Principles of Experimental Embryology
|
|
- Loraine Hood
- 1 years ago
- Views:
Transcription
1 Biology 4361 Developmental Biology Principles of Experimental Embryology June 16, 2008
2 Overview What forces affect embryonic development? The embryonic environment: external and internal How do forces within the embryo cause the differentiation of cells? Differentiation definition Specification, commitment, and determination concepts Types of specification: autonomous, syncytial, and conditional Morphogens and morphogen gradients Stem cells and commitment How do cells organize themselves into tissues and organs?
3 The Embryonic Environment What is the embryonic environment? External influences: light temperature humidity predators competitors intraspecific signals Internal influences (e.g. intrauterine): chemicals (e.g. maternal hormones, caffeine, nicotine) competitors (e.g. litter mates) Environmental regulation pathway: external stimulation triggers signaling event in embryo signal stimulates an embryonic pathway (e.g. endocrine), that changes the developmental pathway.
4 Differentiation Differentiation development of cellular specialization How does the intraembryonic environment direct cellular differentiation? Differentiation is a process preceded by the commitment of cell to certain fate(s) Commitment is also a staged process: specification determination
5 Commitment Stages Stages of cell commitment: 1. Specification. Capable of differentiating autonomously when placed in a neutral environment; not when placed in non neutral environment (functional definition) reversible 2. Determination. Capable of differentiating autonomously even when placed into another embryonic region. (functional definition) essentially irreversible undifferentiated differentiated specification determination
6 Specification Types I. Autonomous specification II. Syncytial Specification III. Conditional Specification
7 Autonomous Specification Cells are specified by differential distribution of cytoplasmic components during cleavage of the egg and early embryo. proteins RNA
8 Autonomous Specification Tunicate (sea squirt) blastomere separation
9 Autonomous Specification 2 Tunicate (sea squirt) Blastomeres are committed at a very early stage in mosaic development dissociated blastomeres If split, each dissociated blastomere pair forms original structures Each blastomere contains positional information in the form of specific proteins and genes
10 Autonomous (Mosaic) Development differentiated cell mitosis later embryo early embryo
11 Syncytial Specification Syncytium nuclear division without cell division; results in cytoplasm with many nuclei
12 Drosophila Cleavage nuclei & cytoplasm form syncytial blastoderm FELICE FARBER
13 Syncytial Specification through Morphogen Gradients Drosophila egg Maternal messages: bicoid anterior determinant nanos posterior determinant U Irion & D St Johnson
14 Syncytial Specification through Morphogen Gradients Maternal messages: bicoid anterior nanos posterior Bicoid & Nanos proteins = morphogens Each morphogen establishes a gradient throughout the embryo (like a diffusion gradient) 1:0 10:1 1:1 1:5 1) each region has a distinct Bicoid:Nanos ratio 2) Bicoid:Nanos determines anterior posterior identity
15 Syncytial Specification through Morphogen Gradients Maternal messages: bicoid anterior nanos posterior Each morphogen establishes a gradient throughout the embryo (like a diffusion gradient) Cells establish identity depending on their position in multiple gradients
16 Bicoid Protein = Head
17 Bicoid Manipulation = morphogen gradient
18 Conditional Specification
19 Conditional Specification Cell fate depends on interactions with neighboring cells Embryonic cells can change fates to compensate for missing parts = Regulation Conditional specification produces Regulative Development
20 Conditional Specification differentiated cell mitosis later embryo early embryo?
21 Conditional Specification Legs and antennae: structurally related; different morphologies. Experiment: Transplant embryonic cells that would produce proximal leg (close to the body) to an area that would ordinarily produce antenna tip. proximal leg antenna claws distal antenna? I. Duncan claw
22 Morphogen Gradients Conditional Specification Cell commitment and differentiation are programmed by various morphogen gradients. e.g. cells respond to protein concentration by turning different colors
23 Morphogen Gradients Conditional Specification Cell commitment and differentiation are programmed by various morphogen gradients. Transplants of flag cells shows that they retain their identity (nationality), but grow according to the cells around them.
24 Conditional Specification: Leg Antenna Transplant I. Duncan Transplanted leg cells keep leg identity but modify development from their original location (proximal to the body), to that of their new location (the distal most point). A morphogen gradient started at the body (source) specifies proximal structures. As the morphogen concentration decreases more distal structures form. Therefore, while transplanted leg cells kept their identity, they were conditioned by the low morphogen concentration at the tip (sink) to form the most distal leg structures claws.
