DOWNLOAD PDF DETERMINATION OF PREPLACODAL ECTODERM AND SENSORY PLACODES SALLY A. MOODY

Size: px
Start display at page:

Download "DOWNLOAD PDF DETERMINATION OF PREPLACODAL ECTODERM AND SENSORY PLACODES SALLY A. MOODY"

Transcription

1 Chapter 1 : Olfactory epithelium - Wikipedia The sensory organs of the vertebrate head derive from two embryological structures, the neural crest and the ectodermal placodes. Although quite a lot is known about the secreted and transcription. Artikel bewerten Providing expert coverage of all major events in early embryogenesis and the organogenesis of specific systems, and supplemented with representative clinical syndromes, Principles of Developmental Genetics, Second Edition discusses the processes of normal development in embryonic and prenatal animals, including humans. The new edition of this classic work supports clinical researchers developing future therapies with its all-new coverage of systems biology, stem cell biology, new technologies, and clinical disorders. A crystal-clear layout, exceptional full-color design, and bulleted summaries of major takeaways and clinical pathways assist comprehension and readability of the highly complex content. Prior to this appointment she was on the faculty of the Anatomy and Cell Biology Department, the Department of Neuroscience, and the Developmental Biology program at the University of Virginia. She has also served on many National Institute of Health advisory committees dealing with issues in developmental biology and developmental neurobiology, and served on the Board of Trustees of the Society for Developmental Biology. Emerging Technologies and Systems Biology 1. Untangling the Gordian knot: Cell signaling events that instruct development 2. RNA-seq and deep sequencing 3. Using mutagenesis in mice and zebrafish for developmental gene discovery 4. Chemical approaches to control stem cell fate 5. BMP signaling and stem cell self-renewal in the Drosophila ovary 6. Genomic Analyses of Neural Stem Cells 7. Chordate origins, stem cells and regeneration Section II: Early Embryology and Morphogenesis 8. Dorsal-ventral axis patterning in insects 9. Anterior-Posterior patterning in mammals Early development of epidermis and neural tissue Taking the middle road: Lateral line migration Section III: Neural cell fate determination Neural crest determination Determination of preplacodal ectoderm and sensory placodes Inner ear development Molecular genetics of tooth development Induction of the cardiac lineages Blood vessel formation Blood induction and embryonic formation Development of the genital system Formation of vertebrate limbs Patterning the embryonic endoderm into presumptive organ domains Selected Clinical Problems Diaphragmatic embryogenesis and human congenital diaphragmatic defects Genetic and developmental basis of congenital cardiovascular malformations Multiple Roles of T-box genes DeGeorge and related syndromes Neural tube defects Verlagsort. Page 1

2 Chapter 2 : Sally Moody The George Washington University - blog.quintoapp.com 27 DETERMINATION OF PREPLACODAL ECTODERM AND Department of Anatomy and Cell Biology, The George Washington University. Moody and a team of world-renowned experts provide a groundbreaking view of developmental genetics that will influence scientific approaches in embryology, comparative biology, as well as the newly emerging fields of stem cell biology and regenerative medicine. Principles of Developmental Genetics highlights the intersection of developmental biology with new revolutionary genomic technologies, and details how these advances have accelerated our understanding of the molecular genetic processes that regulates development. This definitive resource provides researchers with the opportunity to gain important insights into the clinical applicability of emerging new technologies and animal model data. This book is a must-have for all researchers in genetics, developmental biology, regenerative medicine, and stem cell biology. Audience Advanced molecular, cell, developmental biologists and developmental geneticists, and clinical geneticists Contents I. Untangling the Gordian knot: Chesnut and Mahendra S. Early Embryology, Fate Determination and Patterning 8. Ratnaparkhi and Albert J. Formation of the Embryonic Mesoderm Lisa L. Chang and Daniel S. Multiple roles of T-box genes L. Naiche and Virginia E. Morphogenetic and Cell Movements Regulation of tissue separation in the amphibian embryo Herbert Steinbeisser Branching Morphogenesis of Mammalian epithelia Jamie Davies Sansom and Frederick J. Pathfinding and Patterning of Axonal Connections S. Krull 25 Retinal Development Kathryn B. Moore and Monica L. Neural Crest Determination Roberto Mayor The Inner Ear Donna F. Fekete and Ulrike J. Craniofacial Formation and Congenital Defects S. Induction of the Cardiac Lineage Andrew S. Warkman and Paul A. Topics in Vertebrate Kidney Formation: A Comparative Perspective Thomas M. Ackerman and David R. Formation of Vertebrate Limbs Yingzi Yang Skeletal Development Peter G. Boyce, and Rocky S. Moore-Scott and James M. Kormish and Kenneth S. Page 2

