields The Tree of Life Metabolic Pathways Calculation Of Energy Yields OCN 401 - Biogeochemical Systems 8/27/09 Earth s History (continental crust) 170 Oldest oceanic crust Ga = billions of years ago The Traditional

More information

Overview of Photosynthesis

Overview of Photosynthesis Overview of Photosynthesis Most autotrophs (organisms that create their own food), make organic compounds (sugars/glucose) using a process called photosynthesis. This process occurs only in plants. Overview

More information

Metabolismo Biología de 12º

Metabolismo Biología de 12º DEPARTAMENTO DE CIENCIAS NATURALES Metabolismo Biología de 12º Nombre y Apellidos FOTOSÍNTESIS 1) Organisms that can exist with light as an energy source and an inorganic form of carbon and other raw materials

More information

Heterotrophs: Organisms that depend on an external source of organic compounds

Heterotrophs: Organisms that depend on an external source of organic compounds Heterotrophs: Organisms that depend on an external source of organic compounds Autotrophs: Organisms capable of surviving on CO2 as their principle carbon source. 2 types: chemoautotrophs and photoautotrophs

More information

Harvesting energy: photosynthesis & cellular respiration part 1

Harvesting energy: photosynthesis & cellular respiration part 1 Harvesting energy: photosynthesis & cellular respiration part 1 Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Outline I. Energy and Carbon Cycle II. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions Carbon Cycle All organisms

More information

Chapter 10: Photosynthesis

Chapter 10: Photosynthesis Chapter 10: Photosynthesis This chapter is as challenging as the one you just finished on cellular respiration. However, conceptually it will be a little easier because the concepts learned in Chapter

More information

AP Bio-Ms.Bell Unit#3 Cellular Energies Name

AP Bio-Ms.Bell Unit#3 Cellular Energies Name AP Bio-Ms.Bell Unit#3 Cellular Energies Name 1. Base your answer to the following question on the image below. 7. Base your answer to the following question on Which of the following choices correctly

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration What you will learn: GPS Standard SB3a Explain the cycling of energy through the processes of photosynthesis and respiration. IN OTHER WORDS Photosynthesis and Cellular

More information

Microbiology Helmut Pospiech.

Microbiology Helmut Pospiech. Microbiology 28.03.2018 Helmut Pospiech http://www.thescientificcartoonist.com/?p=107 Energy metabolism of Microorganisms Fermentation ADP +Pi Motility ATP Active transport (nutrient uptake) Lactic Acid

More information

Ch. 9 - Cellular Respiration/Fermentation Study Guide

Ch. 9 - Cellular Respiration/Fermentation Study Guide Ch. 9 - Cellular Respiration/Fermentation Study Guide A. Introduction 1. All living things need energy for metabolism. a. Plants produce glucose through photosynthesis; break down glucose during cellular

More information

The Prokaryotic World

The Prokaryotic World The Prokaryotic World A. An overview of prokaryotic life There is no doubt that prokaryotes are everywhere. By everywhere, I mean living in every geographic region, in extremes of environmental conditions,

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reactions, light-dependent, Calvin cycle, thylakoid, photosystem II, oxygen, light-harvesting, two, chloroplasts,

More information

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars 4.2 8.2 Overview Photosynthesis: of Photosynthesis An Overview Photosynthesis process by which plants make food using energy from the sun Plants are autotrophs that make their own source of chemical energy.

