Genome-wide multilevel spatial interactome model of rice

Size: px
Start display at page:

Download "Genome-wide multilevel spatial interactome model of rice"

Transcription

1 Sino-German Workshop on Multiscale Spatial Computational Systems Biology, Beijing, Oct 8-12, 2015 Genome-wide multilevel spatial interactome model of rice Ming CHEN ( 陈铭 ) mchen@zju.edu.cn College of Life Sciences Zhejiang University

2 Integrative Bioinformatics Omics Genomics Transcriptomics Proteomics Metabolomics Phenomics Integrative Bioinformatics Sequence annotation Gene ontology Gene coexpression Protein interactions Pathway information Trait corelation? 1. Confirmation Plant Transcriptomics (non-coding RNAs) 2. Genome-wide multiple scale biological network Mutants Haplotypes Overexpression Complementation Transgenics Knockout BSA Function

3 Background Genome-wide Gene regulatory network of rice PNAS. 2011, Insuk Lee et. al., , vol. 8.

4 Our GRNs Gene regulatory network construction 1) Identify the functional associations: a: Gene co-expression b: Gene neighborhoods c: Phylogenetic profile d: Genetic interaction e: Domain co-occurrence 2) Distinguish PPI from gene regulatory network using a probabilistic model proposed by Naoki Nariai et al

5 Background Proteomics Structural, Expressional, Functional Proteomics proteins in Uniprot Exp.Method Proteins X-RAY NMR 9619 ELECTRON MICROSCOPY 569 HYBRID 70 other 165 Total

6 Rice Proteomics

7 OsPAD: Proteome Annotation Database of 2D-PAGE Biochip J, 2009

8 Annotations RPD annotated spot KEGG annotation OsPAD annotation

9 Virtual Gel Normal gel Gel comparison

10 Protein expressed patterns Current Protein and Peptide Science, 2011

11 PRIN: a predicted rice interactome network BMC Bioinformatics. 2011

12 Framework

13 Interolog gene neighbourhood gene fusion domain fusion gene co-expression phylogenetic profile subcellular co-location domain interaction GO similarity

14 PRIN: example

15 PRIN: example

16 Most evolutionary conserved interactions Genomics, Proteomics & Bioinformatics, 2011

17 Application

18 Background Genome-wide metabolic network of plants The metabolic reconstruction of rice is still to be explored!

19 MyBioNet Core metabolic network of rice includes 3035 nodes, 5774 edges Bioinformatics. 2011

20 Problem: subcellular location

21 Background Subcellular Localization To understand protein function: location link to its function Is a critical step in genome annotation Experimental methods can be time & money costing Computational methods turn out to be effective however show bias More applications: improve drug target identification (e.g. secreted, plasma membrane protein) In animals, aberrant subcellular localization of proteins lead to diseases (e.g. cancer, Alyheimer s disease)

22 Our Approach Collect individual predictor for subcellular location Collect gold standard Evaluation of predictors Predictors selection Develop integrated methods

23 Predictors collected -Web Servers or standalone software that can predict subcellular locations, signal peptide and location-specific proteins were benchmarked (7 standalone) Predictors were collected from published articles, only predictors still work were kept for further study. 2. Free web servers support batch search and allow results grab were picked, others were removed. 3. Standalone software and programs were installed and ran locally. 4. At last 19 predictors were used for integrated methods developing. Predictors Status Predictor Locations Use for integration WolfPSORT pero,cyto,nuc,mito Y PredSL mito Y NucPred nuc Y.. WegoLoc golg,nuc,cyto,plas N

24 Gold standard collected - Datasets were built for both training and test. SUBA3 and PPDB Step1. We downloaded and processed non-isoform fungal sequences that have experimentally verified subcellular locations from the newest Uniprot version (13791 sequences collected). Step2. We used CD-HIT to remove redundant proteins (12399 sequences remain). Step3. We chose 10 locations for our work, and mapped the Uniprot proteins to these 10 locations (12399 sequences remain). Step4. We removed proteins that not present in these locations (10904 sequences finally got).

25 Methods Subcellular location prediction PLoS One, 2013

26

27 PSI: A comprehensive and integrative approach for accurate plant subcellular localization prediction

28 Organelle-focused proteomes and interactomes in rice A total of 55,342 proteins (accounting for 83.42% of the whole rice proteome) obtained their subcellular localizations. the organellefocused interactome involving 36,812 pairs of proteinprotein interactions and 5,092 proteins was located in nine organelles.

