Introduction to Pattern Recognition. Sequence structure function

Size: px
Start display at page:

Download "Introduction to Pattern Recognition. Sequence structure function"

Transcription

1 Introduction to Pattern Recognition Sequence structure function Prediction in Bioinformatics What do we want to predict? Features from sequence Data mining How can we predict? Homology / Alignment Pattern Recognition / Statistical Methods / Machine Learning What is prediction? Generalization / Overfitting Preventing overfitting: Homology reduction How do we measure prediction? Performance measures Threshold selection Henrik Nielsen Center for Biological Sequence Analysis Technical University of Denmark Protein-coding genes transcription factor binding sites transcription start/stop translation start/stop splicing: donor/acceptor sites Non-coding RNA trnas rrnas mirnas General features Structure (curvature/bending) Binding (histones etc.) Prediction from DNA sequence Folding / structure Post-Translational Modifications Attachment: phosphorylation glycosylation lipid attachment Cleavage: signal peptides, propeptides, transit peptides Sorting: secretion, import into various organelles, insertion into membranes Interactions Function Enzyme activity Transport Receptors Structural components etc Prediction from amino acid sequence 1

2 Protein sorting in eukaryotes Data: UniProt annotation of protein sorting Annotations relevant for protein sorting are found in: the CC (comments) lines ( Ontology cross-references (DR lines) to GO (Gene the FT (feature table) lines ID INS_HUMAN Reviewed; 110 AA. AC P01308; DE Insulin precursor [Contains: Insulin B chain; Insulin A chain]. GN Name=INS; CC -!- SUBCELLULAR LOCATION: Secreted. DR GO; GO: ; C:extracellular region; IC:UniProtKB. FT SIGNAL 1 24 Proteins belong in different organelles of the cell and some even have their function outside the cell Günter Blobel was in 1999 awarded The Nobel Prize in Physiology or Medicine for the discovery that "proteins have intrinsic signals that govern their transport and localization in the cell" 3 types of non-experimental qualifiers in the CC and FT lines: Potential: Predicted by sequence analysis methods Probable: Inconclusive experimental evidence By similarity: Predicted by alignment to proteins with known location Extreme example: A4_HUMAN, Alzheimer disease amyloid protein Problems in database parsing CC -!- SUBCELLULAR LOCATION: Membrane; Single-pass type I membrane CC protein. Note=Cell surface protein that rapidly becomes CC internalized via clathrin-coated pits. During maturation, the CC immature APP (N-glycosylated in the endoplasmic reticulum) moves CC to the Golgi complex where complete maturation occurs (O- CC glycosylated and sulfated). After alpha-secretase cleavage, CC soluble APP is released into the extracellular space and the C- CC terminal is internalized to endosomes and lysosomes. Some APP CC accumulates in secretory transport vesicles leaving the late Golgi CC compartment and returns to the cell surface. Gamma-CTF(59) peptide CC is located to both the cytoplasm and nuclei of neurons. It can be CC translocated to the nucleus through association with Fe65. Beta- CC APP42 associates with FRPL1 at the cell surface and the complex is CC then rapidly internalized. APP sorts to the basolateral surface in CC epithelial cells. During neuronal differentiation, the Thr-743 CC phosphorylated form is located mainly in growth cones, moderately CC in neurites and sparingly in the cell body. Casein kinase CC phosphorylation can occur either at the cell surface or within a CC post-golgi compartment. DR GO; GO: ; C:cell surface; IDA:UniProtKB. DR GO; GO: ; C:extracellular region; TAS:ProtInc. DR GO; GO: ; C:integral to plasma membrane; TAS:ProtInc. Prediction methods Homology / Alignment Simple pattern recognition Example: PROSITE entry PS00014, ER_TARGET: Endoplasmic reticulum targeting sequence. Pattern: [KRHQSA]-[DENQ]-E-L> Statistical methods Weight matrices: calculate amino acid probabilities Other examples: Regression, variance analysis, clustering Machine learning Like statistical methods, but parameters are estimated by iterative training rather than direct calculation Examples: Neural Networks (NN), Hidden Markov Models (HMM), Support Vector Machines (SVM) 2