More information

Concept 10.1 Photosynthesis converts light energy to the chemical energy of food

Concept 10.1 Photosynthesis converts light energy to the chemical energy of food Name Period Chapter 10: Photosynthesis This chapter is as challenging as the one you just finished on cellular respiration. However, conceptually it will be a little easier because the concepts learned

More information

1 Which of the following organisms do NOT carry on photosynthesis?

1 Which of the following organisms do NOT carry on photosynthesis? 1 Which of the following organisms do NOT carry on photosynthesis? plants algae some bacteria 2 3 animals The correct description of the relationship between photosynthesis and the living world is. herbivores,

More information

Lecture Series 13 Photosynthesis: Energy from the Sun

Lecture Series 13 Photosynthesis: Energy from the Sun Lecture Series 13 Photosynthesis: Energy from the Sun Photosynthesis: Energy from the Sun A. Identifying Photosynthetic Reactants and Products B. The Two Pathways of Photosynthesis: An Overview C. Properties

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 16. Phylogenetic tree. Metabolism. Carbon and

More information

Center for Academic Services & Advising

Center for Academic Services & Advising March 2, 2017 Biology I CSI Worksheet 6 1. List the four components of cellular respiration, where it occurs in the cell, and list major products consumed and produced in each step. i. Hint: Think about

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs self-feeders Capture free energy from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic

More information

PHOTOSYNTHESIS STARTS WITH

PHOTOSYNTHESIS STARTS WITH Name Date Period PHOTOSYNTHESIS STARTS WITH 1. Molecules that collect light energy are called _P. 2. Chlorophyll a and b absorb _B -_V and _R wavelengths of light best. 3. _C is the main light absorbing

More information

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration AP Biology - Problem Drill 08: Photosynthesis No. 1 of 10 #01 1. What term does the statement below refer to? In a photosynthesis process, an electron is excited from P700 and delivered to its receptor,

More information

Respiration and Photosynthesis

Respiration and Photosynthesis Respiration and Photosynthesis Cellular Respiration Glycolysis The Krebs Cycle Electron Transport Chains Anabolic Pathway Photosynthesis Calvin Cycle Flow of Energy Energy is needed to support all forms

More information

Unit 3: Cellular Energetics Guided Reading Questions (50 pts total)

Unit 3: Cellular Energetics Guided Reading Questions (50 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Chapter 8 An Introduction to Metabolism Unit 3: Cellular Energetics Guided

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs Capture from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic molecules (occurs

More information

A + B = C C + D = E E + F = A

A + B = C C + D = E E + F = A Photosynthesis - Plants obtain energy directly from the sun - Organisms that do this are autotrophs (make their own food from inorganic forms) - Photosynthesis is a series of chemical reactions where the

More information

AHL Topic 8 IB Biology Miss Werba

AHL Topic 8 IB Biology Miss Werba CELL RESPIRATION & PHOTOSYNTHESIS AHL Topic 8 IB Biology Miss Werba TOPIC 8 CELL RESPIRATION & PHOTOSYNTHESIS 8.1 CELL RESPIRATION 1. STATE that oxidation involves the loss of electrons from an element,

More information

Cell Energetics. How plants make food and everyone makes energy!

Cell Energetics. How plants make food and everyone makes energy! Cell Energetics How plants make food and everyone makes energy! Carbon Cycle Where did the mitochondria and chloroplast come from? Endosymbiotic Theory Endosymbiotic theory = a theory that some of the

More information

1/25/2018. Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration

1/25/2018. Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration 1 2 3 4 5 Bio 1101 Lec. 5, Part A Chapter 6: Cellular Respiration Energy is needed by cells to do work Chemical energy, a form of potential energy, is stored in bonds of food molecules (such as glucose)

More information

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per Cell Energy Notes Name Per THE ENDOSYMBIOTIC THEORY The Endosymbiotic theory is the idea that a long time ago, engulfed other prokaryotic cells by. This resulted in the first First proposed by Explains

More information

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up:

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up: Warm-up Objective: Explain how photosynthesis converts light energy into chemical energy. Warm-up: In the light reactions, what is the electron donor? Where do the electrons end up? 2006-2007 Photosynthesis:

More information

Metabolism Review. A. Top 10

Metabolism Review. A. Top 10 A. Top 10 Metabolism Review 1. Energy production through chemiosmosis a. pumping of H+ ions onto one side of a membrane through protein pumps in an Electron Transport Chain (ETC) b. flow of H+ ions across

More information

Energy and the Cell. All living things need energy to survive and do work.