29 Function enrichment analysis a total of 45 function groups were identified.

30 The sub-network involving coatomer protein subunits triangle motif might be a preferred organization form for proteins to implement biological functions. propose that EMB30 might cowork with coatomer in retrograde Golgi-to-ER transport of dilysine-tagged protein. By gtriescanner

31 Number of Reactions Number of Genes/Reactions 1145 / / / / / / 114 RiceCyc Uniprot KEGG (1928) (412) Brenda (1305) (259) 21 (1375) (244) 260 (6) 7 (407) (10) (58) (5) 54 (755) (63) (45) 26 (21) (32) (8) (70) (11) 0.5 Metabolites:2876 (Reactions:3055) 0.0 EC1 EC2 EC3 EC4 EC5 EC6 Connectivity of metabolites in Rice 1000 Metabolite Absolute Relative(%) Proton % NAD(P) % NADPH % ATP % CO % Diphosphate % 200 NADH % ADP % Number of Metabolites Phosphate % NH % Glutamate % Unpublish

32 Number of Metabolites (or Reactions) Percentage of regulations Percentage of Proteins Percentage of Proteins 0% 17% >50% 33% a Compartmennt 2 Compartment Unique to Compartment b Cytosol (14830 / 1591) Chloroplast (19929 / 2296) Endoplasmic Reticulum (595 / 113) c Vacuole (1303 / 250) Mitochondria (15280 / 693) Nucleus (17648 / 1917) Extracellular (5143 / 484) Peroxisome (361 / 57) Plasma Membrane (7508 / 1996) Golgi Apparatus (154 / 61) 3+ Compartmennt 2 Compartment Unique to Compartment Metabolites Reactions d Nucleus Cytosol Mitochondria Chloroplast Peroxisome Golgi Apparatus Plasma Membrane Vacuole Extracellular Endoplasmic reticulum Nucleus Cytosol Chloroplast Mitochondria Peroxisome Golgi Apparatus Plasma Membrane Vacuole Extracellular Endoplasmic reticulum Gene-gene regulations Protein-protein interactions Gene-metabolite associations Cytosol Chloroplast Mitochondria Extracellular Plasma Membrane Nucleus Peroxisome Endoplasmic Reticulum Vacuole Golgi Apparatus 0.00 Cytosol Nucleus Chloroplast Mitochondria Extracellular Endoplasmic Reticulum Plasma Membrane Vacuole Peroxisome Golgi Apparatus

33 Multi-level Network of Rice Integrate PPIs and Gene Regulations into Metabolic network Genome-wide multi-level network reconstruction Extract protein-protein interactions from public biology database (e.g.: BIND, PlaPid, PRIN, etc.). Integrate the gene regulations into the metabolic network. Collect microrna-target interactions into the metabolic model. Database construction and Network visualization.

34 mrna/mrna* network BiB 2011 Bioinformatics 2014 RNA Biology 2011 ncrna biogensis Briefings in Bioinformatics 2013 NAR 2012 Specific & crosstalk Bioinformatics 2010 RNA Research 2015 RNA 2011 Construction of gene regulatory networks mediated by vegetative and reproductive stage-specific small RNAs in rice (Oryza sativa) PLoS One 2012 J Genetics & Genomics 2013 New Phytologist 2013

35 Multi-level Network of Rice Integrate PPIs and Gene Regulations into Metabolic network Genome-wide multi-level network reconstruction Extract protein-protein interactions from public biology database (e.g.: BIND, PlaPid, PRIN, etc.). Integrate the gene regulations into the metabolic network. Collect microrna-target interactions into the metabolic model. Database construction and Network visualization.

36 Home page Organelle-focused Multiple Level Network

37 3D visualization

38 CELLmicrocosmos

39 Conclusion Proteomics annotation systems for rice. PRIN, PPI networks of rice were constructed. PSI, a highly accuracy web server for plant subcellular localization prediction, was developed. The genome wide multiple level network of rice was reconstructed. sirna/mirna regulatory networks were investigated. A 3D network visualization tool was developed. RiceNetDB are developing for biomolecular regulatory analysis and gene-metabolite mapping. A long way to goooooo collaborations needed!

40 PSI 2.0 Future work Construct the genome scale multiple level network for tissuespecific and context specific Develop algorithms for multiple level network analysis a: network properties analysis b: module identification c: sub-network analysis d: network comparison Phenotype associated network module identification and dynamic analysis based on genome scale multiple level network Deeply annotate the multiple level networks based on a variety of bioinformatics methods such as homology modeling, protein three-dimensional structure docking and so on. Virtual cell model and its applications.

41 Acknowledgements Lili Liu, Yijun Meng, Dijun Chen, Chaogang Shao, Pengcheng Zhu, Haibin Gu Prof. Ralf Hofestädt Dr. Björn Sommer Lu Zhu

SUB-CELLULAR LOCALIZATION PREDICTION USING MACHINE LEARNING APPROACH

SUB-CELLULAR LOCALIZATION PREDICTION USING MACHINE LEARNING APPROACH SUB-CELLULAR LOCALIZATION PREDICTION USING MACHINE LEARNING APPROACH Ashutosh Kumar Singh 1, S S Sahu 2, Ankita Mishra 3 1,2,3 Birla Institute of Technology, Mesra, Ranchi Email: 1 ashutosh.4kumar.4singh@gmail.com,

More information

Supplementary Materials for mplr-loc Web-server

Supplementary Materials for mplr-loc Web-server Supplementary Materials for mplr-loc Web-server Shibiao Wan and Man-Wai Mak email: shibiao.wan@connect.polyu.hk, enmwmak@polyu.edu.hk June 2014 Back to mplr-loc Server Contents 1 Introduction to mplr-loc

More information

2. Cellular and Molecular Biology

2. Cellular and Molecular Biology 2. Cellular and Molecular Biology 2.1 Cell Structure 2.2 Transport Across Cell Membranes 2.3 Cellular Metabolism 2.4 DNA Replication 2.5 Cell Division 2.6 Biosynthesis 2.1 Cell Structure What is a cell?