3 Prediction of subcellular localisation from sequence Homology: threshold 30%-70% identity Sorting signals ( zip codes ) N-terminal: secretory (ER) signal peptides, mitochondrial & chloroplast transit peptides. C-terminal: peroxisomal targeting signal 1, ER-retention signal. internal: Nuclear localisation signals, nuclear export signals. Global properties amino acid composition, aa pair composition composition in limited regions predicted structure physico-chemical parameters Combined approaches Signal-based prediction Signal peptides von Heijne 1983, 1986 [WM] SignalP (Nielsen et al. 1997, 1998; Bendtsen et al. 2004) [NN, HMM] Mitochondrial & chloroplast transit peptides Mitoprot (Claros & Vincens 1996) [linear discriminant using physico-chemical parameters] ChloroP, TargetP* (Emanuelsson et al. 1999, 2000) [NN] ipsort* (Bannai et al. 2002) [decision tree using physicochemical parameters] Protein Prowler* (Hawkins & Bodén 2006) [NN] *= includes also signal peptides Nuclear localisation signals PredictNLS (Cokol et al. 2000) [regex] NucPred (Heddad et al. 2004) [regex, GA] Composition-based prediction A simple statistical method: Linear regression Nakashima and Nishikawa 1994 [2 categories; odds-ratio statistics] ProtLock (Cedano et al. 1997) [5 categories; Mahalanobis distance] Chou and Elrod 1998 [12 categories; covariant discriminant] NNPSL (Reinhardt and Hubbard 1998) [4 categories; NN] SubLoc (Hua and Sun 2001) [4 categories; SVM] PLOC (Park and Kanehisa 2003) [12 categories; SVM] LOCtree (Nair & Rost 2005) [6 categories; SVM incl. regions, structure and profiles] BaCelLo (Pierleoni et al. 2006) [5 categories; SVM incl. regions and profiles] Pro: does not require knowledge of signals works even if N-terminus is wrong Con: cannot identify isoform differences Observations (training data): a set of x values (input) and y values (output). Model: y = ax + b (2 parameters, which are estimated from the training data) Prediction: Use the model to calculate a y value for a new x value Note: the model does not fit the observations exactly. Can we do better than this? 3

4 Overfitting A classification problem y = ax + b 2 parameter model Good description, poor fit y = ax 6 +bx 5 +cx 4 +dx 3 +ex 2 +fx+g 7 parameter model Poor description, good fit Note: It is not interesting that a model can fit its observations (training data) exactly. To function as a prediction method, a model must be able to generalize, i.e. produce sensible output on new data. How complex a model should we choose? This depends on: The real complexity of the problem The size of the training data set The amount of noise in the data set How to estimate parameters for prediction? Model selection Linear Regression Quadratic Regression Join-the-dots 4

5 The test set method The test set method The test set method The test set method 5

6 The test set method 6

7 7

8 Which kind of? Problem: sequences are related Note: Leave-one-out is also known as jack-knife ALAKAAAAM ALAKAAAAN ALAKAAAAR ALAKAAAAT ALAKAAAAV GMNERPILT GILGFVFTM TLNAWVKVV KLNEPVLLL AVVPFIVSV If the sequences in the test set are closely related to those in the training set, we can not measure true generalization performance Calculate all pairwise similarities in the data set Define a threshold for being neighbours (too closely related) Calculate numbers of neighbours for each example, and remove the example with most neighbours Repeat until there are no examples with neighbours left Solution: Homology reduction Alternative: Homology partitioning keep all examples, but cluster them so that no neighbours end up in the same fold Should be combined with weighting The Hobohm algorithm First approach: two sequences are too closely related, if the prediction problem can be solved by alignment Defining a threshold for homology reduction The Sander/Schneider curve: For protein structure prediction, 70% identical classification of secondary structure means prediction by alignment is possible This corresponds to 25% identical amino acids in a local alignment > 80 positions 8

9 Defining a threshold for homology reduction Second approach: two sequences are too closely related, if their homology is statistically significant The Pedersen / Nielsen / Wernersson curve: Use the extreme value distribution to define the BLAST score at which the similarity is stronger than random 9

Signal peptides and protein localization prediction

Signal peptides and protein localization prediction Downloaded from orbit.dtu.dk on: Jun 30, 2018 Signal peptides and protein localization prediction Nielsen, Henrik Published in: Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics Publication

More information

Supervised Ensembles of Prediction Methods for Subcellular Localization

Supervised Ensembles of Prediction Methods for Subcellular Localization In Proc. of the 6th Asia-Pacific Bioinformatics Conference (APBC 2008), Kyoto, Japan, pp. 29-38 1 Supervised Ensembles of Prediction Methods for Subcellular Localization Johannes Aßfalg, Jing Gong, Hans-Peter

More information

Yeast ORFan Gene Project: Module 5 Guide

Yeast ORFan Gene Project: Module 5 Guide Cellular Localization Data (Part 1) The tools described below will help you predict where your gene s product is most likely to be found in the cell, based on its sequence patterns. Each tool adds an additional

More information

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki.

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki. Protein Bioinformatics Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet rickard.sandberg@ki.se sandberg.cmb.ki.se Outline Protein features motifs patterns profiles signals 2 Protein

More information

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline CHAPTER 3 Cell Structure and Genetic Control Chapter 3 Outline Plasma Membrane Cytoplasm and Its Organelles Cell Nucleus and Gene Expression Protein Synthesis and Secretion DNA Synthesis and Cell Division

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Tour of the Cell 1 Types of cells Prokaryote bacteria cells - no organelles - organelles Eukaryote animal cells Eukaryote plant cells Why organelles? Specialized structures u specialized functions cilia

More information

What is the central dogma of biology?