Energy and the Cell. All living things need energy to survive and do work. Energy and the Cell EQ: How do cells acquire energy? EQ: Why is the relationship between plants and animals essential to life? All living things need energy to survive and do work. Organisms who depend

More information

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised:

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised: Photosynthesis (Chapter 7 Outline) Sun, Rain, and Survival A. For life based on organic compounds, two questions can be raised: 1. Where does the carbon come from? 2. Where does the energy come from to

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reectlons, light-dependent, Calvin cycle, thylakoid, oxygen, light-harvesting, two, chloroplasts, photosynthesis,

More information

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration How do living things stay alive? Cellular Respiration Burning Happens in ALL living things inside cells and has the main goal of producing ATP the fuel of life It does not matter whether the organisms

More information

PHOTOSYNTHESIS. Light Reaction Calvin Cycle

PHOTOSYNTHESIS. Light Reaction Calvin Cycle PHOTOSYNTHESIS Light Reaction Calvin Cycle Photosynthesis Purpose: use energy from light to convert inorganic compounds into organic fuels that have stored potential energy in their carbon bonds Carbon

More information

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully. Outline: Metabolism Part I: Fermentations Part II: Respiration Part III: Metabolic Diversity Learning objectives are: Learn about respiratory metabolism, ATP generation by respiration linked (oxidative)

More information

Ch. 10- Photosynthesis: Life from Light and Air

Ch. 10- Photosynthesis: Life from Light and Air Ch. 10- Photosynthesis: Life from Light and Air 2007-2008 Ch. 10 Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers Heterotrophs

More information

BIOLOGY. Photosynthesis CAMPBELL. Concept 10.1: Photosynthesis converts light energy to the chemical energy of food. Anabolic pathways endergonic

BIOLOGY. Photosynthesis CAMPBELL. Concept 10.1: Photosynthesis converts light energy to the chemical energy of food. Anabolic pathways endergonic 10 Photosynthesis CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick energy ECOSYSTEM CO 2 H 2 O Organic O 2 powers

More information

ATP. Chapter 4. Photosynthesis. Cell Respiration. Energy of Life. All organisms need energy in order to survive

ATP. Chapter 4. Photosynthesis. Cell Respiration. Energy of Life. All organisms need energy in order to survive ATP Chapter 4 Photosynthesis Energy of Life All organisms need energy in order to survive 2 Major groups of organisms: A. autotrophs make their own food Ex: plants B. heterotrophs must eat others living

More information

Sunday, August 25, 2013 PHOTOSYNTHESIS

Sunday, August 25, 2013 PHOTOSYNTHESIS PHOTOSYNTHESIS PREFACE The sun is the ultimate source of energy. The sun powers nearly all life forms. Photosynthesis converts solar energy into chemical energy. Photoautotrophs use solar energy to synthesize

More information

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP:

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP: Understanding How Living Things Obtain and Use Energy. Cell Energy: The Big Picture Most Autotrophs produce food (sugar) using light energy during Photosynthesis. Then, both Autotrophs and Heterotroph

More information

Active Learning Exercise 6. Photosynthesis

Active Learning Exercise 6. Photosynthesis Name Biol 211 - Group Number Active Learning Exercise 6. Photosynthesis Reference: Chapter 10 (Biology by Campbell/Reece, 8 th ed.) Note: See the last page of this ALE for a diagram that summarizes the

More information

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions Name: KEY CP Biology Unit 5 Cell Energy Study Guide Vocabulary to know: ATP ADP Aerobic Anaerobic ATP Synthases Cellular Respiration Chlorophyll Chloroplast Electron Carriers Electron Transport Chain Fermentation

More information

Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Photosynthesis and Biosynthesis

Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Photosynthesis and Biosynthesis Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College Photosynthesis and Biosynthesis As described earlier, chemoheterotrophs obtain the energy they need for growth from the catabolism

More information

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November Name: Class: Date: 2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of 02-09 November 1 Which of the following statements is true for all cells? a They use solar energy

More information

In Cellular Respiration, are removed from sugar and transferred to

In Cellular Respiration, are removed from sugar and transferred to 1 2 3 4 5 Bio 1101 Lec. 5, Part A (Guided Notes) Chapter 6: Cellular Respiration Energy is needed by cells to do work Chemical energy, a form of potential energy, is stored in bonds of food molecules (such

More information

Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules).

Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules). Photosynthesis Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules). Organisms obtain organic compounds by one

More information

Prokaryotes Vs. Eukaryotes

Prokaryotes Vs. Eukaryotes The Microbial World Prokaryotes Vs. Eukaryotes Mircrobes of the Ocean Primary Producers Are the organisms that produce bio-mass from inorganic compounds (autotrophs). -Photosynthetic autotrophs Phytoplankton

More information

Version A Name: BIOL 3327: Plant Science Exam 1, 17 Feb 2005 WRITE YOUR VERSION LETTER AT THE VERY TOP OF YOUR ANSWER SHEET.

Version A Name: BIOL 3327: Plant Science Exam 1, 17 Feb 2005 WRITE YOUR VERSION LETTER AT THE VERY TOP OF YOUR ANSWER SHEET. Version A Name: Last 4 digits of SSN: BIOL 3327: Plant Science Exam 1, 17 Feb 2005 WRITE YOUR VERSION LETTER AT THE VERY TOP OF YOUR ANSWER SHEET. Always choose the BEST answer. You may write on this sheet.

More information

AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes Chapter 7: Photosynthesis Chapter 8: Cellular Respiration

AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes Chapter 7: Photosynthesis Chapter 8: Cellular Respiration AP Biology Review Chapters 6-8 Review Questions Chapter 6: Metabolism: Energy and Enzymes 1. Understand and know the first and second laws of thermodynamics. What is entropy? What happens when entropy

More information

Ch. 6 & 7 Photosynthesis & Cellular Respiration

Ch. 6 & 7 Photosynthesis & Cellular Respiration Ch. 6 & 7 Photosynthesis & Cellular Respiration 6.1 Energy Reactions The Cycle of Energy Sun CO 2 H 2 O Photosynthesis (energy stored) Cellular Respiration (energy released) O 2 Glucose Obtaining Energy

More information

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source

More information

Biology Chapter 8 Test: Cellular Energy

Biology Chapter 8 Test: Cellular Energy Class: Date: Biology Chapter 8 Test: Cellular Energy True/False Indicate whether the statement is true or false. 1. During the light-independent reactions of photosynthesis, light energy is used to split

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

ATP, Cellular Respiration and Photosynthesis

ATP, Cellular Respiration and Photosynthesis ATP, Cellular Respiration and Photosynthesis Energy for Cells Free Energy: the energy available to do work Types of Reactions Endergonic Reactions: require an input of energy Exergonic Reactions: release

More information

1. Which of the following species have strains that are capable of undergoing the process of conjugation?

1. Which of the following species have strains that are capable of undergoing the process of conjugation? Biology 3340 Summer 2005 Second Examination Version A Name Be sure to put your name on the mark-sense sheet as well Directions: Write your name in the correct space on the mark-sense sheet and the exam

More information

Unit 8 Cell Metabolism. Foldable Notes

Unit 8 Cell Metabolism. Foldable Notes Unit 8 Cell Metabolism Foldable Notes Silently read pages 94-96 of your biology textbook Middle Inside Top Vocabulary 1. ATP 2. ADP 3. Product 4. Reactant 5. Chloroplast 6. Mitochondria 7. Heterotroph

More information

BIOLOGY. Monday 14 Dec 2015

BIOLOGY. Monday 14 Dec 2015 BIOLOGY Monday 14 Dec 2015 Entry Task An ATP molecule is made of what 3 components? What happens when ATP becomes ADP? Explain. Agenda Entry Task Housekeeping Chapter 8 Essential Question Section 8.2 (Photosynthesis:

