S1 Gene ontology (GO) analysis of the network alignment results

Size: px
Start display at page:

Download "S1 Gene ontology (GO) analysis of the network alignment results"

Transcription

1 1 Supplementary Material for Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model Hyundoo Jeong 1, Xiaoning Qian 1 and Byung-Jun Yoon 1,2 1 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA. 2 College of Science, Engineering, and Technology, Hamad Bin Khalifa University (HBKU), Doha, Qatar. byoon@qf.org.qa S1 Gene ontology (GO) analysis of the network alignment results Since GO (gene ontology) can be described as a graph and it has a hierarchical structure, all GO terms belong to one of root GO terms: molecular function (MF, GO:3674), biological process (BP, GO:815), and cellular component (CC, GO:5575). Figure S1 shows the number of three root GO terms that commonly appeared in the aligned protein pairs. Note that, in this analysis, we only used GO terms with the IC (information contents) greater than or equal to 2. As we can see, although the percentage of identified root GO terms are not much different to each method, can identify relatively larger number of common GO terms than other competing methods.

2 Yeast - Fly (a) Yeast - Worm (b) Yeast - Human (c) Yeast - Mouse (d) Fly - Worm (e) Fly - Human (f) Figure S1. Number of root GO terms in the alignment results. Number in the bar graph is the percentage of the particular root GO terms.

3 Fly - Mouse (g) Worm - Mouse (h) Worm - Human (i) Human - Mouse (j) Figure S1. Number of root GO terms in the alignment results. Number in the bar graph is the percentage of the particular root GO terms.

4 4 S2 List of GO terms that frequently appear in the network alignment results This section provides the most frequently appearing GO terms in the alignment results. Note that we only consider the commonly identified GO terms in the alignment of, and each table includes the GO terms that commonly appeared more than 1 times. In this analysis, we only used GO terms with the IC (information contents) greater than or equal to 2. Table 1. Frequent GO terms found in Yeast-Fly alignment GO:6468 protein phosphorylation biological process 29 GO:5886 plasma membrane cellular component 27 GO:3735 structural constituent of ribosome molecular function 25 GO:3924 GTPase activity molecular function 12 GO:573 nucleolus cellular component 12 GO:43161 proteasome-mediated ubiquitin-dependent protein catabolic process biological process 12 GO:16573 histone acetylation biological process 1 GO:43565 sequence-specific DNA binding molecular function 1 GO:45944 positive regulation of transcription from RNA polymerase II promoter biological process 1 Table 2. Frequent GO terms found in Yeast-Worm alignment GO:6468 protein phosphorylation biological process 25 GO:4672 protein kinase activity molecular function 12 GO:5886 plasma membrane cellular component 11

5 5 Table 3. Frequent GO terms found in Yeast-Human alignment GO:573 nucleolus cellular component 85 GO:5886 plasma membrane cellular component 56 GO:6468 protein phosphorylation biological process 49 GO:5783 endoplasmic reticulum cellular component 38 GO:4674 protein serine/threonine kinase activity molecular function 28 GO:22625 cytosolic large ribosomal subunit cellular component 27 GO:45944 positive regulation of transcription from RNA polymerase II promoter biological process 27 GO:5829 cytosol cellular component 26 GO:4672 protein kinase activity molecular function 21 GO:4842 ubiquitin-protein transferase activity molecular function 2 GO:6366 transcription from RNA polymerase II promoter biological process 2 GO:3924 GTPase activity molecular function 16 GO:43565 sequence-specific DNA binding molecular function 13 GO:3743 translation initiation factor activity molecular function 12 GO:4843 thiol-dependent ubiquitin-specific protease activity molecular function 12 GO:5665 DNA-directed RNA polymerase II, core complex cellular component 12 GO:568 anaphase-promoting complex cellular component 12 GO:5794 Golgi apparatus cellular component 12 GO:16887 ATPase activity molecular function 12 GO:22627 cytosolic small ribosomal subunit cellular component 12 GO:596 GTPase activator activity molecular function 11 GO:5669 transcription factor TFIID complex cellular component 11 GO:5768 endosome cellular component 1 Table 4. Frequent GO terms found in Yeast-Mouse alignment GO:6468 protein phosphorylation biological process 38 GO:5886 plasma membrane cellular component 28 GO:4672 protein kinase activity molecular function 22 GO:45944 positive regulation of transcription from RNA polymerase II promoter biological process 2 GO:573 nucleolus cellular component 18 GO:5743 mitochondrial inner membrane cellular component 17 GO:4674 protein serine/threonine kinase activity molecular function 14 GO:43565 sequence-specific DNA binding molecular function 14 GO:5783 endoplasmic reticulum cellular component 12 Table 5. Frequent GO terms found in Fly-Worm alignment GO:5739 mitochondrion cellular component 26 GO:5886 plasma membrane cellular component 23 GO:45944 positive regulation of transcription from RNA polymerase II promoter biological process 22 GO:834 determination of adult lifespan biological process 12 GO:5938 cell cortex cellular component 11 GO:43565 sequence-specific DNA binding molecular function 11