What is the central dogma of biology? Bellringer What is the central dogma of biology? A. RNA DNA Protein B. DNA Protein Gene C. DNA Gene RNA D. DNA RNA Protein Review of DNA processes Replication (7.1) Transcription(7.2) Translation(7.3)

More information

Chapter 12: Intracellular sorting

Chapter 12: Intracellular sorting Chapter 12: Intracellular sorting Principles of intracellular sorting Principles of intracellular sorting Cells have many distinct compartments (What are they? What do they do?) Specific mechanisms are

More information

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

!"#$%&'%()*%+*,,%-&,./*%01%02%/*/3452*%3&.26%&4752*,,*1%%

!#$%&'%()*%+*,,%-&,./*%01%02%/*/3452*%3&.26%&4752*,,*1%% !"#$%&'%()*%+*,,%-&,./*%01%02%/*/3452*%3&.26%&4752*,,*1%% !"#$%&'(")*++*%,*'-&'./%/,*#01#%-2)#3&)/% 4'(")*++*% % %5"0)%-2)#3&) %%% %67'2#72'*%%%%%%%%%%%%%%%%%%%%%%%4'(")0/./% % 8$+&'&,+"/7 % %,$&7&/9)7$*/0/%%%%%%%%%%

More information

EXAMPLE-BASED CLASSIFICATION OF PROTEIN SUBCELLULAR LOCATIONS USING PENTA-GRAM FEATURES

EXAMPLE-BASED CLASSIFICATION OF PROTEIN SUBCELLULAR LOCATIONS USING PENTA-GRAM FEATURES EXAMPLE-BASED CLASSIFICATION OF PROTEIN SUBCELLULAR LOCATIONS USING PENTA-GRAM FEATURES Jinsuk Kim 1, Ho-Eun Park 2, Mi-Nyeong Hwang 1, Hyeon S. Son 2,3 * 1 Information Technology Department, Korea Institute

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

Machine Learning in Action

Machine Learning in Action Machine Learning in Action Tatyana Goldberg (goldberg@rostlab.org) August 16, 2016 @ Machine Learning in Biology Beijing Genomics Institute in Shenzhen, China June 2014 GenBank 1 173,353,076 DNA sequences

More information

Protein Sorting. By: Jarod, Tyler, and Tu

Protein Sorting. By: Jarod, Tyler, and Tu Protein Sorting By: Jarod, Tyler, and Tu Definition Organizing of proteins Organelles Nucleus Ribosomes Endoplasmic Reticulum Golgi Apparatus/Vesicles How do they know where to go? Amino Acid Sequence

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

Supplementary Information 16

Supplementary Information 16 Supplementary Information 16 Cellular Component % of Genes 50 45 40 35 30 25 20 15 10 5 0 human mouse extracellular other membranes plasma membrane cytosol cytoskeleton mitochondrion ER/Golgi translational

More information

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

SVM Kernel Optimization: An Example in Yeast Protein Subcellular Localization Prediction

SVM Kernel Optimization: An Example in Yeast Protein Subcellular Localization Prediction SVM Kernel Optimization: An Example in Yeast Protein Subcellular Localization Prediction Ṭaráz E. Buck Computational Biology Program tebuck@andrew.cmu.edu Bin Zhang School of Public Policy and Management

More information

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d Chapter 1 1. Matching Questions DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d 2. Matching Questions : Unbranched polymer that, when folded into its three-dimensional shape,

More information

Transport between cytosol and nucleus

Transport between cytosol and nucleus of 60 3 Gated trans Lectures 9-15 MBLG 2071 The n GATED TRANSPORT transport between cytoplasm and nucleus (bidirectional) controlled by the nuclear pore complex active transport for macro molecules e.g.

More information

Improved Prediction of Signal Peptides: SignalP 3.0

Improved Prediction of Signal Peptides: SignalP 3.0 doi:10.1016/j.jmb.2004.05.028 J. Mol. Biol. (2004) 340, 783 795 Improved Prediction of Signal Peptides: SignalP 3.0 Jannick Dyrløv Bendtsen 1, Henrik Nielsen 1, Gunnar von Heijne 2 and Søren Brunak 1 *

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models

Intro Secondary structure Transmembrane proteins Function End. Last time. Domains Hidden Markov Models Last time Domains Hidden Markov Models Today Secondary structure Transmembrane proteins Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

SUB-CELLULAR LOCALIZATION PREDICTION USING MACHINE LEARNING APPROACH

SUB-CELLULAR LOCALIZATION PREDICTION USING MACHINE LEARNING APPROACH SUB-CELLULAR LOCALIZATION PREDICTION USING MACHINE LEARNING APPROACH Ashutosh Kumar Singh 1, S S Sahu 2, Ankita Mishra 3 1,2,3 Birla Institute of Technology, Mesra, Ranchi Email: 1 ashutosh.4kumar.4singh@gmail.com,