25 Stem Cells and Commitment * * Totipotent* ability to make all cell types; embryo and trophoblast (fetal portion of the placenta). Pluripotent* uncommitted; makes many types of cells. Multipotent* committed; makes several different types of cells *all stem cells regenerate copies of themselves
26 Stem Cell Derived Blood Cells
27 Overview How do forces outside the embryo affect its development? How do forces within the embryo cause the differentiation of cells? How do cells organize themselves into tissues and organs? Morphogenesis and Cell Adhesion
28 Morphogenesis and Cell Adhesion How are tissues formed from populations of cells? How are organs constructed from tissues? How do organs form in particular locations and how do migrating cells reach their destinations? How do organ and their cells grow, and how is their growth coordinated throughout development? How do organs achieve polarity?
29 Cell Interactions Cells interact with each other either through paracrine signaling at some distance, or through direct contact. Cell membrane protein components bind cells together; e.g. Cadherin Calcium dependent adhesion multiple forms
30 Cadherin Mediated Cell Adhesion Different cells have different cadherins. Different cadherins have different affinities for each other. Thus, cell types can segregate themselves based on membrane components. actin microfilament system = anchoring and movement NOTE Ca 2+ dependent binding Ca 2+ can control both strength and reversibility of binding
Principles of Experimental Embryology
Biology 4361 Developmental Biology Principles of Experimental Embryology September 19, 2006 Major Research Questions How do forces outside the embryo affect its development? (Environmental Developmental
Axis Specification in Drosophila
Developmental Biology Biology 4361 Axis Specification in Drosophila November 2, 2006 Axis Specification in Drosophila Fertilization Superficial cleavage Gastrulation Drosophila body plan Oocyte formation
Axis Specification in Drosophila
Developmental Biology Biology 4361 Axis Specification in Drosophila November 6, 2007 Axis Specification in Drosophila Fertilization Superficial cleavage Gastrulation Drosophila body plan Oocyte formation
Axis Specification in Drosophila
Developmental Biology Biology 4361 Axis Specification in Drosophila July 9, 2008 Drosophila Development Overview Fertilization Cleavage Gastrulation Drosophila body plan Oocyte formation Genetic control
Drosophila Life Cycle
Drosophila Life Cycle 1 Early Drosophila Cleavage Nuclei migrate to periphery after 10 nuclear divisions. Cellularization occurs when plasma membrane folds in to divide nuclei into cells. Drosophila Superficial
Genes, Development, and Evolution
14 Genes, Development, and Evolution Chapter 14 Genes, Development, and Evolution Key Concepts 14.1 Development Involves Distinct but Overlapping Processes 14.2 Changes in Gene Expression Underlie Cell
MOLECULAR CONTROL OF EMBRYONIC PATTERN FORMATION
MOLECULAR CONTROL OF EMBRYONIC PATTERN FORMATION Drosophila is the best understood of all developmental systems, especially at the genetic level, and although it is an invertebrate it has had an enormous
MBios 401/501: Lecture 14.2 Cell Differentiation I. Slide #1. Cell Differentiation
MBios 401/501: Lecture 14.2 Cell Differentiation I Slide #1 Cell Differentiation Cell Differentiation I -Basic principles of differentiation (p1305-1320) -C-elegans (p1321-1327) Cell Differentiation II
Morphogens in biological development: Drosophila example
LSM5194 Morphogens in biological development: Drosophila example Lecture 29 The concept of morphogen gradients The concept of morphogens was proposed by L. Wolpert as a part of the positional information
Lecture 7. Development of the Fruit Fly Drosophila
BIOLOGY 205/SECTION 7 DEVELOPMENT- LILJEGREN Lecture 7 Development of the Fruit Fly Drosophila 1. The fruit fly- a highly successful, specialized organism a. Quick life cycle includes three larval stages
18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis
18.4 Embryonic development involves cell division, cell differentiation, and morphogenesis An organism arises from a fertilized egg cell as the result of three interrelated processes: cell division, cell
I. Specialization. II. Autonomous signals
Multicellularity Up to this point in the class we have been discussing individual cells, or, at most, populations of individual cells. But some interesting life forms (for example, humans) consist not
Developmental Biology Biology 4361
Developmental Biology Biology 4361 The Anatomical Tradition 2009 A hen is only an egg s way of making a new egg. Samuel Butler, 1885 The Anatomical Tradition - Overview What is developmental biology? How
!!!!!!!! DB3230 Midterm 2 12/13/2013 Name:
1. (10 pts) Draw or describe the fate map of a late blastula stage sea urchin embryo. Draw or describe the corresponding fate map of the pluteus stage larva. Describe the sequence of gastrulation events
Chapter 10, 11, 14: Gene Expression, Regulation, and Development Exam
Chapter 10, 11, 14: Gene Expression, Regulation, and Development Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Why did the original one-gene, one-enzyme
Chapter 10 Development and Differentiation
Part III Organization of Cell Populations Chapter Since ancient times, people have wondered how organisms are formed during the developmental process, and many researchers have worked tirelessly in search
Study Guide A. Answer Key. Cell Growth and Division. SECTION 1. THE CELL CYCLE 1. a; d; b; c 2. gaps 3. c and d 4. c 5. b and d 6.