6 6 Table 6. Frequent GO terms found in Fly-Human alignment GO:5739 mitochondrion cellular component 74 GO:5886 plasma membrane cellular component 59 GO:45944 positive regulation of transcription from RNA polymerase II promoter biological process 47 GO:7113 catalytic step 2 spliceosome cellular component 41 GO:5794 Golgi apparatus cellular component 3 GO:5783 endoplasmic reticulum cellular component 27 GO:5654 nucleoplasm cellular component 25 GO:52 proteasome complex cellular component 23 GO:5615 extracellular space cellular component 22 GO:573 nucleolus cellular component 21 GO:122 negative regulation of transcription from RNA polymerase II promoter biological process 19 GO:6468 protein phosphorylation biological process 16 GO:8134 transcription factor binding molecular function 16 GO:3677 DNA binding molecular function 15 GO:4674 protein serine/threonine kinase activity molecular function 15 GO:5813 centrosome cellular component 15 GO:43565 sequence-specific DNA binding molecular function 15 GO:16592 mediator complex cellular component 13 GO:776 kinetochore cellular component 12 GO:35267 NuA4 histone acetyltransferase complex cellular component 12 GO:45893 positive regulation of transcription, DNA-templated biological process 12 GO:5829 cytosol cellular component 11 GO:5925 focal adhesion cellular component 11 GO:5669 transcription factor TFIID complex cellular component 1 GO:16567 protein ubiquitination biological process 1 Table 7. Frequent GO terms found in Fly-Mouse alignment GO:45944 positive regulation of transcription from RNA polymerase II promoter biological process 55 GO:5886 plasma membrane cellular component 5 GO:122 negative regulation of transcription from RNA polymerase II promoter biological process 29 GO:3677 DNA binding molecular function 26 GO:6468 protein phosphorylation biological process 24 GO:43565 sequence-specific DNA binding molecular function 2 GO:4674 protein serine/threonine kinase activity molecular function 16 GO:5794 Golgi apparatus cellular component 15 GO:16592 mediator complex cellular component 15 GO:7411 axon guidance biological process 13 GO:45893 positive regulation of transcription, DNA-templated biological process 13 GO:37 transcription factor activity, sequence-specific DNA binding molecular function 12 GO:5829 cytosol cellular component 12 GO:177 transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding molecular function 11 GO:5783 endoplasmic reticulum cellular component 11 GO:6355 regulation of transcription, DNA-templated biological process 11 GO:42384 cilium assembly biological process 11 GO:45892 negative regulation of transcription, DNA-templated biological process 11 Table 8. Frequent GO terms found in Worm-Mouse alignment GO:45944 positive regulation of transcription from RNA polymerase II promoter biological process 43 GO:5886 plasma membrane cellular component 22 GO:6468 protein phosphorylation biological process 17 GO:122 negative regulation of transcription from RNA polymerase II promoter biological process 14 GO:4674 protein serine/threonine kinase activity molecular function 1 GO:5783 endoplasmic reticulum cellular component 1

7 7 Table 9. Frequent GO terms found in Worm-Human alignment GO:5739 mitochondrion cellular component 51 GO:45944 positive regulation of transcription from RNA polymerase II promoter biological process 39 GO:5886 plasma membrane cellular component 3 GO:4674 protein serine/threonine kinase activity molecular function 16 GO:122 negative regulation of transcription from RNA polymerase II promoter biological process 15 GO:5813 centrosome cellular component 13 GO:6468 protein phosphorylation biological process 13 GO:5654 nucleoplasm cellular component 11 GO:5783 endoplasmic reticulum cellular component 11 GO:43565 sequence-specific DNA binding molecular function 11 GO:5829 cytosol cellular component 1 GO:162 membrane cellular component 1