More information

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure

Today. Last time. Secondary structure Transmembrane proteins. Domains Hidden Markov Models. Structure prediction. Secondary structure Last time Today Domains Hidden Markov Models Structure prediction NAD-specific glutamate dehydrogenase Hard Easy >P24295 DHE2_CLOSY MSKYVDRVIAEVEKKYADEPEFVQTVEEVL SSLGPVVDAHPEYEEVALLERMVIPERVIE FRVPWEDDNGKVHVNTGYRVQFNGAIGPYK

More information

Tutorial 4 Protein Biochemistry 2 Genes to proteins: Protein synthesis, transport, targeting, and degradation

Tutorial 4 Protein Biochemistry 2 Genes to proteins: Protein synthesis, transport, targeting, and degradation IPAM Cells and Materials: At the Interface between Mathematics, Biology and Engineering Tutorial 4 Protein Biochemistry 2 Genes to proteins: Protein synthesis, transport, targeting, and degradation Dr.

More information

Molecular Biology (9)

Molecular Biology (9) Molecular Biology (9) Translation Mamoun Ahram, PhD Second semester, 2017-2018 1 Resources This lecture Cooper, Ch. 8 (297-319) 2 General information Protein synthesis involves interactions between three

More information

Old FINAL EXAM BIO409/509 NAME. Please number your answers and write them on the attached, lined paper.

Old FINAL EXAM BIO409/509 NAME. Please number your answers and write them on the attached, lined paper. Old FINAL EXAM BIO409/509 NAME Please number your answers and write them on the attached, lined paper. Gene expression can be regulated at several steps. Describe one example for each of the following:

More information

Biological Process Term Enrichment

Biological Process Term Enrichment Biological Process Term Enrichment cellular protein localization cellular macromolecule localization intracellular protein transport intracellular transport generation of precursor metabolites and energy

More information

The Discovery of Cells

The Discovery of Cells The Discovery of Cells Microscope observations! General Cell & Organelle Discovery 1600s Observations made by scientists using more powerful microscopes in the 1800s led to the formation of the cell theory.

More information

The neuron as a secretory cell

The neuron as a secretory cell The neuron as a secretory cell EXOCYTOSIS ENDOCYTOSIS The secretory pathway. Transport and sorting of proteins in the secretory pathway occur as they pass through the Golgi complex before reaching the

More information

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis

Components of a functional cell. Boundary-membrane Cytoplasm: Cytosol (soluble components) & particulates DNA-information Ribosomes-protein synthesis Cell (Outline) - Components of a functional cell - Major Events in the History of Earth: abiotic and biotic phases; anaerobic and aerobic atmosphere - Prokaryotic cells impact on the biosphere - Origin

More information

S1 Gene ontology (GO) analysis of the network alignment results

S1 Gene ontology (GO) analysis of the network alignment results 1 Supplementary Material for Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model Hyundoo Jeong 1, Xiaoning Qian 1 and

More information

-14. -Abdulrahman Al-Hanbali. -Shahd Alqudah. -Dr Ma mon Ahram. 1 P a g e

-14. -Abdulrahman Al-Hanbali. -Shahd Alqudah. -Dr Ma mon Ahram. 1 P a g e -14 -Abdulrahman Al-Hanbali -Shahd Alqudah -Dr Ma mon Ahram 1 P a g e In this lecture we will talk about the last stage in the synthesis of proteins from DNA which is translation. Translation is the process

More information

Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins

Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins Mol Divers (2008) 12:41 45 DOI 10.1007/s11030-008-9073-0 FULL LENGTH PAPER Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins Bing Niu Yu-Huan Jin Kai-Yan

More information

CHAPTER 9 PROTEIN SUBCELLULAR LOCALIZATION PREDICTION

CHAPTER 9 PROTEIN SUBCELLULAR LOCALIZATION PREDICTION CHAPTER 9 PROTEIN SUBCELLULAR LOCALIZATION PREDICTION Paul Horton National Institute of Industrial Science and Technology horton-p@aist.go.jp Yuri Mukai National Institute of Industrial Science and Technology

More information

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2 Cellular Neuroanatomy I The Prototypical Neuron: Soma Reading: BCP Chapter 2 Functional Unit of the Nervous System The functional unit of the nervous system is the neuron. Neurons are cells specialized

More information

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Types of RNA Messenger RNA (mrna) makes a copy of DNA, carries instructions for making proteins,

More information

UNIT 3 CP BIOLOGY: Cell Structure

UNIT 3 CP BIOLOGY: Cell Structure UNIT 3 CP BIOLOGY: Cell Structure Page CP: CHAPTER 3, Sections 1-3; HN: CHAPTER 7, Sections 1-2 Standard B-2: The student will demonstrate an understanding of the structure and function of cells and their

More information

122-Biology Guide-5thPass 12/06/14. Topic 1 An overview of the topic

122-Biology Guide-5thPass 12/06/14. Topic 1  An overview of the topic Topic 1 http://bioichiban.blogspot.com Cellular Functions 1.1 The eukaryotic cell* An overview of the topic Key idea 1: Cell Organelles Key idea 2: Plasma Membrane Key idea 3: Transport Across Membrane