More information

Biology Cell Organelle Webquest. Name Period Date

Biology Cell Organelle Webquest. Name Period Date Biology Cell Organelle Webquest Name Period Date This webquest has TWO parts to it. You need to go to www.rodensclassroom.com and click on the "BIOLOGY" link. Once there click on the Unit 3-Cell Organelles

More information

Supplementary Materials for R3P-Loc Web-server

Supplementary Materials for R3P-Loc Web-server Supplementary Materials for R3P-Loc Web-server Shibiao Wan and Man-Wai Mak email: shibiao.wan@connect.polyu.hk, enmwmak@polyu.edu.hk June 2014 Back to R3P-Loc Server Contents 1 Introduction to R3P-Loc

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Tour of the Cell 1 Types of cells Prokaryote bacteria cells - no organelles - organelles Eukaryote animal cells Eukaryote plant cells Why organelles? Specialized structures u specialized functions cilia

More information

Introduction to Cells- Stations Lab

Introduction to Cells- Stations Lab Introduction to Cells- Stations Lab Station 1: Microscopes allow scientists to study cells. Microscopes: How do light microscopes differ from electron microscopes? (How does each work? How much can each

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Proteomics Systems Biology

Proteomics Systems Biology Dr. Sanjeeva Srivastava IIT Bombay Proteomics Systems Biology IIT Bombay 2 1 DNA Genomics RNA Transcriptomics Global Cellular Protein Proteomics Global Cellular Metabolite Metabolomics Global Cellular

More information

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

Chapter 6: A Tour of the Cell

Chapter 6: A Tour of the Cell AP Biology Reading Guide Fred and Theresa Holtzclaw Chapter 6: A Tour of the Cell Name Period Chapter 6: A Tour of the Cell Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry

More information

CSCE555 Bioinformatics. Protein Function Annotation

CSCE555 Bioinformatics. Protein Function Annotation CSCE555 Bioinformatics Protein Function Annotation Why we need to do function annotation? Fig from: Network-based prediction of protein function. Molecular Systems Biology 3:88. 2007 What s function? The

More information

Predicting rice (Oryza sativa) metabolism

Predicting rice (Oryza sativa) metabolism Predicting rice (Oryza sativa) metabolism Sudip Kundu Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, WB, India. skbmbg@caluniv.ac.in Collaborators: Mark G Poolman

More information

Supplementary Information 16

Supplementary Information 16 Supplementary Information 16 Cellular Component % of Genes 50 45 40 35 30 25 20 15 10 5 0 human mouse extracellular other membranes plasma membrane cytosol cytoskeleton mitochondrion ER/Golgi translational

More information

Supporting Information

Supporting Information Supporting Information Proteomic Analyses of Cysteine Redox in High-fat-fed and Fasted Mouse Livers: Implications for Liver Metabolic Homeostasis Yixing Li 1#, Zupeng Luo 1#, Xilong Wu 2, Jun Zhu 2, Kai

More information

Importance of Protein sorting. A clue from plastid development

Importance of Protein sorting. A clue from plastid development Importance of Protein sorting Cell organization depend on sorting proteins to their right destination. Cell functions depend on sorting proteins to their right destination. Examples: A. Energy production

More information

Networks & pathways. Hedi Peterson MTAT Bioinformatics

Networks & pathways. Hedi Peterson MTAT Bioinformatics Networks & pathways Hedi Peterson (peterson@quretec.com) MTAT.03.239 Bioinformatics 03.11.2010 Networks are graphs Nodes Edges Edges Directed, undirected, weighted Nodes Genes Proteins Metabolites Enzymes

More information

Chapter 7.2. Cell Structure

Chapter 7.2. Cell Structure Chapter 7.2 Cell Structure Daily Objectives Describe the structure and function of the cell nucleus. Describe the function and structure of membrane bound organelles found within the cell. Describe the

More information

Cell Organelles. Wednesday, October 22, 14

Cell Organelles. Wednesday, October 22, 14 Cell Organelles Cell/Plasma Membrane ALL cells have a cell membrane It is the layer that surrounds the cell and controls what goes in and out Bacteria (Prokaryotic Cell) Cell/Plasma Membrane ALL cells

More information

Organelles in Eukaryotic Cells

Organelles in Eukaryotic Cells Why? Organelles in Eukaryotic Cells What are the functions of different organelles in a cell? The cell is the basic unit and building block of all living things. Organisms rely on their cells to perform

More information

Biochemistry: A Review and Introduction

Biochemistry: A Review and Introduction Biochemistry: A Review and Introduction CHAPTER 1 Chem 40/ Chem 35/ Fundamentals of 1 Outline: I. Essence of Biochemistry II. Essential Elements for Living Systems III. Classes of Organic Compounds IV.