3 Chapter 3 : Faculty Directory The School of Medicine & Health Sciences The George Washington Univer Cranial sensory placodes arise from a common precursor field, the pre-placodal ectoderm (PPE), which surrounds the anterior neural plate just lateral to the neural crest. Tammy Awtry, Science Educator Dr. Moore, Professor, University of Utah Dr. You can view the article here. You can view the entire publication here. Science and Technology Dorsal axis-inducing activity can be activated by an activin-like signal and by localized polyadenylation between the 8- and cell stages. Ventrally localized Wnt8b signaling antagonizes this dorsal-axis activity. Noggin signaling from animal blastomeres promotes a neural fate in vegetal equatorial cells. We identified 40 unique mrnas that are enriched in the animal blastomeres using a microarray approach. We are functionally characterizing a number of these to discover whether they bias cells towards a neural fate. Recently in collaboration with Dr. Peter Nemes GWU Chemistry we used Mass Spectrometry to identified metabolites and proteins that are unique to specific blastomeres of different fates. Angewandte Chemie International Edition Nemes Single-cell mass spectrometry with multi-solvent extraction identified metabolic differences between left and right blastomeres in the 8-cell frog Xenopus embryo. Moody Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm. Nemes Single-cell mass spectrometry reveals small molecules that affect cell fates in the cell embryo. Novel animal pole-enriched maternal mrnas are preferentially expressed in neural ectoderm. Moody Blastomere explants to test for cell fate commitment during embryonic development. Journal of Visualized Experiments 71 e, doi: Noggin signaling from Xenopus animal blastomere lineages promotes a neural fate in neighboring vegetal blastomere lineages. Moody Multiple maternal influences on dorsal-ventral fate in Xenopus animal blastomeres. Moody An activin-like signal activates a dorsal-specifying RNA between the 8- and cell stages of Xenopus. Link We cloned two maternal genes foxd5, flotillin1 and are studying their functions in establishing neural fate in dorsal, animal lineages. For a description of FoxD5, please see: A gene regulatory network involved in neural plate development. Flotillin1 is a member of a family of membrane-associated proteins of unknown function that are highly expressed in the nervous system. These proteins are highly enriched in growing axons. There are three Xenopus alleles flotillin 1a, 1b, 1c that have very similar expression profiles. Flotillin1 is expressed during oogenesis and transcripts become enriched in the animal hemisphere precursors of the embryonic ectoderm. Zygotic transcripts are expressed in the presumptive neural plate, with lower levels in the non-neural ectoderm. At neural tube closure, Flotillin1 is expressed in the entire telencephalon, dorsal domains of the rest of the neural tube and dorsal paraxial mesoderm. Primary sensory neurons Rohon-Beard cells express Flotillin1 at particularly high levels. At tail bud stages, placodal and branchial arch structures additionally express Flotillin1. While flotillin1 has been implicated in axon regeneration, its function during early development is not known. FoxD5 also known as foxd4l1 is expressed maternally during oogenesis, and maternal transcripts are confined to the animal hemisphere precursors of the embryonic ectoderm. In over-expression and animal cap assays, it activates dorsal axis genes, both neural and muscle, and induces a secondary axis. It is induced strongly by Siamois and Cerberus, but only weakly by neural inducers Noggin, Chordin. Its expression is down-regulated as the neural tube closes and differentiation begins. We demonstrated that foxd5 acts upstream of numerous co-expressed neural plate genes, some of which stabilize a neural ectodermal fate and some of which initiate neural differentiation. Together these genes define a regulatory network that establishes the neural ectoderm and controls the onset of neural differentiation. Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes. Link Specification of Cranial Placode Ectoderm Placodes are ectodermal specializations in the vertebrate head that contribute to each of the sensory systems olfactory epithelium, lens, vestibular-acoustic organs and ganglia, cranial ganglia and lateral line. We cloned a member of the Six gene family Six1 that is expressed in the embryonic precursor of the placodes, the pre-placodal ectoderm PPE. This gene is highly expressed in all neurogenic cranial placodes and lateral line Page 3

4 primordia from neurula to tadpole stages. We used markers of the PPE to show that low concentrations of neural inducers e. Over-expression of Six1 expands the PPE at the expense of neural crest and epidermis, whereas knock-down of Six1 protein results in reduction of the PPE domain and expansion of the neural plate, neural crest and epidermis. Using activator and repressor constructs of Six1 or co-expression of wild-type six1 with activating eya1 or repressing groucho co-factors, we demonstrated that Six1 inhibits neural crest and epidermis genes via transcriptional repression and enhances PPE genes via transcriptional activation. Ectopic expression of neural plate, neural crest and epidermal genes in the PPE demonstrates that these factors mutually influence each other to establish the appropriate boundaries between these ectodermal domains. We are continuing to examine the upstream regulators of Six1 expression and the down-stream target genes. In collaboration with Gerhart Schlosser and Mike Klymkowski, we studied whether Six1 plays a role in controlling cell proliferation and differentiation during later placode development. Six1 is expressed in both superficial and sensorial layers of the neurogenic placodes beginning at mid-gastrula stages, but the neuronal derivatives turn off six1 expression as they migrate away from the placodal region. We showed that both Six1 and Eya1 are required for neural differentiation in all neurogenic placodes. At high levels of expression, Six1 and Eya1 expand the expression of SoxB1 genes, maintain cells in proliferative state and block expression of neuronal differentiation genes. At lower levels, they promote neuronal diferentiation. The transcriptional activity of Six proteins can be modified by co-factor proteins, the best characterized being Eya and Groucho proteins. We searched the Xenopus genome for orthologues of Drosphila co-factor proteins that interact with the fly six-related factor SO. We identified 33 Xenopus genes with high sequence identity to 20 fly proteins and demonstrate that a large number of these are expressed in cranofacial tissues that express Six1. Moody Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite and kidney development. Principles of Developmental Genetics. Second edition, pp Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1? Determination of pre-placodal ectoderm and sensory placodes. Principles in Developmental Genetics. Induction and specification of the vertebrate ectodermal placodes: Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor. Xenopus six1 gene is expressed in neurogenic cranial placodes and maintained in differentiating lateral lines. Mechanisms of Development Moody, are investigating the developmental causes of feeding and swallowing difficulties called pediatric dysphagia experienced by these patients. LaMantia A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons. Disease Models and Mechanisms 7: Link Specification of Retinal Stem Cells and Amacrine Cell Phenotypes The ability of embryonic cells to give rise to the retina is influenced by both maternal molecules and cell-cell interactions throughout development. We demonstrated that maternal asymmetries that set up the three embryonic germ layers ectoderm, mesoderm, endoderm influence whether an embryonic cell can give rise to retina. Vegetally localized factors that promote endo-mesoderm formation also antagonize neural and retinal fates involving the Derriere signaling pathway. Those blastomeres that do give rise to the retina are selected from the pool of competent blastomeres by residing in a region of the embryo where BMP signaling is highly repressed. The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways. Animal-vegetal asymmetries influence the earliest steps in retinal fate commitment in Xenopus. Link During gastrulation retinal stem cells are selected from the pool of retina-competent precursors to form the definitive eye fields. Cells in the eye fields express several transcription factors that specify their retinal fate. We show that eye-specific transcription factors and ephrinb1-fgf signaling influence which embryonic cells are able to move into the eye field. We also showed that two of these factors, Rx1 and Pax6, differentially influence whether a cell maintains an immature retinal stem cell state or becomes a more restricted retinal progenitor cell. Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities. Dishevelled mediates ephrinb1 signaling in the eye field via the planar cell polarity pathway. Nature Cell Biology 8: Morphogenetic movements underlying eye field formation require Page 4