More information

Identifying Extracellular Plant Proteins Based on Frequent Subsequences

Identifying Extracellular Plant Proteins Based on Frequent Subsequences Identifying Extracellular Plant Proteins Based on Frequent Subsequences Yang Wang, Osmar R. Zaïane, Randy Goebel and Gregory Taylor University of Alberta {wyang, zaiane, goebel}@cs.ualberta.ca Abstract

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

Biology. 7-2 Eukaryotic Cell Structure 10/29/2013. Eukaryotic Cell Structures

Biology. 7-2 Eukaryotic Cell Structure 10/29/2013. Eukaryotic Cell Structures Biology Biology 1of 49 2of 49 Eukaryotic Cell Structures Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists

More information

Supplementary Materials for R3P-Loc Web-server

Supplementary Materials for R3P-Loc Web-server Supplementary Materials for R3P-Loc Web-server Shibiao Wan and Man-Wai Mak email: shibiao.wan@connect.polyu.hk, enmwmak@polyu.edu.hk June 2014 Back to R3P-Loc Server Contents 1 Introduction to R3P-Loc

More information

Cell (Learning Objectives)

Cell (Learning Objectives) Cell (Learning Objectives) 1. Understand & describe the basic components necessary for a functional cell. 2. Review the order of appearance of cells on earth and explain the endosymbiotic theory. 3. Compare

More information

Efficient Classification of Multi-label and Imbalanced Data Using Min-Max Modular Classifiers

Efficient Classification of Multi-label and Imbalanced Data Using Min-Max Modular Classifiers 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006 Efficient Classification of Multi-label and Imbalanced Data Using Min-Max

More information

Supplementary Materials for mplr-loc Web-server

Supplementary Materials for mplr-loc Web-server Supplementary Materials for mplr-loc Web-server Shibiao Wan and Man-Wai Mak email: shibiao.wan@connect.polyu.hk, enmwmak@polyu.edu.hk June 2014 Back to mplr-loc Server Contents 1 Introduction to mplr-loc

More information

~~~ ~ Nobel Prize in Physiology or Medicine Utpal Tatu

~~~ ~ Nobel Prize in Physiology or Medicine Utpal Tatu Nobel Prize in Physiology or Medicine 1999 Utpal Tatu The Nobel Prize in Physiology and Medicine for the year 1999 has been awarded to Gunter Blobel for his discovery of signals that direct proteins to

More information

Cell Biology Review. The key components of cells that concern us are as follows: 1. Nucleus

Cell Biology Review. The key components of cells that concern us are as follows: 1. Nucleus Cell Biology Review Development involves the collective behavior and activities of cells, working together in a coordinated manner to construct an organism. As such, the regulation of development is intimately

More information

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis: Protein synthesis uses the information in genes to make proteins. 2 Steps

More information

Turns sunlight, water & carbon dioxide (CO 2 ) into sugar & oxygen through photosynthesis

Turns sunlight, water & carbon dioxide (CO 2 ) into sugar & oxygen through photosynthesis CELL PART/ ORGANELLE FUNCTION (what it does) PICTURE Plant, Animal, or Both Cell Membrane controls what goes in & out of the cell protects the cell Nucleus directs all the cell s activities contains cell

More information

Support vector machine approach for protein subcellular localization prediction. Sujun Hua and Zhirong Sun

Support vector machine approach for protein subcellular localization prediction. Sujun Hua and Zhirong Sun BIOINFORMATICS Vol. 17 no. 8 2001 Pages 721 728 Support vector machine approach for protein subcellular localization prediction Sujun Hua and Zhirong Sun Institute of Bioinformatics, State Key Laboratory

More information

Cells & Cell Organelles. Doing Life s Work

Cells & Cell Organelles. Doing Life s Work Cells & Cell Organelles Doing Life s Work Types of cells bacteria cells Prokaryote Eukaryotes animal cells plant cells Cell size comparison Animal cell Bacterial cell most bacteria 1-10 microns eukaryotic

More information

Degeneracy. Two types of degeneracy:

Degeneracy. Two types of degeneracy: Degeneracy The occurrence of more than one codon for an amino acid (AA). Most differ in only the 3 rd (3 ) base, with the 1 st and 2 nd being most important for distinguishing the AA. Two types of degeneracy:

More information

Nucleus. The nucleus is a membrane bound organelle that store, protect and express most of the genetic information(dna) found in the cell.