More information

Cell Organelles Tutorial

Cell Organelles Tutorial 1 Name: Cell Organelles Tutorial TEK 7.12D: Differentiate between structure and function in plant and animal cell organelles, including cell membrane, cell wall, nucleus, cytoplasm, mitochondrion, chloroplast,

More information

Biology. 7-2 Eukaryotic Cell Structure 10/29/2013. Eukaryotic Cell Structures

Biology. 7-2 Eukaryotic Cell Structure 10/29/2013. Eukaryotic Cell Structures Biology Biology 1of 49 2of 49 Eukaryotic Cell Structures Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists

More information

Shibiao Wan and Man-Wai Mak December 2013 Back to HybridGO-Loc Server

Shibiao Wan and Man-Wai Mak December 2013 Back to HybridGO-Loc Server Shibiao Wan and Man-Wai Mak December 2013 Back to HybridGO-Loc Server Contents 1 Functions of HybridGO-Loc Server 2 1.1 Webserver Interface....................................... 2 1.2 Inputing Protein

More information

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

Bio 111 Study Guide Chapter 6 Tour of the Cell

Bio 111 Study Guide Chapter 6 Tour of the Cell Bio 111 Study Guide Chapter 6 Tour of the Cell BEFORE CLASS: Reading: Read the whole chapter from p. 93-121, mostly skimming Concept 6.1 on microscopy. Figure 6.8 on pp. 100-101 is really helpful in showing

More information

Constraint-Based Workshops

Constraint-Based Workshops Constraint-Based Workshops 2. Reconstruction Databases November 29 th, 2007 Defining Metabolic Reactions ydbh hslj ldha 1st level: Primary metabolites LAC 2nd level: Neutral Formulas C 3 H 6 O 3 Charged

More information

Cell Structure. Chapter 4. Cell Theory. Cells were discovered in 1665 by Robert Hooke.

Cell Structure. Chapter 4. Cell Theory. Cells were discovered in 1665 by Robert Hooke. Cell Structure Chapter 4 Cell Theory Cells were discovered in 1665 by Robert Hooke. Early studies of cells were conducted by - Mathias Schleiden (1838) - Theodor Schwann (1839) Schleiden and Schwann proposed

More information

7.L.1.2 Plant and Animal Cells. Plant and Animal Cells

7.L.1.2 Plant and Animal Cells. Plant and Animal Cells 7.L.1.2 Plant and Animal Cells Plant and Animal Cells Clarifying Objective: 7.L.1.2 Compare the structures and functions of plant and animal cells; include major organelles (cell membrane, cell wall, nucleus,

More information

7 Characteristics of Life

7 Characteristics of Life 7 Characteristics of Life 1. Interdependence 2. Metabolism 3. Homeostasis 4. Cellular Structure and Function 5. Reproduction 6. Heredity 7. Evolution The Cell Theory All living things are composed of one

More information

Introduction 1) List the 3 types of cells you will be comparing in today s lesson. a. b. c.

Introduction 1) List the 3 types of cells you will be comparing in today s lesson. a. b. c. Name: Date: Period: Cell Structure Internet Lesson Directions: Answer the following question by visiting the web site below. http://www.wiley.com/legacy/college/boyer/0470003790/animations/cell_structure/cell_structure.htm

More information

Stamford Public Schools Science Department District Midterm Examination REVIEW

Stamford Public Schools Science Department District Midterm Examination REVIEW Stamford Public Schools Science Department District Midterm Examination REVIEW 2015-2016 Honors Biology Student Name: School/Teacher: Date: SPS Honors Biology Midterm Review, January 2016 Page 1 Dear Biology

More information

Cell Structure. Chapter 4

Cell Structure. Chapter 4 Cell Structure Chapter 4 Cell Theory Cells were discovered in 1665 by Robert Hooke. Early studies of cells were conducted by - Mathias Schleiden (1838) - Theodor Schwann (1839) Schleiden and Schwann proposed

More information

Principles of Cellular Biology

Principles of Cellular Biology Principles of Cellular Biology آشنایی با مبانی اولیه سلول Biologists are interested in objects ranging in size from small molecules to the tallest trees: Cell Basic building blocks of life Understanding

More information

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2 Cellular Neuroanatomy I The Prototypical Neuron: Soma Reading: BCP Chapter 2 Functional Unit of the Nervous System The functional unit of the nervous system is the neuron. Neurons are cells specialized