8 8 Table 1. Frequent GO terms found in Human-Mouse alignment GO:45944 positive regulation of transcription from RNA polymerase II promoter biological process 184 GO:5886 plasma membrane cellular component 181 GO:45893 positive regulation of transcription, DNA-templated biological process 93 GO:5615 extracellular space cellular component 92 GO:122 negative regulation of transcription from RNA polymerase II promoter biological process 88 GO:37 transcription factor activity, sequence-specific DNA binding molecular function 66 GO:3677 DNA binding molecular function 6 GO:6468 protein phosphorylation biological process 58 GO:45892 negative regulation of transcription, DNA-templated biological process 56 GO:5783 endoplasmic reticulum cellular component 54 GO:4674 protein serine/threonine kinase activity molecular function 52 GO:5829 cytosol cellular component 52 GO:162 membrane cellular component 51 GO:5794 Golgi apparatus cellular component 41 GO:573 nucleolus cellular component 4 GO:8284 positive regulation of cell proliferation biological process 4 GO:9986 cell surface cellular component 37 GO:4366 negative regulation of apoptotic process biological process 37 GO:5813 centrosome cellular component 32 GO:8134 transcription factor binding molecular function 28 GO:4283 protein homodimerization activity molecular function 27 GO:43565 sequence-specific DNA binding molecular function 27 GO:3112 extracellular matrix cellular component 26 GO:1628 positive regulation of gene expression biological process 25 GO:3713 transcription coactivator activity molecular function 24 GO:8285 negative regulation of cell proliferation biological process 24 GO:44212 transcription regulatory region DNA binding molecular function 24 GO:5925 focal adhesion cellular component 23 GO:16324 apical plasma membrane cellular component 23 GO:19899 enzyme binding molecular function 22 GO:5524 ATP binding molecular function 21 GO:46982 protein heterodimerization activity molecular function 21 GO:35556 intracellular signal transduction biological process 2 GO:5654 nucleoplasm cellular component 19 GO:5764 lysosome cellular component 19 GO:46777 protein autophosphorylation biological process 19 GO:7 canonical Wnt signaling pathway biological process 19 GO:3682 chromatin binding molecular function 17 GO:3714 transcription corepressor activity molecular function 17 GO:5814 centriole cellular component 17 GO:9897 external side of plasma membrane cellular component 17 GO:48471 perinuclear region of cytoplasm cellular component 17 GO:4672 protein kinase activity molecular function 16 GO:5887 integral component of plasma membrane cellular component 16 GO:1991 protein kinase binding molecular function 16 GO:4282 identical protein binding molecular function 16 GO:99 negative regulation of canonical Wnt signaling pathway biological process 16 GO:79 nuclear chromatin cellular component 15 GO:5777 peroxisome cellular component 15 GO:658 proteolysis biological process 15 GO:1818 peptidyl-tyrosine phosphorylation biological process 15 GO:177 transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding molecular function 14 GO:4713 protein tyrosine kinase activity molecular function 14 GO:5923 bicellular tight junction cellular component 14 GO:6974 cellular response to DNA damage stimulus biological process 14 GO:7179 transforming growth factor beta receptor signaling pathway biological process 14 GO:765 sensory perception of sound biological process 14 GO:16592 mediator complex cellular component 14 GO:7374 positive regulation of ERK1 and ERK2 cascade biological process 14 GO:287 magnesium ion binding molecular function 13 GO:559 calcium ion binding molecular function 13 GO:6355 regulation of transcription, DNA-templated biological process 13 GO:359 BMP signaling pathway biological process 13 GO:4587 innate immune response biological process 13 GO:784 nuclear chromosome, telomeric region cellular component 12 GO:3743 translation initiation factor activity molecular function 12 GO:512 receptor binding molecular function 12 GO:564 basement membrane cellular component 12 GO:647 protein dephosphorylation biological process 12 GO:876 voltage-gated potassium channel complex cellular component 12 GO:16323 basolateral plasma membrane cellular component 12 GO:43123 positive regulation of I-kappaB kinase/nf-kappab signaling biological process 12 GO:5192 positive regulation of NF-kappaB transcription factor activity biological process 12 GO:5667 transcription factor complex cellular component 11 GO:5929 cilium cellular component 11 GO:813 beta-catenin binding molecular function 11 GO:327 lamellipodium cellular component 11 GO:34976 response to endoplasmic reticulum stress biological process 11 GO:3664 ciliary basal body cellular component 11 GO:4365 positive regulation of apoptotic process biological process 11 GO:5821 protein stabilization biological process 11 GO:7185 potassium ion transmembrane transport biological process 11

Biological Process Term Enrichment

Biological Process Term Enrichment Biological Process Term Enrichment cellular protein localization cellular macromolecule localization intracellular protein transport intracellular transport generation of precursor metabolites and energy

More information

GO ID GO term Number of members GO: translation 225 GO: nucleosome 50 GO: calcium ion binding 76 GO: structural

GO ID GO term Number of members GO: translation 225 GO: nucleosome 50 GO: calcium ion binding 76 GO: structural GO ID GO term Number of members GO:0006412 translation 225 GO:0000786 nucleosome 50 GO:0005509 calcium ion binding 76 GO:0003735 structural constituent of ribosome 170 GO:0019861 flagellum 23 GO:0005840

More information

Supplementary Information 16

Supplementary Information 16 Supplementary Information 16 Cellular Component % of Genes 50 45 40 35 30 25 20 15 10 5 0 human mouse extracellular other membranes plasma membrane cytosol cytoskeleton mitochondrion ER/Golgi translational

More information

The Cell. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres North Harris College Houston, Texas

The Cell. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres North Harris College Houston, Texas C h a p t e r 2 The Cell PowerPoint Lecture Slides prepared by Jason LaPres North Harris College Houston, Texas Copyright 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Introduction

More information

Supplementary Table 3. Membrane/Signaling/Neural Genes of the DmSP. FBgn CG5265 acetyltransferase amino acid metabolism

Supplementary Table 3. Membrane/Signaling/Neural Genes of the DmSP. FBgn CG5265 acetyltransferase amino acid metabolism Supplementary Table 3 Membrane/Signaling/Neural Genes of the DmSP FlyBase ID Gene Name Molecular function summary Membrane Biological process summary FBgn0038486 CG5265 acetyltransferase amino acid metabolism