5 interactions between the FGF and ephrinb1 signaling pathways. Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate. Link Using cell lineage analyses, neurotransmitter-specific immunocytochemistry, and confocal microscopy, we determined the cell lineage origin of different neurotransmitter subtypes of amacrine neurons. Using single cell transplantation and gene mis-expression techniques, we demonstrated some of the interactions and transcription factors necessary to produce these specific phenotypes. Methods in Molecular Biology: Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus. Intrinsic bias and lineage restriction in the phenotype determination of dopamine and neuropeptide Y amacrine cells. Dual expression of GABA or serotonin and dopamine in Xenopus amacrine cells is transient and may be regulated by laminar cues. Three types of serotonin-containing amacrine cells in the tadpole retina have distinct clonal origins. Asymmetrical blastomere origin and spatial domains of dopamine and Neuropeptide Y amacrine cells in Xenopus tadpole retina. The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: Studies of normal and regulated clones. Therefore, this gene is likely to be regulated by proteins that establish neuronal cell fate. We cloned the upstream sequences of this gene in rat and analyzed in silico which regions are likely to be involved in neuron-specific expression. The promoter region of the rat neuron-specific Class III beta-tubulin gene contains several proximal elements that may regulate neuron specific expression. Developmental expression of neuron-specific beta-tubulin in frog Xenopus laevis ; a marker for growing axons during the embryonic period. Page 5

6 Chapter 4 : Development of the Pre-Placodal Ectoderm and Cranial Sensory Placodes â NYU Scholars This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the preplacodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Brush cells Olfactory sensory neurons[ edit ] The olfactory sensory neurons of the olfactory epithelium are bipolar neurons. The apical poles of these neurons express odorant receptors on non-motile cilia at the ends of the dendritic knob, which extend out into the airspace to interact with odorants. Odorant receptors bind odorants in the airspace, which are made soluble by the serous secretions from olfactory glands located in the lamina propria of the mucosa. Once the axons pass through the cribriform plate, they terminate and synapse with the dendrites of mitral cells in the glomeruli of the olfactory bulb. Supporting cells[ edit ] Analogous to neural glial cells, the supporting cells are non-neural cells in the olfactory epithelium that are located in the apical layer of the pseudostratified ciliated columnar epithelium. There are two types of supporting cells in the olfactory epithelium: The sustentacular cells function as metabolic and physical support for the olfactory epithelium. Microvillar cells are another class of supporting cells that are morphologically and biochemically distinct from the sustentacular cells, and arise from a basal cell population that expresses c-kit. While some of these basal cells divide rapidly, a significant proportion remain relatively quiescent and replenish olfactory epithelial cells as needed. This leads to the olfactory epithelium being replaced every 6â 8 weeks. These glands deliver a proteinaceous secretion via ducts onto the surface of the mucosa. The role of the secretions are to trap and dissolve odiferous substances for the bipolar neurons. Constant flow from the olfactory glands allows old odors to be constantly washed away. Placodes are transient, focal aggregations of ectoderm located in the developmental region of future vertebrate head, and give rise to sensory organs. The axons of OSNs expressing the same odorant receptors converge onto the same glomerulus at the olfactory bulb, allowing for the organization of olfactory information. Olfaction results from the proper development and interaction of the two components of the primary olfactory pathway: In order for olfactory sensory neurons to function properly, they must express odorant receptors and the proper transduction proteins on non-motile cilia that extend from the dendritic knob in addition to projecting their axons to the olfactory bulb. Once the olfactory sensory neurons differentiate, they express odorant receptors, which transduce odorant information from the environment to the central nervous system and aids in the development of the odorant map. The organization and subsequent processing of odorant information is possible due to the convergence of olfactory sensory neuron axons expressing the same odorant receptors onto the same glomerulus at the olfactory bulb. Because of its regenerative capacity, damage to the olfactory epithelium can be temporary but in extreme cases, injury can be permanent, leading to anosmia. Composition of the Olfactory receptor neuron captions in German olfactory epithelium pig. Chapter 5 : PRINCIPLES OF DEVELOPMENTAL GENETICS - blog.quintoapp.com Moody, S.A. and J.-P. Saint-Jeannet () "Determination of pre-placodal ectoderm and sensory placodes" In: Principles of Developmental Genetics. Elsevier, NY. Second edition, pp Page 6

9/4/2015 INDUCTION CHAPTER 1. Neurons are similar across phyla Thus, many different model systems are used in developmental neurobiology. Fig 1.

9/4/2015 INDUCTION CHAPTER 1. Neurons are similar across phyla Thus, many different model systems are used in developmental neurobiology. Fig 1. INDUCTION CHAPTER 1 Neurons are similar across phyla Thus, many different model systems are used in developmental neurobiology Fig 1.1 1 EVOLUTION OF METAZOAN BRAINS GASTRULATION MAKING THE 3 RD GERM LAYER

More information

MCDB 4777/5777 Molecular Neurobiology Lecture 29 Neural Development- In the beginning

MCDB 4777/5777 Molecular Neurobiology Lecture 29 Neural Development- In the beginning MCDB 4777/5777 Molecular Neurobiology Lecture 29 Neural Development- In the beginning Learning Goals for Lecture 29 4.1 Describe the contributions of early developmental events in the embryo to the formation

More information

Developmental Biology Lecture Outlines

Developmental Biology Lecture Outlines Developmental Biology Lecture Outlines Lecture 01: Introduction Course content Developmental Biology Obsolete hypotheses Current theory Lecture 02: Gametogenesis Spermatozoa Spermatozoon function Spermatozoon

More information

Cellular Neurobiology BIPN 140 Fall 2016 Problem Set #8

Cellular Neurobiology BIPN 140 Fall 2016 Problem Set #8 Cellular Neurobiology BIPN 140 Fall 2016 Problem Set #8 1. Inductive signaling is a hallmark of vertebrate and mammalian development. In early neural development, there are multiple signaling pathways

More information

Neural development its all connected

Neural development its all connected Neural development its all connected How do you build a complex nervous system? How do you build a complex nervous system? 1. Learn how tissue is instructed to become nervous system. Neural induction 2.