More information

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai Network Biology: Understanding the cell s functional organization Albert-László Barabási Zoltán N. Oltvai Outline: Evolutionary origin of scale-free networks Motifs, modules and hierarchical networks Network

More information

Exam: Introduction to Cells and Cell Function

Exam: Introduction to Cells and Cell Function Name: Date: Exam: Introduction to Cells and Cell Function Georgia Performance Standard SB1: Students will analyze the nature of the relationships between structures and functions in living cells. 1. What

More information

Organelles in Eukaryotic Cells

Organelles in Eukaryotic Cells Why? Organelles in Eukaryotic Cells What are the functions of different organelles in a cell? The cell is the basic unit and building block of all living things. Organisms rely on their cells to perform

More information

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis Cell (Outline) - Components of a functional cell - Major Events in the History of Earth: abiotic and biotic phases; anaerobic and aerobic atmosphere - Prokaryotic cells impact on the biosphere - Origin

More information

Cells & Cell Organelles. Doing Life s Work

Cells & Cell Organelles. Doing Life s Work Cells & Cell Organelles Doing Life s Work Types of cells bacteria cells Prokaryote Eukaryotes animal cells plant cells Cell size comparison Animal cell Bacterial cell most bacteria 1-10 microns eukaryotic

More information

Clustering and Network

Clustering and Network Clustering and Network Jing-Dong Jackie Han jdhan@picb.ac.cn http://www.picb.ac.cn/~jdhan Copy Right: Jing-Dong Jackie Han What is clustering? A way of grouping together data samples that are similar in

More information

Miller & Levine Biology 2014

Miller & Levine Biology 2014 A Correlation of Miller & Levine Biology To the Essential Standards for Biology High School Introduction This document demonstrates how meets the North Carolina Essential Standards for Biology, grades

More information

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry Name Period Chapter 6: A Tour of the Cell Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry 1. The study of cells has been limited by their small size, and so they were

More information

CELL PART Expanded Definition Cell Structure Illustration Function Summary Location ALL CELLS DNA Common in Animals Uncommon in Plants Lysosome

CELL PART Expanded Definition Cell Structure Illustration Function Summary Location ALL CELLS DNA Common in Animals Uncommon in Plants Lysosome CELL PART Expanded Definition Cell Structure Illustration Function Summary Location is the material that contains the Carry genetic ALL CELLS information that determines material inherited characteristics.

More information

Introduction to Bioinformatics Integrated Science, 11/9/05

Introduction to Bioinformatics Integrated Science, 11/9/05 1 Introduction to Bioinformatics Integrated Science, 11/9/05 Morris Levy Biological Sciences Research: Evolutionary Ecology, Plant- Fungal Pathogen Interactions Coordinator: BIOL 495S/CS490B/STAT490B Introduction

More information

Cell (Learning Objectives)

Cell (Learning Objectives) Cell (Learning Objectives) 1. Understand & describe the basic components necessary for a functional cell. 2. Review the order of appearance of cells on earth and explain the endosymbiotic theory. 3. Compare

More information

Guided Reading Activities

Guided Reading Activities Name Period Chapter 4: A Tour of the Cell Guided Reading Activities Big Idea: Introduction to the Cell Answer the following questions as you read Modules 4.1 4.4: 1. A(n) uses a beam of light to illuminate

More information

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d Chapter 1 1. Matching Questions DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d 2. Matching Questions : Unbranched polymer that, when folded into its three-dimensional shape,

More information

The Discovery of Cells

The Discovery of Cells The Discovery of Cells Microscope observations! General Cell & Organelle Discovery 1600s Observations made by scientists using more powerful microscopes in the 1800s led to the formation of the cell theory.

More information

Metabolic modelling. Metabolic networks, reconstruction and analysis. Esa Pitkänen Computational Methods for Systems Biology 1 December 2009

Metabolic modelling. Metabolic networks, reconstruction and analysis. Esa Pitkänen Computational Methods for Systems Biology 1 December 2009 Metabolic modelling Metabolic networks, reconstruction and analysis Esa Pitkänen Computational Methods for Systems Biology 1 December 2009 Department of Computer Science, University of Helsinki Metabolic

More information

It s a Small World After All

It s a Small World After All It s a Small World After All Engage: Cities, factories, even your own home is a network of dependent and independent parts that make the whole function properly. Think of another network that has subunits

More information

2011 The Simple Homeschool Simple Days Unit Studies Cells

2011 The Simple Homeschool Simple Days Unit Studies Cells 1 We have a full line of high school biology units and courses at CurrClick and as online courses! Subscribe to our interactive unit study classroom and make science fun and exciting! 2 A cell is a small

More information

Bioinformatics. Dept. of Computational Biology & Bioinformatics

Bioinformatics. Dept. of Computational Biology & Bioinformatics Bioinformatics Dept. of Computational Biology & Bioinformatics 3 Bioinformatics - play with sequences & structures Dept. of Computational Biology & Bioinformatics 4 ORGANIZATION OF LIFE ROLE OF BIOINFORMATICS