More information

THE CELL 3/15/15 HUMAN ANATOMY AND PHYSIOLOGY I THE CELLULAR BASIS OF LIFE

THE CELL 3/15/15 HUMAN ANATOMY AND PHYSIOLOGY I THE CELLULAR BASIS OF LIFE HUMAN ANATOMY AND PHYSIOLOGY I Lecture: M 6-9:30 Randall Visitor Center Lab: W 6-9:30 Swatek Anatomy Center, Centennial Complex Required Text: Marieb 9 th edition Dr. Trevor Lohman DPT (949) 246-5357 tlohman@llu.edu

More information

Mean Hes score. Threshold

Mean Hes score. Threshold Mean Hes score 0.1 0.09 Common 0.08 Family 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Threshold SUPPLEMENTARY FIG. 1. Trend of mean Hes scores calculated based on the

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

Cell Biology Review. The key components of cells that concern us are as follows: 1. Nucleus

Cell Biology Review. The key components of cells that concern us are as follows: 1. Nucleus Cell Biology Review Development involves the collective behavior and activities of cells, working together in a coordinated manner to construct an organism. As such, the regulation of development is intimately

More information

Unit 2: Cells Guided Reading Questions (60 pts total)

Unit 2: Cells Guided Reading Questions (60 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 6 A Tour of the Cell Unit 2: Cells Guided Reading Questions (60

More information

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

Unit 2: Cells Guided Reading Questions (55 pts total)

Unit 2: Cells Guided Reading Questions (55 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 6 A Tour of the Cell Unit 2: Cells Guided Reading Questions (55

More information

Nucleus. The nucleus is a membrane bound organelle that store, protect and express most of the genetic information(dna) found in the cell.

Nucleus. The nucleus is a membrane bound organelle that store, protect and express most of the genetic information(dna) found in the cell. Nucleus The nucleus is a membrane bound organelle that store, protect and express most of the genetic information(dna) found in the cell. Since regulation of gene expression takes place in the nucleus,

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline CHAPTER 3 Cell Structure and Genetic Control Chapter 3 Outline Plasma Membrane Cytoplasm and Its Organelles Cell Nucleus and Gene Expression Protein Synthesis and Secretion DNA Synthesis and Cell Division

More information

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes Molecular and Cellular Biology Animal Cell ((eukaryotic cell) -----> compare with prokaryotic cell) ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus NUCLEUS Chromatin

More information

Bio 111 Study Guide Chapter 6 Tour of the Cell

Bio 111 Study Guide Chapter 6 Tour of the Cell Bio 111 Study Guide Chapter 6 Tour of the Cell BEFORE CLASS: Reading: Read the whole chapter from p. 93-121, mostly skimming Concept 6.1 on microscopy. Figure 6.8 on pp. 100-101 is really helpful in showing

More information

Chapter 6 A Tour of the Cell

Chapter 6 A Tour of the Cell Chapter 6 A Tour of the Cell The cell is the basic unit of life Although cells differ substantially from one another, they all share certain characteristics that reflect a common ancestry and remind us

More information

Supplemental table S7.

Supplemental table S7. Supplemental table S7. GO terms significantly enriched in significantly up-regulated genes of the microarray. K: number of genes from the input cluster in the given category. F: number of total genes in

More information

REVIEW 2: CELLS & CELL DIVISION UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 2: CELLS & CELL DIVISION UNIT. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 2: CELLS & CELL DIVISION UNIT A. Top 10 If you learned anything from this unit, you should have learned: 1. Prokaryotes vs. eukaryotes No internal membranes vs. membrane-bound organelles

More information

122-Biology Guide-5thPass 12/06/14. Topic 1 An overview of the topic

122-Biology Guide-5thPass 12/06/14. Topic 1  An overview of the topic Topic 1 http://bioichiban.blogspot.com Cellular Functions 1.1 The eukaryotic cell* An overview of the topic Key idea 1: Cell Organelles Key idea 2: Plasma Membrane Key idea 3: Transport Across Membrane

More information

Chapter 03. Lecture and Animation Outline

Chapter 03. Lecture and Animation Outline Chapter 03 Lecture and Animation Outline To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please Note: Once you have

More information

Signal Transduction. Dr. Chaidir, Apt

Signal Transduction. Dr. Chaidir, Apt Signal Transduction Dr. Chaidir, Apt Background Complex unicellular organisms existed on Earth for approximately 2.5 billion years before the first multicellular organisms appeared.this long period for

More information

STRUCTURE OF THE CELL

STRUCTURE OF THE CELL STRUCTURE OF THE CELL The cell is the smallest standard unit of the organisms. - nucleus - vital functions (growth, metabolism, irritability, movement,reproduction) - independent existence in certain conditions

More information

Study Guide 11 & 12 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Study Guide 11 & 12 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Study Guide 11 & 12 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The receptors for a group of signaling molecules known as growth factors are

More information

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology?