More information

Developmental processes Differential gene expression Introduction to determination The model organisms used to study developmental processes

Developmental processes Differential gene expression Introduction to determination The model organisms used to study developmental processes Date Title Topic(s) Learning Outcomes: Sept 28 Oct 3 1. What is developmental biology and why should we care? 2. What is so special about stem cells and gametes? Developmental processes Differential gene

More information

Role of Organizer Chages in Late Frog Embryos

Role of Organizer Chages in Late Frog Embryos Ectoderm Germ Layer Frog Fate Map Frog Fate Map Role of Organizer Chages in Late Frog Embryos Organizer forms three distinct regions Notochord formation in chick Beta-catenin localization How does beta-catenin

More information

1. What are the three general areas of the developing vertebrate limb? 2. What embryonic regions contribute to the developing limb bud?

1. What are the three general areas of the developing vertebrate limb? 2. What embryonic regions contribute to the developing limb bud? Study Questions - Lecture 17 & 18 1. What are the three general areas of the developing vertebrate limb? The three general areas of the developing vertebrate limb are the proximal stylopod, zeugopod, and

More information

Mesoderm Induction CBT, 2018 Hand-out CBT March 2018

Mesoderm Induction CBT, 2018 Hand-out CBT March 2018 Mesoderm Induction CBT, 2018 Hand-out CBT March 2018 Introduction 3. Books This module is based on the following books: - 'Principles of Developement', Lewis Wolpert, et al., fifth edition, 2015 - 'Developmental

More information

Life Sciences For NET & SLET Exams Of UGC-CSIR. Section B and C. Volume-08. Contents A. BASIC CONCEPT OF DEVELOPMENT 1

Life Sciences For NET & SLET Exams Of UGC-CSIR. Section B and C. Volume-08. Contents A. BASIC CONCEPT OF DEVELOPMENT 1 Section B and C Volume-08 Contents 5. DEVELOPMENTAL BIOLOGY A. BASIC CONCEPT OF DEVELOPMENT 1 B. GAMETOGENESIS, FERTILIZATION AND EARLY DEVELOPMENT 23 C. MORPHOGENESIS AND ORGANOGENESIS IN ANIMALS 91 0

More information

Cell-Cell Communication in Development

Cell-Cell Communication in Development Biology 4361 - Developmental Biology Cell-Cell Communication in Development October 2, 2007 Cell-Cell Communication - Topics Induction and competence Paracrine factors inducer molecules Signal transduction

More information

Paraxial and Intermediate Mesoderm

Paraxial and Intermediate Mesoderm Biology 4361 Paraxial and Intermediate Mesoderm December 6, 2007 Mesoderm Formation Chick Major Mesoderm Lineages Mesodermal subdivisions are specified along a mediolateral axis by increasing amounts of

More information

10/2/2015. Chapter 4. Determination and Differentiation. Neuroanatomical Diversity

10/2/2015. Chapter 4. Determination and Differentiation. Neuroanatomical Diversity Chapter 4 Determination and Differentiation Neuroanatomical Diversity 1 Neurochemical diversity: another important aspect of neuronal fate Neurotransmitters and their receptors Excitatory Glutamate Acetylcholine

More information

Conclusions. The experimental studies presented in this thesis provide the first molecular insights

Conclusions. The experimental studies presented in this thesis provide the first molecular insights C h a p t e r 5 Conclusions 5.1 Summary The experimental studies presented in this thesis provide the first molecular insights into the cellular processes of assembly, and aggregation of neural crest and

More information

Paraxial and Intermediate Mesoderm

Paraxial and Intermediate Mesoderm Biology 4361 Paraxial and Intermediate Mesoderm December 7, 2006 Major Mesoderm Lineages Mesodermal subdivisions are specified along a mediolateral axis by increasing amounts of BMPs more lateral mesoderm

More information

Developmental Biology 3230 Midterm Exam 1 March 2006

Developmental Biology 3230 Midterm Exam 1 March 2006 Name Developmental Biology 3230 Midterm Exam 1 March 2006 1. (20pts) Regeneration occurs to some degree to most metazoans. When you remove the head of a hydra a new one regenerates. Graph the inhibitor

More information

Early Development in Invertebrates

Early Development in Invertebrates Developmental Biology Biology 4361 Early Development in Invertebrates October 25, 2006 Early Development Overview Cleavage rapid cell divisions divisions of fertilized egg into many cells Gastrulation

More information

Unicellular: Cells change function in response to a temporal plan, such as the cell cycle.

Unicellular: Cells change function in response to a temporal plan, such as the cell cycle. Spatial organization is a key difference between unicellular organisms and metazoans Unicellular: Cells change function in response to a temporal plan, such as the cell cycle. Cells differentiate as a

More information

Chapter 10 Development and Differentiation

Chapter 10 Development and Differentiation Part III Organization of Cell Populations Chapter Since ancient times, people have wondered how organisms are formed during the developmental process, and many researchers have worked tirelessly in search

More information

Developmental Zoology. Ectodermal derivatives (ZOO ) Developmental Stages. Developmental Stages

Developmental Zoology. Ectodermal derivatives (ZOO ) Developmental Stages. Developmental Stages Developmental Zoology (ZOO 228.1.0) Ectodermal derivatives 1 Developmental Stages Ø Early Development Fertilization Cleavage Gastrulation Neurulation Ø Later Development Organogenesis Larval molts Metamorphosis

More information

PRACTICE EXAM. 20 pts: 1. With the aid of a diagram, indicate how initial dorsal-ventral polarity is created in fruit fly and frog embryos.