More information

BMD645. Integration of Omics

BMD645. Integration of Omics BMD645 Integration of Omics Shu-Jen Chen, Chang Gung University Dec. 11, 2009 1 Traditional Biology vs. Systems Biology Traditional biology : Single genes or proteins Systems biology: Simultaneously study

More information

Lecture Notes for Fall Network Modeling. Ernest Fraenkel

Lecture Notes for Fall Network Modeling. Ernest Fraenkel Lecture Notes for 20.320 Fall 2012 Network Modeling Ernest Fraenkel In this lecture we will explore ways in which network models can help us to understand better biological data. We will explore how networks

More information

Cell Alive Homeostasis Plants Animals Fungi Bacteria. Loose DNA DNA Nucleus Membrane-Bound Organelles Humans

Cell Alive Homeostasis Plants Animals Fungi Bacteria. Loose DNA DNA Nucleus Membrane-Bound Organelles Humans UNIT 3: The Cell DAYSHEET 45: Introduction to Cellular Organelles Name: Biology I Date: Bellringer: Place the words below into the correct space on the Venn Diagram: Cell Alive Homeostasis Plants Animals

More information

Context dependent visualization of protein function

Context dependent visualization of protein function Article III Context dependent visualization of protein function In: Juho Rousu, Samuel Kaski and Esko Ukkonen (eds.). Probabilistic Modeling and Machine Learning in Structural and Systems Biology. 2006,

More information

Chapter 6: A Tour of the Cell

Chapter 6: A Tour of the Cell Chapter 6: A Tour of the Cell 1. The study of cells has been limited by their small size, and so they were not seen and described until 1665, when Robert Hooke first looked at dead cells from an oak tree.

More information

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models Last time Domains Hidden Markov Models Today Secondary structure Transmembrane proteins Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL

More information

CHAPTER 1 INTRODUCTION TO CELLS 2009 Garland Science Publishing 3 rd Edition

CHAPTER 1 INTRODUCTION TO CELLS 2009 Garland Science Publishing 3 rd Edition Unity and Diversity of Cells 1-1 The smallest unit of life is a(n) (a) DNA molecule. (b) cell. (c) organelle. (d) virus. (e) protein. CHAPTER 1 INTRODUCTION TO CELLS 2009 Garland Science Publishing 3 rd

More information

Cell Organelles. a review of structure and function

Cell Organelles. a review of structure and function Cell Organelles a review of structure and function TEKS and Student Expectations (SE s) B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized

More information

Cell Theory. Cell Structure. Chapter 4. Cell is basic unit of life. Cells discovered in 1665 by Robert Hooke

Cell Theory. Cell Structure. Chapter 4. Cell is basic unit of life. Cells discovered in 1665 by Robert Hooke Cell Structure Chapter 4 Cell is basic unit of life Cell Theory Cells discovered in 1665 by Robert Hooke Early cell studies conducted by - Mathias Schleiden (1838) - Theodor Schwann (1839) Schleiden &

More information

UNIT 3 CP BIOLOGY: Cell Structure

UNIT 3 CP BIOLOGY: Cell Structure UNIT 3 CP BIOLOGY: Cell Structure Page CP: CHAPTER 3, Sections 1-3; HN: CHAPTER 7, Sections 1-2 Standard B-2: The student will demonstrate an understanding of the structure and function of cells and their

More information

Chapter 4: Cells: The Working Units of Life

Chapter 4: Cells: The Working Units of Life Name Period Chapter 4: Cells: The Working Units of Life 1. What are the three critical components of the cell theory? 2. What are the two important conceptual implications of the cell theory? 3. Which

More information

Chapter 4 A Tour of the Cell*

Chapter 4 A Tour of the Cell* Chapter 4 A Tour of the Cell* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Fundamental Units of Life Cells

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Chapter 12: Intracellular sorting

Chapter 12: Intracellular sorting Chapter 12: Intracellular sorting Principles of intracellular sorting Principles of intracellular sorting Cells have many distinct compartments (What are they? What do they do?) Specific mechanisms are

More information

Chapter 4 Active Reading Guide A Tour of the Cell

Chapter 4 Active Reading Guide A Tour of the Cell Name: AP Biology Mr. Croft Chapter 4 Active Reading Guide A Tour of the Cell Section 1 1. The study of cells has been limited by their small size, and so they were not seen and described until 1665, when

More information

Lecture 7 Cell Biolog y ٢٢٢ ١

Lecture 7 Cell Biolog y ٢٢٢ ١ Lecture 7 ١ Mitochondria ٢ Mitochondria Mitochondria are the energy factories of the cells. The energy currency for the work that animals must do is the energy-rich molecule adenosine triphosphate (ATP).

More information

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology?