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? 2) How does an electron microscope work and what is the difference

More information

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2 Cellular Neuroanatomy I The Prototypical Neuron: Soma Reading: BCP Chapter 2 Functional Unit of the Nervous System The functional unit of the nervous system is the neuron. Neurons are cells specialized

More information

2011 The Simple Homeschool Simple Days Unit Studies Cells

2011 The Simple Homeschool Simple Days Unit Studies Cells 1 We have a full line of high school biology units and courses at CurrClick and as online courses! Subscribe to our interactive unit study classroom and make science fun and exciting! 2 A cell is a small

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

REVIEW 2: CELLS & CELL COMMUNICATION. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 2: CELLS & CELL COMMUNICATION. A. Top 10 If you learned anything from this unit, you should have learned: Name AP Biology REVIEW 2: CELLS & CELL COMMUNICATION A. Top 10 If you learned anything from this unit, you should have learned: 1. Prokaryotes vs. eukaryotes No internal membranes vs. membrane-bound organelles

More information

Life of the Cell. Learning Objectives

Life of the Cell. Learning Objectives Life of the Cell Society on a micro-scale 1 Learning Objectives 1. What are the characteristics that distinguish prokaryotic and eukaryotic cells? Which type of cell is believed to be older (more primitive)?

More information

Principles of Cellular Biology

Principles of Cellular Biology Principles of Cellular Biology آشنایی با مبانی اولیه سلول Biologists are interested in objects ranging in size from small molecules to the tallest trees: Cell Basic building blocks of life Understanding

More information

A. Incorrect! The Cell Cycle contains 4 distinct phases: (1) G 1, (2) S Phase, (3) G 2 and (4) M Phase.

A. Incorrect! The Cell Cycle contains 4 distinct phases: (1) G 1, (2) S Phase, (3) G 2 and (4) M Phase. Molecular Cell Biology - Problem Drill 21: Cell Cycle and Cell Death Question No. 1 of 10 1. Which of the following statements about the cell cycle is correct? Question #1 (A) The Cell Cycle contains 3

More information

Warm-Up Pairs Discuss the diagram What Where Which Why

Warm-Up Pairs Discuss the diagram What Where Which Why Warm-Up In Pairs Discuss the diagram What is it? Where does it come from? Which parts can you label? (in pencil) Why do you think you will learn about it? 5 m Eukaryote: Organelles, Structure and Function

More information

The Discovery of Cells

The Discovery of Cells The Discovery of Cells Microscope observations! General Cell & Organelle Discovery 1600s Observations made by scientists using more powerful microscopes in the 1800s led to the formation of the cell theory.

More information

Reception The target cell s detection of a signal coming from outside the cell May Occur by: Direct connect Through signal molecules

Reception The target cell s detection of a signal coming from outside the cell May Occur by: Direct connect Through signal molecules Why Do Cells Communicate? Regulation Cells need to control cellular processes In multicellular organism, cells signaling pathways coordinate the activities within individual cells that support the function

More information

Regulation of gene expression. Premedical - Biology

Regulation of gene expression. Premedical - Biology Regulation of gene expression Premedical - Biology Regulation of gene expression in prokaryotic cell Operon units system of negative feedback positive and negative regulation in eukaryotic cell - at any

More information

Prokaryotic Regulation

Prokaryotic Regulation Prokaryotic Regulation Control of transcription initiation can be: Positive control increases transcription when activators bind DNA Negative control reduces transcription when repressors bind to DNA regulatory

More information

Y1 Biology 131 Syllabus - Academic Year (1st Semester)

Y1 Biology 131 Syllabus - Academic Year (1st Semester) Y1 Biology 131 Syllabus - Academic Year 2015-2016 (1st Semester) Day Date Topic Page No. Tuesday 20 September 2016 Cell and Cell Organelles CMB 47-53 Wednesday 21 September 2016 Biological Membranes CMB

More information

Class Work 31. Describe the function of the Golgi apparatus? 32. How do proteins travel from the E.R. to the Golgi apparatus? 33. After proteins are m

Class Work 31. Describe the function of the Golgi apparatus? 32. How do proteins travel from the E.R. to the Golgi apparatus? 33. After proteins are m Eukaryotes Class Work 1. What does the word eukaryote mean? 2. What is the one major difference between eukaryotes and prokaryotes? 3. List the different kingdoms of the eukaryote domain in the order in

More information

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday 1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA

More information

4.1 Cells are the Fundamental Units of Life. Cell Structure. Cells. Fundamental units of life Cell theory. Except possibly viruses.

4.1 Cells are the Fundamental Units of Life. Cell Structure. Cells. Fundamental units of life Cell theory. Except possibly viruses. Cells 4.1 Cells are the Fundamental Units of Life Fundamental units of life Cell theory All living things are composed of one or more cells. The cell is the most basic unit of life. All cells come from

More information

Cell Organelles. a review of structure and function

Cell Organelles. a review of structure and function Cell Organelles a review of structure and function TEKS and Student Expectations (SE s) B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized

More information

Cell Organelles Tutorial

Cell Organelles Tutorial 1 Name: Cell Organelles Tutorial TEK 7.12D: Differentiate between structure and function in plant and animal cell organelles, including cell membrane, cell wall, nucleus, cytoplasm, mitochondrion, chloroplast,

More information

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization The Cell Cycle 16 The Cell Cycle Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization Introduction Self-reproduction is perhaps