PRACTICE EXAM. 20 pts: 1. With the aid of a diagram, indicate how initial dorsal-ventral polarity is created in fruit fly and frog embryos. PRACTICE EXAM 20 pts: 1. With the aid of a diagram, indicate how initial dorsal-ventral polarity is created in fruit fly and frog embryos. No Low [] Fly Embryo Embryo Non-neural Genes Neuroectoderm Genes

More information

UNIVERSITY OF YORK BIOLOGY. Developmental Biology

UNIVERSITY OF YORK BIOLOGY. Developmental Biology Examination Candidate Number: UNIVERSITY OF YORK BSc Stage 2 Degree Examinations 2017-18 Department: BIOLOGY Title of Exam: Developmental Biology Desk Number: Time allowed: 1 hour and 30 minutes Total

More information

Name. Biology Developmental Biology Winter Quarter 2013 KEY. Midterm 3

Name. Biology Developmental Biology Winter Quarter 2013 KEY. Midterm 3 Name 100 Total Points Open Book Biology 411 - Developmental Biology Winter Quarter 2013 KEY Midterm 3 Read the Following Instructions: * Answer 20 questions (5 points each) out of the available 25 questions

More information

Biology 218, practise Exam 2, 2011

Biology 218, practise Exam 2, 2011 Figure 3 The long-range effect of Sqt does not depend on the induction of the endogenous cyc or sqt genes. a, Design and predictions for the experiments shown in b-e. b-e, Single-cell injection of 4 pg

More information

Bio Section III Organogenesis. The Neural Crest and Axonal Specification. Student Learning Objectives. Student Learning Objectives

Bio Section III Organogenesis. The Neural Crest and Axonal Specification. Student Learning Objectives. Student Learning Objectives Bio 127 - Section III Organogenesis The Neural Crest and Axonal Specification Gilbert 9e Chapter 10 Student Learning Objectives 1. You should understand that the neural crest is an evolutionary advancement

More information

Cell Cell Communication in Development

Cell Cell Communication in Development Biology 4361 Developmental Biology Cell Cell Communication in Development June 25, 2008 Cell Cell Communication Concepts Cells in developing organisms develop in the context of their environment, including

More information

Paraxial and Intermediate Mesoderm

Paraxial and Intermediate Mesoderm Biology 4361 Paraxial and Intermediate Mesoderm December 6, 2007 Mesoderm Formation Chick Major Mesoderm Lineages Mesodermal subdivisions are specified along a mediolateral axis by increasing amounts of

More information

Bio 127 Section I Introduction to Developmental Biology. Cell Cell Communication in Development. Developmental Activities Coordinated in this Way

Bio 127 Section I Introduction to Developmental Biology. Cell Cell Communication in Development. Developmental Activities Coordinated in this Way Bio 127 Section I Introduction to Developmental Biology Cell Cell Communication in Development Gilbert 9e Chapter 3 It has to be EXTREMELY well coordinated for the single celled fertilized ovum to develop

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

Axis Specification in Drosophila

Axis Specification in Drosophila Developmental Biology Biology 4361 Axis Specification in Drosophila November 6, 2007 Axis Specification in Drosophila Fertilization Superficial cleavage Gastrulation Drosophila body plan Oocyte formation

More information

Maternal Control of GermLayer Formation in Xenopus

Maternal Control of GermLayer Formation in Xenopus Maternal Control of GermLayer Formation in Xenopus The zygotic genome is activated at the mid-blastula transition mid-blastula fertilized egg Xenopus gastrulae early-gastrula 7 hrs 10 hrs control not VP

More information

THE PROBLEMS OF DEVELOPMENT. Cell differentiation. Cell determination

THE PROBLEMS OF DEVELOPMENT. Cell differentiation. Cell determination We emphasize these points from Kandel in Bi/CNS 150 Bi/CNS/NB 150: Neuroscience Read Lecture Lecture Friday, October 2, 2015 Development 1: pp 5-10 Introduction Brains evolved All higher animals have brains

More information

Biology 376 Animal Development

Biology 376 Animal Development The stories are in every newspaper: cloning, stem cells, genetic engineering, in vitro fertilization, cancer therapies, organ regeneration, and protocols for prolonging our lifespan. In the past five years,

More information

Axis Specification in Drosophila

Axis Specification in Drosophila Developmental Biology Biology 4361 Axis Specification in Drosophila November 2, 2006 Axis Specification in Drosophila Fertilization Superficial cleavage Gastrulation Drosophila body plan Oocyte formation

More information

Axis Specification in Drosophila

Axis Specification in Drosophila Developmental Biology Biology 4361 Axis Specification in Drosophila July 9, 2008 Drosophila Development Overview Fertilization Cleavage Gastrulation Drosophila body plan Oocyte formation Genetic control

More information

Maternal VegT and b-catenin: Patterning the Xenopus Blastula

Maternal VegT and b-catenin: Patterning the Xenopus Blastula CHAPTER 1 Maternal VegT and b-catenin: Patterning the Xenopus Blastula Matthew Kofron, Jennifer Xanthos, and Janet Heasman 1 1.1 Introduction Loss of the maternal T-box transcription factor VegT has a

More information

Question Set # 4 Answer Key 7.22 Nov. 2002

Question Set # 4 Answer Key 7.22 Nov. 2002 Question Set # 4 Answer Key 7.22 Nov. 2002 1) A variety of reagents and approaches are frequently used by developmental biologists to understand the tissue interactions and molecular signaling pathways

More information

!!!!!!!! DB3230 Midterm 2 12/13/2013 Name:

!!!!!!!! DB3230 Midterm 2 12/13/2013 Name: 1. (10 pts) Draw or describe the fate map of a late blastula stage sea urchin embryo. Draw or describe the corresponding fate map of the pluteus stage larva. Describe the sequence of gastrulation events

More information

Exam 1 ID#: October 4, 2007

Exam 1 ID#: October 4, 2007 Biology 4361 Name: KEY Exam 1 ID#: October 4, 2007 Multiple choice (one point each) (1-25) 1. The process of cells forming tissues and organs is called a. morphogenesis. b. differentiation. c. allometry.

More information

Questions in developmental biology. Differentiation Morphogenesis Growth/apoptosis Reproduction Evolution Environmental integration

Questions in developmental biology. Differentiation Morphogenesis Growth/apoptosis Reproduction Evolution Environmental integration Questions in developmental biology Differentiation Morphogenesis Growth/apoptosis Reproduction Evolution Environmental integration Representative cell types of a vertebrate zygote => embryo => adult differentiation

More information

Drosophila melanogaster- Morphogen Gradient

Drosophila melanogaster- Morphogen Gradient NPTEL Biotechnology - Systems Biology Drosophila melanogaster- Morphogen Gradient Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by

More information

Mesoderm Development

Mesoderm Development Quiz rules: Spread out across available tables No phones, text books, or (lecture) notes on your desks No consultation with your colleagues No websites open other than the Quiz page No screen snap shots

More information

Exam 3 (Final Exam) December 20, 2007

Exam 3 (Final Exam) December 20, 2007 Biology 4361 Exam 3 (Final Exam) December 20, 2007 Name: ID: Multiple choice (1 point each. Indicate the best answer.) 1. During Drosophila gastrulation, mesoderm moves in through the a. primitives streak.