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? 2) How does an electron microscope work and what is the difference

More information

Introduction to cells

Introduction to cells Almen Cellebiologi Introduction to cells 1. Unity and diversity of cells 2. Microscopes and visualization of cells 3. Prokaryotic cells, eubacteria and archaea 4. Eucaryotic cells, nucleus, mitochondria

More information

Parts of the Cell book pgs

Parts of the Cell book pgs Parts of the Cell book pgs. 12-18 Animal Cell Cytoplasm Cell Membrane Go to Section: Eukaryotic Cell: Organelles & Functions 1. Cell Membrane (Nickname: skin ) Function: A protective layer that covers

More information

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features Cell Structure and Function Table of Contents Section 1 The History of Cell Biology Section 2 Introduction to Cells Section 3 Cell Organelles and Features Section 4 Unique Features of Plant Cells Section

More information

What is a cell? A cell is the basic unit of structure and function in living things. Who discovered cells?

What is a cell? A cell is the basic unit of structure and function in living things. Who discovered cells? INTRODUCTION TO THE CELL What is a cell? A cell is the basic unit of structure and function in living things. Who discovered cells? Robert Hooke (by looking at a piece of cork under a microscope What is

More information

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure Last time Today Domains Hidden Markov Models Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL SSLGPVVDAHPEYEEVALLERMVIPERVIE FRVPWEDDNGKVHVNTGYRVQFNGAIGPYK

More information

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting.

Genome Annotation. Bioinformatics and Computational Biology. Genome sequencing Assembly. Gene prediction. Protein targeting. Genome Annotation Bioinformatics and Computational Biology Genome Annotation Frank Oliver Glöckner 1 Genome Analysis Roadmap Genome sequencing Assembly Gene prediction Protein targeting trna prediction

More information

Stamford Public Schools Science Department District Midterm Examination REVIEW

Stamford Public Schools Science Department District Midterm Examination REVIEW Stamford Public Schools Science Department District Midterm Examination REVIEW 2014-2015 Honors Biology Student Name: School/Teacher: Date: SPS Honors Biology Midterm Review, January 2015 Page 1 Dear Biology

More information

Van Leeuwenhoek. 1 st crude microscope made by the Dutchman

Van Leeuwenhoek. 1 st crude microscope made by the Dutchman The Cell History of Cells In 1665, English scientist Robert Hooke used the first compound light microscope to see plant tissues He viewed several thin slices of cork He called the small chambers within

More information

Basic Biology. Content Skills Learning Targets Assessment Resources & Technology

Basic Biology. Content Skills Learning Targets Assessment Resources & Technology Teacher: Lynn Dahring Basic Biology August 2014 Basic Biology CEQ (tri 1) 1. What are the parts of the biological scientific process? 2. What are the essential molecules and elements in living organisms?

More information

9/8/2010. Chapter 4. Structures Internal to the Cell Wall. The Plasma Membrane. Functional Anatomy of Prokaryotic and Eukaryotic Cells

9/8/2010. Chapter 4. Structures Internal to the Cell Wall. The Plasma Membrane. Functional Anatomy of Prokaryotic and Eukaryotic Cells Chapter 4 Functional Anatomy of Prokaryotic and Eukaryotic Cells Johana Meléndez Part II slides 39-87 Lectures prepared by Christine L. Case Structures Internal to the Cell Wall Learning Objectives 4-8

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

The diagram below represents levels of organization within a cell of a multicellular organism.

The diagram below represents levels of organization within a cell of a multicellular organism. STATION 1 1. Unlike prokaryotic cells, eukaryotic cells have the capacity to a. assemble into multicellular organisms b. establish symbiotic relationships with other organisms c. obtain energy from the

More information

Types of biological networks. I. Intra-cellurar networks

Types of biological networks. I. Intra-cellurar networks Types of biological networks I. Intra-cellurar networks 1 Some intra-cellular networks: 1. Metabolic networks 2. Transcriptional regulation networks 3. Cell signalling networks 4. Protein-protein interaction

More information

Cell Theory. The cell is the basic unit of structure and function for all living things, but no one knew they existed before the 17 th century!

Cell Theory. The cell is the basic unit of structure and function for all living things, but no one knew they existed before the 17 th century! Cell Notes Cell Theory All living organisms are made of. cells The cell is the basic unit of structure and function for all living things, but no one knew they existed before the 17 th century! In 1665,

More information

Integration of functional genomics data

Integration of functional genomics data Integration of functional genomics data Laboratoire Bordelais de Recherche en Informatique (UMR) Centre de Bioinformatique de Bordeaux (Plateforme) Rennes Oct. 2006 1 Observations and motivations Genomics

More information

Biology Midterm Review

Biology Midterm Review Biology Midterm Review Unit 1 Keystone Objectives: A.1.1, A.1.2, B.4.1.1 1.1 Biology explores life from the global to the microscopic level. Put the levels of organization in order, starting with subatomic

More information

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline CHAPTER 3 Cell Structure and Genetic Control Chapter 3 Outline Plasma Membrane Cytoplasm and Its Organelles Cell Nucleus and Gene Expression Protein Synthesis and Secretion DNA Synthesis and Cell Division

More information

Cells. Structural and functional units of living organisms

Cells. Structural and functional units of living organisms Cells Structural and functional units of living organisms Eukaryotic ( true nucleus ) vs. Prokaryotic ( before nucleus ) cells Proks Eukaryotic ( true nucleus ) vs. Prokaryotic ( before nucleus ) cells

More information

Class IX: Biology Chapter 5: The fundamental unit of life. Chapter Notes. 1) In 1665, Robert Hooke first discovered and named the cells.