More information

Supporting Information

Supporting Information Supporting Information Proteomic Analyses of Cysteine Redox in High-fat-fed and Fasted Mouse Livers: Implications for Liver Metabolic Homeostasis Yixing Li 1#, Zupeng Luo 1#, Xilong Wu 2, Jun Zhu 2, Kai

More information

Activation of a receptor. Assembly of the complex

Activation of a receptor. Assembly of the complex Activation of a receptor ligand inactive, monomeric active, dimeric When activated by growth factor binding, the growth factor receptor tyrosine kinase phosphorylates the neighboring receptor. Assembly

More information

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Overview of Cells Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory Prokaryotic Cells Archaea Bacteria Come in many different shapes and sizes.5 µm 2 µm, up to 60 µm long Have large

More information

AS Biology Summer Work 2015

AS Biology Summer Work 2015 AS Biology Summer Work 2015 You will be following the OCR Biology A course and in preparation for this you are required to do the following for September 2015: Activity to complete Date done Purchased

More information

Welcome to Class 21!

Welcome to Class 21! Welcome to Class 21! Introductory Biochemistry! Lecture 21: Outline and Objectives l Regulation of Gene Expression in Prokaryotes! l transcriptional regulation! l principles! l lac operon! l trp attenuation!

More information

Introduction to Cells- Stations Lab

Introduction to Cells- Stations Lab Introduction to Cells- Stations Lab Station 1: Microscopes allow scientists to study cells. Microscopes: How do light microscopes differ from electron microscopes? (How does each work? How much can each

More information

1 GO: regulation of cell size E-04 2 GO: negative regulation of cell growth GO:

1 GO: regulation of cell size E-04 2 GO: negative regulation of cell growth GO: Table S2: The biological modulated by mir-5701 Sr. No Term Id 1 Term Name 2 Hit Gene Number 3 P-Value 4 1 GO:0008361 regulation of cell size 9 4.37E-04 2 GO:0030308 negative regulation of cell growth 8

More information

2. small / 70s ribosomes box; (2) Feature also present ( ) or absent ( ) in chloroplasts

2. small / 70s ribosomes box; (2) Feature also present ( ) or absent ( ) in chloroplasts 1(a)(i) 1. circular DNA box ; 2. small / 70s ribosomes box; (2) 1(a)(ii) Features present in mitochondria Surrounded by a double membrane Feature also present () or absent () in chloroplasts Crista present

More information

The Cellular Level of Organization

The Cellular Level of Organization C h a p t e r 3 The Cellular Level of Organization PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris Copyright 2009 Pearson Education, Inc., publishing as Pearson Benjamin

More information

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16 Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Enduring understanding 3.B: Expression of genetic information involves cellular and molecular

More information

Hole s Human Anatomy and Physiology

Hole s Human Anatomy and Physiology Hole s Human Anatomy and Physiology 1 Chapter 3 Cells vary in size possess distinctive shapes measured in micrometers 2 A Composite Cell hypothetical cell major parts nucleus cytoplasm cell membrane 3

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis

Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis Title Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis Author list Yu Han 1, Huihua Wan 1, Tangren Cheng 1, Jia Wang 1, Weiru Yang 1, Huitang Pan 1* & Qixiang

More information

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features Cell Structure and Function Table of Contents Section 1 The History of Cell Biology Section 2 Introduction to Cells Section 3 Cell Organelles and Features Section 4 Unique Features of Plant Cells Section

More information

CHARACTERISTICS OF LIFE ORGANIZATION OF LIFE CELL THEORY TIMELINE

CHARACTERISTICS OF LIFE ORGANIZATION OF LIFE CELL THEORY TIMELINE CHARACTERISTICS OF LIFE 1. composed of cells either uni/multi 2. reproduce sexual and/or asexual 3. contain DNA in cells 4. grow and develop 5. use material/energy in metabolic reactions 6. respond to

More information

Cell structure and functions

Cell structure and functions Cell structure and functions Cells: The cell is the basic structural and functional unit of life. All living organisms are made up of cells. Cells make tissues, tissues make organs, organs make organ systems

More information

Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016

Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016 Molecular Cell Biology 5068 In Class Exam 2 November 8, 2016 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

KEY POINTS TO EMPHASIZE WHEN TEACHING THE CELL

KEY POINTS TO EMPHASIZE WHEN TEACHING THE CELL CHAPTER 2: THE CELL: BASIC UNIT OF STRUCTURE AND FUNCTION CHAPTER OVERVIEW This chapter presents the cell, the fundamental structure and functional unit of the human body (and all living things). In chapter

More information

Chapter 7.2. Cell Structure

Chapter 7.2. Cell Structure Chapter 7.2 Cell Structure Daily Objectives Describe the structure and function of the cell nucleus. Describe the function and structure of membrane bound organelles found within the cell. Describe the

More information

Chapter 3: Structure and Function of the Cell

Chapter 3: Structure and Function of the Cell Chapter 3: Structure and Function of the Cell I. Functions of the Cell A. List and describe the main functions of the cell: 1. 2. 3. 4. 5. II. How We See Cells A. Light microscopes allow us to B. Electron

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Cells and Passive Transport Study Guide

Cells and Passive Transport Study Guide Cells and Passive Transport Study Guide Success Criteria: - Complete - If multiple choice, answer has explanations - Quality answers/best answer possible 1. List the 2 types of active transport and the