More information

Unit 4 Evaluation Question 1:

Unit 4 Evaluation Question 1: Name: Unit 4 Evaluation Question 1: /7 points A naturally occurring dominant mutant in mice is the Doublefoot (Dbf) mutant. Below is an image of the bones from a wildtype (wt) and Doublefoot mutant mouse.

More information

BILD7: Problem Set. 2. What did Chargaff discover and why was this important?

BILD7: Problem Set. 2. What did Chargaff discover and why was this important? BILD7: Problem Set 1. What is the general structure of DNA? 2. What did Chargaff discover and why was this important? 3. What was the major contribution of Rosalind Franklin? 4. How did solving the structure

More information

Supplementary Figure 1: Mechanism of Lbx2 action on the Wnt/ -catenin signalling pathway. (a) The Wnt/ -catenin signalling pathway and its

Supplementary Figure 1: Mechanism of Lbx2 action on the Wnt/ -catenin signalling pathway. (a) The Wnt/ -catenin signalling pathway and its Supplementary Figure 1: Mechanism of Lbx2 action on the Wnt/ -catenin signalling pathway. (a) The Wnt/ -catenin signalling pathway and its transcriptional activity in wild-type embryo. A gradient of canonical

More information

Bi 117 Final (60 pts) DUE by 11:00 am on March 15, 2012 Box by Beckman Institute B9 or to a TA

Bi 117 Final (60 pts) DUE by 11:00 am on March 15, 2012 Box by Beckman Institute B9 or to a TA Bi 117 Final (60 pts) DUE by 11:00 am on March 15, 2012 Box by Beckman Institute B9 or to a TA Instructor: Marianne Bronner Exam Length: 6 hours plus one 30-minute break at your discretion. It should take

More information

Cell-Cell Communication in Development

Cell-Cell Communication in Development Biology 4361 - Developmental Biology Cell-Cell Communication in Development June 23, 2009 Concepts Cell-Cell Communication Cells develop in the context of their environment, including: - their immediate

More information

The Radiata-Bilateria split. Second branching in the evolutionary tree

The Radiata-Bilateria split. Second branching in the evolutionary tree The Radiata-Bilateria split Second branching in the evolutionary tree Two very important characteristics are used to distinguish between the second bifurcation of metazoans Body symmetry Germinal layers

More information

Biology 224 Human Anatomy and Physiology - II Week 1; Lecture 1; Monday Dr. Stuart S. Sumida. Review of Early Development of Humans.

Biology 224 Human Anatomy and Physiology - II Week 1; Lecture 1; Monday Dr. Stuart S. Sumida. Review of Early Development of Humans. Biology 224 Human Anatomy and Physiology - II Week 1; Lecture 1; Monday Dr. Stuart S. Sumida Review of Early Development of Humans Special Senses Review: Historical and Developmental Perspectives Ontogeny

More information

Sonic hedgehog (Shh) signalling in the rabbit embryo

Sonic hedgehog (Shh) signalling in the rabbit embryo Sonic hedgehog (Shh) signalling in the rabbit embryo In the first part of this thesis work the physical properties of cilia-driven leftward flow were characterised in the rabbit embryo. Since its discovery

More information

Supplemental table S7.

Supplemental table S7. Supplemental table S7. GO terms significantly enriched in significantly up-regulated genes of the microarray. K: number of genes from the input cluster in the given category. F: number of total genes in

More information

craniofacial development and WNT signaling. Shachi Bhatt

craniofacial development and WNT signaling. Shachi Bhatt MED23: a Mediator subunit's role in global gene transcription, regulation of craniofacial development and WNT signaling. BY 2013 Shachi Bhatt Submitted to the graduate degree program in Anatomy and Cell

More information

Principles of Experimental Embryology

Principles of Experimental Embryology Biology 4361 Developmental Biology Principles of Experimental Embryology June 16, 2008 Overview What forces affect embryonic development? The embryonic environment: external and internal How do forces

More information

The sense of smell Outline Main Olfactory System Odor Detection Odor Coding Accessory Olfactory System Pheromone Detection Pheromone Coding

The sense of smell Outline Main Olfactory System Odor Detection Odor Coding Accessory Olfactory System Pheromone Detection Pheromone Coding The sense of smell Outline Main Olfactory System Odor Detection Odor Coding Accessory Olfactory System Pheromone Detection Pheromone Coding 1 Human experiment: How well do we taste without smell? 2 Brief

More information

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS.

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS. !! www.clutchprep.com Animals are multicellular, heterotrophic eukaryotes that feed by ingesting their food Most animals are diploid, and produce gametes produced directly by meiosis Animals lack cell

More information

Developmental Biology Biology Ectodermal Organs. November 22, 2005

Developmental Biology Biology Ectodermal Organs. November 22, 2005 Developmental Biology Biology 4361 Ectodermal Organs November 22, 2005 Germinal neuroepithelium external limiting membrane neural tube neuroepithelium (stem cells) Figure 13.3 Figure 13.4 Neuroepithelial

More information

Paraxial and Intermediate Mesoderm

Paraxial and Intermediate Mesoderm Biology 4361 Paraxial and Intermediate Mesoderm July 28, 2008 Paraxial and Intermediate Mesoderm Overview Development of major mesodermal lineages Somites: formation specification and differentiation Mesodermal

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11589 Supplementary Figure 1 Ciona intestinalis and Petromyzon marinus neural crest expression domain comparison. Cartoon shows dorsal views of Ciona mid gastrula (left) and Petromyzon

More information

Axon guidance I. Paul Garrity March 15, /9.013

Axon guidance I. Paul Garrity March 15, /9.013 Axon guidance I Paul Garrity March 15, 2004 7.68/9.013 Neuronal Wiring: Functional Framework of the Nervous System Stretch reflex circuit Early theories of axonogenesis Schwann: many neurons link to form