Class IX: Biology Chapter 5: The fundamental unit of life. Chapter Notes. 1) In 1665, Robert Hooke first discovered and named the cells. Class IX: Biology Chapter 5: The fundamental unit of life. Key learnings: Chapter Notes 1) In 1665, Robert Hooke first discovered and named the cells. 2) Cell is the structural and functional unit of all

More information

Cell. A Montagud E Navarro P Fernández de Córdoba JF Urchueguía

Cell. A Montagud E Navarro P Fernández de Córdoba JF Urchueguía presents A Montagud E Navarro P Fernández de Córdoba JF Urchueguía definition causes classical cell theory modern cell theory Basic elements life chemistry lipids nucleic acids amino acids carbohydrates

More information

CHARACTERISTICS OF LIFE ORGANIZATION OF LIFE CELL THEORY TIMELINE

CHARACTERISTICS OF LIFE ORGANIZATION OF LIFE CELL THEORY TIMELINE CHARACTERISTICS OF LIFE 1. composed of cells either uni/multi 2. reproduce sexual and/or asexual 3. contain DNA in cells 4. grow and develop 5. use material/energy in metabolic reactions 6. respond to

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell 1 Review Facts About Living Things copyright cmassengale 2 What is life? Alive? Alive? What is life? Thus life defies a one sentence answer/definition Instead, life is recognized

More information

and their organelles

and their organelles and their organelles Discovery Video: Cells REVIEW!!!! The Cell Theory 1. Every living organism is made of one or more cells. 2. The cell is the basic unit of structure and function. It is the smallest

More information

CELB40060 Membrane Trafficking in Animal Cells. Prof. Jeremy C. Simpson. Lecture 2 COPII and export from the ER

CELB40060 Membrane Trafficking in Animal Cells. Prof. Jeremy C. Simpson. Lecture 2 COPII and export from the ER CELB40060 Membrane Trafficking in Animal Cells Prof. Jeremy C. Simpson Lecture 2 COPII and export from the ER Today s lecture... The COPII coat - localisation and subunits Formation of the COPII coat at

More information

FREEMAN MEDIA INTEGRATION GUIDE Chapter 7: Inside the Cell

FREEMAN MEDIA INTEGRATION GUIDE Chapter 7: Inside the Cell FREEMAN MEDIA INTEGRATION GUIDE Chapter 7: Inside the Cell All media is on the Instructors Resource CD/DVD JPEG Resources Figures, Photos, and Tables PowerPoint Resources Chapter Outline with Figures Lecture

More information

3.2 Cell Organelles. KEY CONCEPT Eukaryotic cells share many similarities.

3.2 Cell Organelles. KEY CONCEPT Eukaryotic cells share many similarities. KEY CONCEPT Eukaryotic cells share many similarities. ! Cells have an internal structure. ! Cells have an internal structure. The cytoskeleton has many functions. ! Cells have an internal structure. The

More information

Chapter 3: Cells. Lectures by Mark Manteuffel, St. Louis Community College

Chapter 3: Cells. Lectures by Mark Manteuffel, St. Louis Community College Chapter 3: Cells Lectures by Mark Manteuffel, St. Louis Community College Learning Objectives Be able to describe: what a cell is & two main classes of cells. structure & functions of cell membranes. how

More information

Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis.

Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis. Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis. Enduring understanding 2.B: Growth, reproduction and dynamic

More information

CELL STRUCTURE & FUNCTION

CELL STRUCTURE & FUNCTION 7-1 Life Is Cellular CELL STRUCTURE & FUNCTION Copyright Pearson Prentice Hall The Discovery of the Cell 1665: Robert Hooke used an early compound microscope to look at a thin slice of cork. Cork looked

More information

A transcriptome meta-analysis identifies the response of plant to stresses. Etienne Delannoy, Rim Zaag, Guillem Rigaill, Marie-Laure Martin-Magniette

A transcriptome meta-analysis identifies the response of plant to stresses. Etienne Delannoy, Rim Zaag, Guillem Rigaill, Marie-Laure Martin-Magniette A transcriptome meta-analysis identifies the response of plant to es Etienne Delannoy, Rim Zaag, Guillem Rigaill, Marie-Laure Martin-Magniette Biological context Multiple biotic and abiotic es impacting

More information