More information

Biology. 7-2 Eukaryotic Cell Structure 10/29/2013. Eukaryotic Cell Structures

Biology. 7-2 Eukaryotic Cell Structure 10/29/2013. Eukaryotic Cell Structures Biology Biology 1of 49 2of 49 Eukaryotic Cell Structures Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists

More information

CELL CYCLE AND DIFFERENTIATION

CELL CYCLE AND DIFFERENTIATION CELL CYCLE AND DIFFERENTIATION Dewajani Purnomosari Department of Histology and Cell Biology Faculty of Medicine Universitas Gadjah Mada d.purnomosari@ugm.ac.id WHAT IS CELL CYCLE? 09/12/14 d.purnomosari@ugm.ac.id

More information

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology?

Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? Zimmerman AP Biology CBHS South Name Chapter 7&8 Guided Reading Assignment 1) What is resolving power and why is it important in biology? 2) How does an electron microscope work and what is the difference

More information

Overview: The Fundamental Units of Life Concept 6.1: Biologists use microscopes and the tools of biochemistry to study cells Microscopy

Overview: The Fundamental Units of Life Concept 6.1: Biologists use microscopes and the tools of biochemistry to study cells Microscopy Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that can be alive Cell structure is correlated to cellular function All cells are related

More information

Chapter 4 Active Reading Guide A Tour of the Cell

Chapter 4 Active Reading Guide A Tour of the Cell Name: AP Biology Mr. Croft Chapter 4 Active Reading Guide A Tour of the Cell Section 1 1. The study of cells has been limited by their small size, and so they were not seen and described until 1665, when

More information

Biology, 7e (Campbell) Chapter 6: A Tour of the Cell

Biology, 7e (Campbell) Chapter 6: A Tour of the Cell Biology, 7e (Campbell) Chapter 6: A Tour of the Cell Chapter Questions 1) What limits the resolving power of a light microscope? A) the type of lens used to magnify the object under study B) the shortest

More information

Outline. Cell Structure and Function. Cell Theory Cell Size Prokaryotic Cells Eukaryotic Cells Organelles. Chapter 4

Outline. Cell Structure and Function. Cell Theory Cell Size Prokaryotic Cells Eukaryotic Cells Organelles. Chapter 4 Cell Structure and Function Chapter 4 Cell Theory Cell Size Prokaryotic Cells Eukaryotic Cells Organelles! Nucleus Outline! Endomembrane System! Cytoskeleton! Centrioles, Cilia, and Flagella 1 2 Cell Theory

More information

ST.JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE 1 PG & RESEARCH DEPARTMENT OF BIOCHEMISTRY II-B.Sc Biochemistry QUESTION BANK

ST.JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE 1 PG & RESEARCH DEPARTMENT OF BIOCHEMISTRY II-B.Sc Biochemistry QUESTION BANK 1 ST.JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) CUDDALORE 1 PG & RESEARCH DEPARTMENT OF BIOCHEMISTRY II-B.Sc Biochemistry QUESTION BANK Subject: Cell Biology Subject code: BC102S Subject handled:

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

Exam 4 ID#: July 7, 2008

Exam 4 ID#: July 7, 2008 Biology 4361 Name: KEY Exam 4 ID#: July 7, 2008 Multiple choice (one point each; indicate the best answer) 1. RNA polymerase II is not able to transcribe RNA unless a. it is first bound to TFIIB. b. its

More information

Cell (Learning Objectives)

Cell (Learning Objectives) Cell (Learning Objectives) 1. Understand & describe the basic components necessary for a functional cell. 2. Review the order of appearance of cells on earth and explain the endosymbiotic theory. 3. Compare

More information

Molecular Cell Biology 5068 In Class Exam 1 September 30, Please print your name:

Molecular Cell Biology 5068 In Class Exam 1 September 30, Please print your name: Molecular Cell Biology 5068 In Class Exam 1 September 30, 2014 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

Cells and Their Organelles

Cells and Their Organelles Cells and Their Organelles The cell is the basic unit of life. The following is a glossary of animal cell terms. All cells are surrounded by a cell membrane. The cell membrane is semipermeable, allowing

More information

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. D. Organelles that Process Information. E. Organelles that Process Energy

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. D. Organelles that Process Information. E. Organelles that Process Energy The Organization of Cells A. The Cell: The Basic Unit of Life Lecture Series 4 The Organization of Cells B. Prokaryotic Cells C. Eukaryotic Cells D. Organelles that Process Information E. Organelles that

More information

Lecture Series 3 The Organization of Cells

Lecture Series 3 The Organization of Cells Lecture Series 3 The Organization of Cells Reading Assignments Read Chapter 15 Endomembrane System Read Chapter 17 Cytoskeleton A. The Cell: The Basic Unit of Life Cell Theory: All cells come from preexisting

More information

The cell. The cell theory. So what is a cell? 9/20/2010. Chapter 3

The cell. The cell theory. So what is a cell? 9/20/2010. Chapter 3 The cell Chapter 3 The cell theory all living organisms are made up of one or more cells, and all cells arise from other, pre-existing cells So what is a cell? The most basic unit of any organism The smallest