More information

Lecture 7. Development of the Fruit Fly Drosophila

Lecture 7. Development of the Fruit Fly Drosophila BIOLOGY 205/SECTION 7 DEVELOPMENT- LILJEGREN Lecture 7 Development of the Fruit Fly Drosophila 1. The fruit fly- a highly successful, specialized organism a. Quick life cycle includes three larval stages

More information

Why Flies? stages of embryogenesis. The Fly in History

Why Flies? stages of embryogenesis. The Fly in History The Fly in History 1859 Darwin 1866 Mendel c. 1890 Driesch, Roux (experimental embryology) 1900 rediscovery of Mendel (birth of genetics) 1910 first mutant (white) (Morgan) 1913 first genetic map (Sturtevant

More information

2. Fertilization activates the egg and bring together the nuclei of sperm and egg

2. Fertilization activates the egg and bring together the nuclei of sperm and egg 2. Fertilization activates the egg and bring together the nuclei of sperm and egg Sea urchins (what phylum?) are models for the study of the early development of deuterostomes (like us, right?). Sea urchin

More information

MBios 401/501: Lecture 14.2 Cell Differentiation I. Slide #1. Cell Differentiation

MBios 401/501: Lecture 14.2 Cell Differentiation I. Slide #1. Cell Differentiation MBios 401/501: Lecture 14.2 Cell Differentiation I Slide #1 Cell Differentiation Cell Differentiation I -Basic principles of differentiation (p1305-1320) -C-elegans (p1321-1327) Cell Differentiation II

More information

Name KEY. Biology Developmental Biology Winter Quarter Midterm 3 KEY

Name KEY. Biology Developmental Biology Winter Quarter Midterm 3 KEY Name KEY 100 Total Points Open Book Biology 411 - Developmental Biology Winter Quarter 2009 Midterm 3 KEY All of the 25 multi-choice questions are single-answer. Choose the best answer. (4 pts each) Place

More information

Caenorhabditis elegans

Caenorhabditis elegans Caenorhabditis elegans Why C. elegans? Sea urchins have told us much about embryogenesis. They are suited well for study in the lab; however, they do not tell us much about the genetics involved in embryogenesis.

More information

1 GO: regulation of cell size E-04 2 GO: negative regulation of cell growth GO:

1 GO: regulation of cell size E-04 2 GO: negative regulation of cell growth GO: Table S2: The biological modulated by mir-5701 Sr. No Term Id 1 Term Name 2 Hit Gene Number 3 P-Value 4 1 GO:0008361 regulation of cell size 9 4.37E-04 2 GO:0030308 negative regulation of cell growth 8

More information

Axis determination in flies. Sem 9.3.B.5 Animal Science

Axis determination in flies. Sem 9.3.B.5 Animal Science Axis determination in flies Sem 9.3.B.5 Animal Science All embryos are in lateral view (anterior to the left). Endoderm, midgut; mesoderm; central nervous system; foregut, hindgut and pole cells in yellow.

More information

Chapter 18 Lecture. Concepts of Genetics. Tenth Edition. Developmental Genetics

Chapter 18 Lecture. Concepts of Genetics. Tenth Edition. Developmental Genetics Chapter 18 Lecture Concepts of Genetics Tenth Edition Developmental Genetics Chapter Contents 18.1 Differentiated States Develop from Coordinated Programs of Gene Expression 18.2 Evolutionary Conservation

More information

18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis

18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis 18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis An organism arises from a fertilized egg cell as the result of three interrelated processes: cell division, cell

More information

Exam 2 ID#: November 9, 2006

Exam 2 ID#: November 9, 2006 Biology 4361 Name: KEY Exam 2 ID#: November 9, 2006 Multiple choice (one point each) Circle the best answer. 1. Inducers of Xenopus lens and optic vesicle include a. pharyngeal endoderm and anterior neural

More information

Introduction to Physiological Psychology

Introduction to Physiological Psychology Introduction to Physiological Psychology Psych 260 Kim Sweeney ksweeney@cogsci.ucsd.edu cogsci.ucsd.edu/~ksweeney/psy260.html n Vestibular System Today n Gustation and Olfaction 1 n Vestibular sacs: Utricle

More information

MOLECULAR CONTROL OF EMBRYONIC PATTERN FORMATION

MOLECULAR CONTROL OF EMBRYONIC PATTERN FORMATION MOLECULAR CONTROL OF EMBRYONIC PATTERN FORMATION Drosophila is the best understood of all developmental systems, especially at the genetic level, and although it is an invertebrate it has had an enormous

More information

Announcements: Test4: Wednesday on: week4 material CH5 CH6 & NIA CAPE Evaluations please do them for me!! ask questions...discuss listen learn.

Announcements: Test4: Wednesday on: week4 material CH5 CH6 & NIA CAPE Evaluations please do them for me!! ask questions...discuss listen learn. Announcements: Test4: Wednesday on: week4 material CH5 CH6 & NIA CAPE Evaluations please do them for me!! ask questions...discuss listen learn. The Chemical Senses: Olfaction Mary ET Boyle, Ph.D. Department

More information

7.013 Problem Set

7.013 Problem Set 7.013 Problem Set 5-2013 Question 1 During a summer hike you suddenly spot a huge grizzly bear. This emergency situation triggers a fight or flight response through a signaling pathway as shown below.

More information

Comparison of the expression patterns of several sox genes between Oryzias latipes and Danio rerio

Comparison of the expression patterns of several sox genes between Oryzias latipes and Danio rerio Urun 1 Comparison of the expression patterns of several sox genes between Oryzias latipes and Danio rerio Fatma Rabia URUN ilkent University, nkara - TURKEY High mobility group domain containing transcription

More information

1

1 http://photos1.blogger.com/img/13/2627/640/screenhunter_047.jpg 1 The Nose Knows http://graphics.jsonline.com/graphics/owlive/img/mar05/sideways.one0308_big.jpg 2 http://www.stlmoviereviewweekly.com/sitebuilder/images/sideways-253x364.jpg

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Characteristics of Animals multicellular Except for sponges, animal cells are arranged into tissues. Tissues are necessary to produce organs and organ systems. Tissues, organs,