Nucleus. The nucleus is a membrane bound organelle that store, protect and express most of the genetic information(dna) found in the cell. Nucleus The nucleus is a membrane bound organelle that store, protect and express most of the genetic information(dna) found in the cell. Since regulation of gene expression takes place in the nucleus,

More information

Using N-terminal targeting sequences, amino acid composition, and sequence motifs for predicting protein subcellular localization

Using N-terminal targeting sequences, amino acid composition, and sequence motifs for predicting protein subcellular localization Using N-terminal targeting sequences, amino acid composition, and sequence motifs for predicting protein subcellular localization Annette Höglund, Pierre Dönnes, Torsten Blum, Hans-Werner Adolph, and Oliver

More information

How do cell structures enable a cell to carry out basic life processes? Eukaryotic cells can be divided into two parts:

How do cell structures enable a cell to carry out basic life processes? Eukaryotic cells can be divided into two parts: Essential Question How do cell structures enable a cell to carry out basic life processes? Cell Organization Eukaryotic cells can be divided into two parts: 1. Nucleus 2. Cytoplasm-the portion of the cell

More information

7-2 Eukaryotic Cell Structure

7-2 Eukaryotic Cell Structure 1 of 49 Comparing the Cell to a Factory Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists divide the eukaryotic

More information

Cellular Transport. 1. Transport to and across the membrane 1a. Transport of small molecules and ions 1b. Transport of proteins

Cellular Transport. 1. Transport to and across the membrane 1a. Transport of small molecules and ions 1b. Transport of proteins Transport Processes Cellular Transport 1. Transport to and across the membrane 1a. Transport of small molecules and ions 1b. Transport of proteins 2. Vesicular transport 3. Transport through the nuclear

More information

Incorporating cellular sorting structure for better prediction of protein subcellular locations

Incorporating cellular sorting structure for better prediction of protein subcellular locations Journal of Experimental & Theoretical Artificial Intelligence ISSN: 952-83X (Print) 362-379 (Online) Journal homepage: http://www.tandfonline.com/loi/teta2 Incorporating cellular sorting structure for

More information

CELL PART Expanded Definition Cell Structure Illustration Function Summary Location ALL CELLS DNA Common in Animals Uncommon in Plants Lysosome

CELL PART Expanded Definition Cell Structure Illustration Function Summary Location ALL CELLS DNA Common in Animals Uncommon in Plants Lysosome CELL PART Expanded Definition Cell Structure Illustration Function Summary Location is the material that contains the Carry genetic ALL CELLS information that determines material inherited characteristics.

More information

From Gene to Protein

From Gene to Protein From Gene to Protein Gene Expression Process by which DNA directs the synthesis of a protein 2 stages transcription translation All organisms One gene one protein 1. Transcription of DNA Gene Composed

More information

Protein Sorting, Intracellular Trafficking, and Vesicular Transport

Protein Sorting, Intracellular Trafficking, and Vesicular Transport Protein Sorting, Intracellular Trafficking, and Vesicular Transport Noemi Polgar, Ph.D. Department of Anatomy, Biochemistry and Physiology Email: polgar@hawaii.edu Phone: 692-1422 Outline Part 1- Trafficking

More information

From the Bioinformatics Centre, Institute of Microbial Technology, Sector 39A, Chandigarh, India

From the Bioinformatics Centre, Institute of Microbial Technology, Sector 39A, Chandigarh, India THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 280, No.??, Issue of??????, pp. 1 xxx, 2005 2005 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. AQ: A Support Vector Machine-based

More information

Discriminative Motif Finding for Predicting Protein Subcellular Localization

Discriminative Motif Finding for Predicting Protein Subcellular Localization IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1 Discriminative Motif Finding for Predicting Protein Subcellular Localization Tien-ho Lin, Robert F. Murphy, Senior Member, IEEE, and

More information

Chapter

Chapter Chapter 17 17.4-17.6 Molecular Components of Translation A cell interprets a genetic message and builds a polypeptide The message is a series of codons on mrna The interpreter is called transfer (trna)

More information

Class Work 31. Describe the function of the Golgi apparatus? 32. How do proteins travel from the E.R. to the Golgi apparatus? 33. After proteins are m

Class Work 31. Describe the function of the Golgi apparatus? 32. How do proteins travel from the E.R. to the Golgi apparatus? 33. After proteins are m Eukaryotes Class Work 1. What does the word eukaryote mean? 2. What is the one major difference between eukaryotes and prokaryotes? 3. List the different kingdoms of the eukaryote domain in the order in

More information

Subcellular Localization of Proteins

Subcellular Localization of Proteins Available online at www.scholarsresearchlibrary.com Scholars research library Archives of Applied Science Research, 2011, 3 (6):392-401 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X

More information

2011 The Simple Homeschool Simple Days Unit Studies Cells

2011 The Simple Homeschool Simple Days Unit Studies Cells 1 We have a full line of high school biology units and courses at CurrClick and as online courses! Subscribe to our interactive unit study classroom and make science fun and exciting! 2 A cell is a small

More information

Cells. Structural and functional units of living organisms

Cells. Structural and functional units of living organisms Cells Structural and functional units of living organisms Eukaryotic ( true nucleus ) vs. Prokaryotic ( before nucleus ) cells Proks Eukaryotic ( true nucleus ) vs. Prokaryotic ( before nucleus ) cells

More information

Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs

Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs Tien-ho Lin CMU-0-02 Language Technologies Institute School of Computer Science Carnegie Mellon University 5000 Forbes