More information

7-2 Eukaryotic Cell Structure

7-2 Eukaryotic Cell Structure 1 of 49 Comparing the Cell to a Factory Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists divide the eukaryotic

More information

Class XI Chapter 8 Cell The Unit of Life Biology

Class XI Chapter 8 Cell The Unit of Life Biology Question 1: Which of the following is not correct? (a) Robert Brown discovered the cell. (b) Schleiden and Schwann formulated the cell theory. (c) Virchow explained that cells are formed from pre-existing

More information

MOLECULAR BIOLOGY BIOL 021 SEMESTER 2 (2015) COURSE OUTLINE

MOLECULAR BIOLOGY BIOL 021 SEMESTER 2 (2015) COURSE OUTLINE COURSE OUTLINE 1 COURSE GENERAL INFORMATION 1 Course Title & Course Code Molecular Biology: 2 Credit (Contact hour) 3 (2+1+0) 3 Title(s) of program(s) within which the subject is taught. Preparatory Program

More information

Chapter 10, 11, 14: Gene Expression, Regulation, and Development Exam

Chapter 10, 11, 14: Gene Expression, Regulation, and Development Exam Chapter 10, 11, 14: Gene Expression, Regulation, and Development Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Why did the original one-gene, one-enzyme

More information

Chapter 3: Cells. Lectures by Mark Manteuffel, St. Louis Community College

Chapter 3: Cells. Lectures by Mark Manteuffel, St. Louis Community College Chapter 3: Cells Lectures by Mark Manteuffel, St. Louis Community College Learning Objectives Be able to describe: what a cell is & two main classes of cells. structure & functions of cell membranes. how

More information

Question 1: Which of the following is not correct? (a) Robert Brown discovered the cell. (b) Schleiden and Schwann formulated the cell theory. (c) Virchow explained that cells are formed from pre-existing

More information

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry

Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry Name Period Chapter 6: A Tour of the Cell Concept 6.1 To study cells, biologists use microscopes and the tools of biochemistry 1. The study of cells has been limited by their small size, and so they were

More information

CELL STRUCTURE & FUNCTION

CELL STRUCTURE & FUNCTION 7-1 Life Is Cellular CELL STRUCTURE & FUNCTION Copyright Pearson Prentice Hall The Discovery of the Cell 1665: Robert Hooke used an early compound microscope to look at a thin slice of cork. Cork looked

More information

The Eukaryotic Genome and Its Expression. The Eukaryotic Genome and Its Expression. A. The Eukaryotic Genome. Lecture Series 11

The Eukaryotic Genome and Its Expression. The Eukaryotic Genome and Its Expression. A. The Eukaryotic Genome. Lecture Series 11 The Eukaryotic Genome and Its Expression Lecture Series 11 The Eukaryotic Genome and Its Expression A. The Eukaryotic Genome B. Repetitive Sequences (rem: teleomeres) C. The Structures of Protein-Coding

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

Function and Illustration. Nucleus. Nucleolus. Cell membrane. Cell wall. Capsule. Mitochondrion

Function and Illustration. Nucleus. Nucleolus. Cell membrane. Cell wall. Capsule. Mitochondrion Intro to Organelles Name: Block: Organelles are small structures inside cells. They are often covered in membranes. Each organelle has a job to do in the cell. Their name means little organ. Just like

More information

Transport between cytosol and nucleus

Transport between cytosol and nucleus of 60 3 Gated trans Lectures 9-15 MBLG 2071 The n GATED TRANSPORT transport between cytoplasm and nucleus (bidirectional) controlled by the nuclear pore complex active transport for macro molecules e.g.

More information

Cells. B. the development of advanced techniques to determine the chemical composition of substances

Cells. B. the development of advanced techniques to determine the chemical composition of substances ells Name: ate: 1. Which factor contributed most to the development of the cell theory? 1.. the discovery of many new species during the last century. the development of advanced techniques to determine

More information

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 26 Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 2 of 26 Gene Regulation: An Example Gene Regulation: An Example

More information

The diagram below represents levels of organization within a cell of a multicellular organism.

The diagram below represents levels of organization within a cell of a multicellular organism. STATION 1 1. Unlike prokaryotic cells, eukaryotic cells have the capacity to a. assemble into multicellular organisms b. establish symbiotic relationships with other organisms c. obtain energy from the

More information

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C.

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C. UNIVERSITY OF EAST ANGLIA School of Biological Sciences Main Series UG Examination 2015-2016 FUNDAMENTALS OF CELL BIOLOGY AND BIOCHEMISTRY BIO-4004B Time allowed: 2 hours Answer ALL questions in Section

More information

General A&P Cell Labs - Cellular Anatomy & Division (Mitosis) Pre-Lab Guide

General A&P Cell Labs - Cellular Anatomy & Division (Mitosis) Pre-Lab Guide 1 General A&P Cell Labs - Cellular Anatomy & Division (Mitosis) Pre-Lab AWalk-About@ Guide Have someone in your group read the following out loud, while the others read along: In this "Walk About", we

More information