More information

Organization of Vertebrate Body. Organization of Vertebrate Body

Organization of Vertebrate Body. Organization of Vertebrate Body The Animal Body and Principles of Regulation Chapter 43 There are four levels of organization: 1. Cells 2. Tissues 3. Organs 4. Organ systems Bodies of vertebrates are composed of different cell types

More information

Mesoderm induction: from caps to chips

Mesoderm induction: from caps to chips Mesoderm induction: from caps to chips David Kimelman Abstract Vertebrate mesoderm induction is one of the classical problems in developmental biology. Various developmental biology approaches, particularly

More information

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: Body symmetry Tissues

More information

SIGNIFICANCE OF EMBRYOLOGY

SIGNIFICANCE OF EMBRYOLOGY This lecture will discuss the following topics : Definition of Embryology Significance of Embryology Old and New Frontiers Introduction to Molecular Regulation and Signaling Descriptive terms in Embryology

More information

Segment boundary formation in Drosophila embryos

Segment boundary formation in Drosophila embryos Segment boundary formation in Drosophila embryos Development 130, August 2003 Camilla W. Larsen, Elizabeth Hirst, Cyrille Alexandre and Jean Paul Vincent 1. Introduction: - Segment boundary formation:

More information

Developmental genetics: finding the genes that regulate development

Developmental genetics: finding the genes that regulate development Developmental Biology BY1101 P. Murphy Lecture 9 Developmental genetics: finding the genes that regulate development Introduction The application of genetic analysis and DNA technology to the study of

More information

3/8/ Complex adaptations. 2. often a novel trait

3/8/ Complex adaptations. 2. often a novel trait Chapter 10 Adaptation: from genes to traits p. 302 10.1 Cascades of Genes (p. 304) 1. Complex adaptations A. Coexpressed traits selected for a common function, 2. often a novel trait A. not inherited from

More information

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16 Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Enduring understanding 3.B: Expression of genetic information involves cellular and molecular

More information

Unit 3: Control and regulation Higher Biology

Unit 3: Control and regulation Higher Biology Unit 3: Control and regulation Higher Biology To study the roles that genes play in the control of growth and development of organisms To be able to Give some examples of features which are controlled

More information

Chapter 11. Development: Differentiation and Determination

Chapter 11. Development: Differentiation and Determination KAP Biology Dept Kenyon College Differential gene expression and development Mechanisms of cellular determination Induction Pattern formation Chapter 11. Development: Differentiation and Determination

More information

Building the brain (1): Evolutionary insights

Building the brain (1): Evolutionary insights Building the brain (1): Evolutionary insights Historical considerations! Initial insight into the general role of the brain in human behaviour was already attained in antiquity and formulated by Hippocrates

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

Lecture 9 Olfaction (Chemical senses 2)

Lecture 9 Olfaction (Chemical senses 2) Lecture 9 Olfaction (Chemical senses 2) All lecture material from the following links unless otherwise mentioned: 1. http://wws.weizmann.ac.il/neurobiology/labs/ulanovsky/sites/neurobiology.labs.ulanovsky/files/uploads/kandel_ch32_smell_taste.pd

More information

presumptiv e germ layers during Gastrulatio n and neurulation Somites

presumptiv e germ layers during Gastrulatio n and neurulation Somites Vertebrate embryos are similar at the phylotypic stage Patterning the Vertebrate Body Plan II: Mesoderm & Early Nervous System Wolpert L, Beddington R, Jessell T, Lawrence P, Meyerowitz E, Smith J. (2001)

More information

Cells. Steven McLoon Department of Neuroscience University of Minnesota

Cells. Steven McLoon Department of Neuroscience University of Minnesota Cells Steven McLoon Department of Neuroscience University of Minnesota 1 Microscopy Methods of histology: Treat the tissue with a preservative (e.g. formaldehyde). Dissect the region of interest. Embed

More information

Geert Geeven. April 14, 2010

Geert Geeven. April 14, 2010 iction of Gene Regulatory Interactions NDNS+ Workshop April 14, 2010 Today s talk - Outline Outline Biological Background Construction of Predictors The main aim of my project is to better understand the

More information

THE SPECIFICATION OF DORSAL CELL FATES IN THE VERTEBRATE CENTRAL NERVOUS SYSTEM

THE SPECIFICATION OF DORSAL CELL FATES IN THE VERTEBRATE CENTRAL NERVOUS SYSTEM Annu. Rev. Neurosci. 1999. 22:261 94 Copyright c 1999 by Annual Reviews. All rights reserved THE SPECIFICATION OF DORSAL CELL FATES IN THE VERTEBRATE CENTRAL NERVOUS SYSTEM Kevin J. Lee and Thomas M. Jessell

More information

v Scientists have identified 1.3 million living species of animals v The definition of an animal

v Scientists have identified 1.3 million living species of animals v The definition of an animal Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal

More information

Biosc 41 9/10 Announcements

Biosc 41 9/10 Announcements Biosc 41 9/10 Announcements v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal Body Plans

More information

Introduction to Embryology. He who sees things grow from the beginning will have the finest view of them.

Introduction to Embryology. He who sees things grow from the beginning will have the finest view of them. He who sees things grow from the beginning will have the finest view of them. Aristotle 384 322 B.C. Introduction to Embryology This lecture will introduce you to the science of developmental biology or

More information

Tsukushi Modulates Xnr2, FGF and BMP Signaling: Regulation of Xenopus Germ Layer Formation

Tsukushi Modulates Xnr2, FGF and BMP Signaling: Regulation of Xenopus Germ Layer Formation Tsukushi Modulates Xnr2, FGF and BMP Signaling: Regulation of Xenopus Germ Layer Formation Samantha A. Morris 1 *, Alexandra D. Almeida 1, Hideaki Tanaka 2, Kunimasa Ohta 2, Shin-ichi Ohnuma 1 * 1 Department

More information

BEFORE TAKING THIS MODULE YOU MUST ( TAKE BIO-4013Y OR TAKE BIO-

BEFORE TAKING THIS MODULE YOU MUST ( TAKE BIO-4013Y OR TAKE BIO- 2018/9 - BIO-4001A BIODIVERSITY Autumn Semester, Level 4 module (Maximum 150 Students) Organiser: Dr Harriet Jones Timetable Slot:DD This module explores life on Earth. You will be introduced to the major

More information