More information

Predicting protein subcellular localisation from amino acid sequence information Olof Emanuelsson Date received (in revised form): 10th September 2002

Predicting protein subcellular localisation from amino acid sequence information Olof Emanuelsson Date received (in revised form): 10th September 2002 Olof Emanuelsson works in close collaboration with Gunnar von Heijne on developing methods for predicting subcellular localisation of proteins. He is at the Stockholm Bioinformatics Center (SBC), a joint

More information

What Kind Of Molecules Carry Protein Assembly Instructions From The Nucleus To The Cytoplasm

What Kind Of Molecules Carry Protein Assembly Instructions From The Nucleus To The Cytoplasm What Kind Of Molecules Carry Protein Assembly Instructions From The Nucleus To The Cytoplasm What kind of reaction produces large molecules by linking small molecules? molecules carry protein assembly

More information

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Jianlin Cheng, PhD Department of Computer Science University of Missouri, Columbia

More information

Sequence Alignment Techniques and Their Uses

Sequence Alignment Techniques and Their Uses Sequence Alignment Techniques and Their Uses Sarah Fiorentino Since rapid sequencing technology and whole genomes sequencing, the amount of sequence information has grown exponentially. With all of this

More information

Cell Organelles Tutorial

Cell Organelles Tutorial 1 Name: Cell Organelles Tutorial TEK 7.12D: Differentiate between structure and function in plant and animal cell organelles, including cell membrane, cell wall, nucleus, cytoplasm, mitochondrion, chloroplast,

More information

Mean Hes score. Threshold

Mean Hes score. Threshold Mean Hes score 0.1 0.09 Common 0.08 Family 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Threshold SUPPLEMENTARY FIG. 1. Trend of mean Hes scores calculated based on the

More information

Why Bother? Predicting the Cellular Localization Sites of Proteins Using Bayesian Model Averaging. Yetian Chen

Why Bother? Predicting the Cellular Localization Sites of Proteins Using Bayesian Model Averaging. Yetian Chen Predicting the Cellular Localization Sites of Proteins Using Bayesian Model Averaging Yetian Chen 04-27-2010 Why Bother? 2008 Nobel Prize in Chemistry Roger Tsien Osamu Shimomura Martin Chalfie Green Fluorescent

More information

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program)

Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Syllabus of BIOINF 528 (2017 Fall, Bioinformatics Program) Course Name: Structural Bioinformatics Course Description: Instructor: This course introduces fundamental concepts and methods for structural

More information

JEPSLD: A JUDGMENTAL EUKARYOTIC PROTEIN SUBCELLULAR LOCATION DATABASE. Sanjeev Patra

JEPSLD: A JUDGMENTAL EUKARYOTIC PROTEIN SUBCELLULAR LOCATION DATABASE. Sanjeev Patra JEPSLD: A JUDGMENTAL EUKARYOTIC PROTEIN SUBCELLULAR LOCATION DATABASE by Sanjeev Patra A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the

More information

Sequence analysis and comparison

Sequence analysis and comparison The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

More information

A NEURAL NETWORK METHOD FOR IDENTIFICATION OF PROKARYOTIC AND EUKARYOTIC SIGNAL PEPTIDES AND PREDICTION OF THEIR CLEAVAGE SITES

A NEURAL NETWORK METHOD FOR IDENTIFICATION OF PROKARYOTIC AND EUKARYOTIC SIGNAL PEPTIDES AND PREDICTION OF THEIR CLEAVAGE SITES International Journal of Neural Systems, Vol. 8, Nos. 5 & 6 (October/December, 1997) 581 599 c World Scientific Publishing Company A NEURAL NETWORK METHOD FOR IDENTIFICATION OF PROKARYOTIC AND EUKARYOTIC

More information

Eukaryotic vs. Prokaryotic genes

Eukaryotic vs. Prokaryotic genes BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 18: Eukaryotic genes http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Eukaryotic vs. Prokaryotic genes Like in prokaryotes,

More information

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Overview of Cells Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Prokaryotic Cells Archaea Bacteria Come in many different shapes and sizes.5 µm 2 µm, up to 60 µm long Have large

More information

AS Biology Summer Work 2015

AS Biology Summer Work 2015 AS Biology Summer Work 2015 You will be following the OCR Biology A course and in preparation for this you are required to do the following for September 2015: Activity to complete Date done Purchased

More information

Prediction of signal peptides and signal anchors by a hidden Markov model

Prediction of signal peptides and signal anchors by a hidden Markov model In J. Glasgow et al., eds., Proc. Sixth Int. Conf. on Intelligent Systems for Molecular Biology, 122-13. AAAI Press, 1998. 1 Prediction of signal peptides and signal anchors by a hidden Markov model Henrik