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AP Exam Chapters 9 and 10; Photosynthesis and Respiration Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Carbon dioxide (CO2) is released

More information

A word of caution about a little knowing Lab organisms limit the view of the world of microbiology

A word of caution about a little knowing Lab organisms limit the view of the world of microbiology Diversity The world of living things (Figure from Madigan et al. 2002) Microbes in all three domains Two of the domains are exclusively prokaryotic and microbial The third contains both unicellular and

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Outline I. Energy and Carbon Cycle II. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions Carbon Cycle All organisms

More information

Cellular Respiration and Photosynthesis Test

Cellular Respiration and Photosynthesis Test Cellular Respiration and Photosynthesis Test 1. When bonds are made energy is, when bonds are broken energy is. A. stored / released C. released / stored B. used / not used D. created / destroyed 2. Aerobic

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

Photosynthesis and Cellular Respiration Unit

Photosynthesis and Cellular Respiration Unit Photosynthesis and Cellular Respiration Unit All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs: organisms that can make their own

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

Unit 5 Cellular Energy

Unit 5 Cellular Energy Unit 5 Cellular Energy I. Enzymes (159) 1.Are CATALYSTS: Speed up chemical reactions that would otherwise happen too slowly to support life. Catalysts DO NOT make reactions happen that couldn t happen

More information

Chapter 5. The Chloroplast. 5.1 Matter and Energy Pathways in Living Systems. Photosynthesis & Cellular Respiration

Chapter 5. The Chloroplast. 5.1 Matter and Energy Pathways in Living Systems. Photosynthesis & Cellular Respiration Chapter 5 Photosynthesis & Cellular Respiration 5.1 Matter and Energy Pathways in Living Systems Both cellular respiration and photosynthesis are examples of biological processes that involve matter &

More information

Classifying Prokaryotes: Eubacteria Plasma Membrane. Ribosomes. Plasmid (DNA) Capsule. Cytoplasm. Outer Membrane DNA. Flagellum.

Classifying Prokaryotes: Eubacteria Plasma Membrane. Ribosomes. Plasmid (DNA) Capsule. Cytoplasm. Outer Membrane DNA. Flagellum. Bacteria The yellow band surrounding this hot spring is sulfur, a waste product of extremophilic prokaryotes, probably of the Domain Archaea, Kingdom Archaebacteria. Bacteria are prokaryotic cells (no

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 5: Energy for Biological Processes Notes Aerobic Respiration Aerobic respiration as splitting of the respiratory substrate, to release carbon dioxide as a waste product

More information

Section 8 1 Energy and Life (pages )

Section 8 1 Energy and Life (pages ) Bio07_TR_U03_CH08.QXD 4/25/06 2:51 PM Page 63 Name Class Date Chapter 8 Photosynthesis Section 8 1 Energy and Life (pages 201 203) Key Concepts Where do plants get the energy they need to produce food?

More information

Endosymbiotic Theory

Endosymbiotic Theory Endosymbiotic Theory Evolution of Prokaryotes The oldest known fossils are 3.5 bya = stromatolites which are rock like layers of bacteria and sediment. Earliest life forms may have emerged as early as

More information

Biology A: Chapter 4 Annotating Notes

Biology A: Chapter 4 Annotating Notes Name: Pd: Biology A: Chapter 4 Annotating Notes -As you read your textbook, please fill out these notes. -Read each paragraph state the big/main idea on the left side. - On the right side you should take

More information

Cell Energy: Photosynthesis & Respiration

Cell Energy: Photosynthesis & Respiration Cell Energy: Photosynthesis & Respiration Today s Learning Goals In plants, chlorophyll (found in chloroplasts) captures energy from the sun in order to make food during photosynthesis (Review) Cells release

More information

Unit 3: Cell Energy Guided Notes

Unit 3: Cell Energy Guided Notes Enzymes Unit 3: Cell Energy Guided Notes 1 We get energy from the food we eat by breaking apart the chemical bonds where food is stored. energy is in the bonds, energy is the energy we use to do things.

More information