More information

THE CELL 3/15/15 HUMAN ANATOMY AND PHYSIOLOGY I THE CELLULAR BASIS OF LIFE

THE CELL 3/15/15 HUMAN ANATOMY AND PHYSIOLOGY I THE CELLULAR BASIS OF LIFE HUMAN ANATOMY AND PHYSIOLOGY I Lecture: M 6-9:30 Randall Visitor Center Lab: W 6-9:30 Swatek Anatomy Center, Centennial Complex Required Text: Marieb 9 th edition Dr. Trevor Lohman DPT (949) 246-5357 tlohman@llu.edu

More information

Analysis and visualization of protein-protein interactions. Olga Vitek Assistant Professor Statistics and Computer Science

Analysis and visualization of protein-protein interactions. Olga Vitek Assistant Professor Statistics and Computer Science 1 Analysis and visualization of protein-protein interactions Olga Vitek Assistant Professor Statistics and Computer Science 2 Outline 1. Protein-protein interactions 2. Using graph structures to study

More information

General A&P Cell Labs - Cellular Anatomy & Division (Mitosis) Pre-Lab Guide

General A&P Cell Labs - Cellular Anatomy & Division (Mitosis) Pre-Lab Guide 1 General A&P Cell Labs - Cellular Anatomy & Division (Mitosis) Pre-Lab AWalk-About@ Guide Have someone in your group read the following out loud, while the others read along: In this "Walk About", we

More information

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features Cell Structure and Function Table of Contents Section 1 The History of Cell Biology Section 2 Introduction to Cells Section 3 Cell Organelles and Features Section 4 Unique Features of Plant Cells Section

More information

Biology. Mrs. Michaelsen. Types of cells. Cells & Cell Organelles. Cell size comparison. The Cell. Doing Life s Work. Hooke first viewed cork 1600 s

Biology. Mrs. Michaelsen. Types of cells. Cells & Cell Organelles. Cell size comparison. The Cell. Doing Life s Work. Hooke first viewed cork 1600 s Types of cells bacteria cells Prokaryote - no organelles Cells & Cell Organelles Doing Life s Work Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell Bacterial cell most

More information

Analysis of N-terminal Acetylation data with Kernel-Based Clustering

Analysis of N-terminal Acetylation data with Kernel-Based Clustering Analysis of N-terminal Acetylation data with Kernel-Based Clustering Ying Liu Department of Computational Biology, School of Medicine University of Pittsburgh yil43@pitt.edu 1 Introduction N-terminal acetylation

More information

A Bayesian System Integrating Expression Data with Sequence Patterns for Localizing Proteins: Comprehensive Application to the Yeast Genome

A Bayesian System Integrating Expression Data with Sequence Patterns for Localizing Proteins: Comprehensive Application to the Yeast Genome A Bayesian System Integrating Expression Data with Sequence Patterns for Localizing Proteins: Comprehensive Application to the Yeast Genome Amar Drawid 1 & Mark Gerstein 1,2 * Departments of (1) Molecular

More information

IMPORTANCE OF SECONDARY STRUCTURE ELEMENTS FOR PREDICTION OF GO ANNOTATIONS

IMPORTANCE OF SECONDARY STRUCTURE ELEMENTS FOR PREDICTION OF GO ANNOTATIONS IMPORTANCE OF SECONDARY STRUCTURE ELEMENTS FOR PREDICTION OF GO ANNOTATIONS Aslı Filiz 1, Eser Aygün 2, Özlem Keskin 3 and Zehra Cataltepe 2 1 Informatics Institute and 2 Computer Engineering Department,

More information

Chapter 7.2. Cell Structure

Chapter 7.2. Cell Structure Chapter 7.2 Cell Structure Daily Objectives Describe the structure and function of the cell nucleus. Describe the function and structure of membrane bound organelles found within the cell. Describe the

More information

ln vited Revie w Prohormone and proneuropeptide synthesis and secretion Histology and Histopathology

ln vited Revie w Prohormone and proneuropeptide synthesis and secretion Histology and Histopathology Histol Histopathol (1 997) 12: 1 179-1 188 Histology and Histopathology ln vited Revie w Prohormone and proneuropeptide synthesis and secretion M.J. Perone and M.G. Castro Molecular Medicine Unit, Department

More information

PROTEIN SUBCELLULAR LOCALIZATION PREDICTION BASED ON COMPARTMENT-SPECIFIC BIOLOGICAL FEATURES

PROTEIN SUBCELLULAR LOCALIZATION PREDICTION BASED ON COMPARTMENT-SPECIFIC BIOLOGICAL FEATURES 3251 PROTEIN SUBCELLULAR LOCALIZATION PREDICTION BASED ON COMPARTMENT-SPECIFIC BIOLOGICAL FEATURES Chia-Yu Su 1,2, Allan Lo 1,3, Hua-Sheng Chiu 4, Ting-Yi Sung 4, Wen-Lian Hsu 4,* 1 Bioinformatics Program,

More information

Cell Types. Prokaryotes

Cell Types. Prokaryotes Cell Types Prokaryotes before nucleus no membrane-bound nucleus only organelle present is the ribosome all other reactions occur in the cytoplasm not very efficient Ex.: bacteria 1 Cell Types Eukaryotes

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information