Cell Growth and Division Answer Key SECTION 1. THE CELL CYCLE 1. a; d; b; c 2. gaps 3. c and d 4. c 5. b and d 6. G 1 7. G 0 8. c 9. faster; too large 10. volume 11. a and b 12. repeating pattern or repetition
Cells to Tissues. Peter Takizawa Department of Cell Biology
Cells to Tissues Peter Takizawa Department of Cell Biology From one cell to ensembles of cells. Multicellular organisms require individual cells to work together in functional groups. This means cells
Ch 10, 11 &14 Preview
Ch 10, 11 &14 Preview Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Why did the original one-gene, one-enzyme hypothesis have to be modified? a. Some
7.013 Problem Set
7.013 Problem Set 5-2013 Question 1 During a summer hike you suddenly spot a huge grizzly bear. This emergency situation triggers a fight or flight response through a signaling pathway as shown below.
Signal Transduction. Dr. Chaidir, Apt
Signal Transduction Dr. Chaidir, Apt Background Complex unicellular organisms existed on Earth for approximately 2.5 billion years before the first multicellular organisms appeared.this long period for
Unit 1: DNA & the Genome Topic 4: Cellular Differentiation
Unit 1: DNA & the Genome Topic 4: Cellular Differentiation http://commons.wikimedia.org/wiki/embryo#mediaviewer/file:8-cell_stage_embryo.png Learning Outcomes Define the term cellular differentiation.
How many lessons is it?
Science Unit Learning Summary Content Eukaryotes and Prokaryotes Cells are the basic unit of all life forms. A eukaryotic cell contains genetic material enclosed within a nucleus. Plant and animal cells
Biology 340 Comparative Embryology Lecture 4 Dr. Stuart Sumida. Overview of Pre-Metazoan. and Protostome Development (Insects)
Biology 340 Comparative Embryology Lecture 4 Dr. Stuart Sumida Overview of Pre-Metazoan and Protostome Development (Insects) Plants Fungi Animals In1998 fossilized animal embryos were reported from the
Organisms are made up of specialized cells.
All living things are made up of cells! Specialized cells develop from a single zygote Organisms are made up of specialized cells. Each has a specific job/function red blood cell nerve cell Zygotes (fertilized
2. Fertilization activates the egg and bring together the nuclei of sperm and egg
2. Fertilization activates the egg and bring together the nuclei of sperm and egg Sea urchins (what phylum?) are models for the study of the early development of deuterostomes (like us, right?). Sea urchin
BIOH111. o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system
BIOH111 o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 Textbook
10/15/09. Tetrapod Limb Development & Pattern Formation. Developing limb region is an example of a morphogenetic field
Tetrapod Limb Development & Pattern Formation Figure 16.5(1) Limb Bud Formation derived from lateral plate (somatic) & paraxial (myotome) Fig. 16.2 Prospective Forelimb Field of Salamander Ambystoma maculatum
Drosophila Somatic Anterior-Posterior Axis (A-P Axis) Formation
Home Biol 4241 Luria-Delbruck 1943 Hershey-Chase 1952 Meselson-Stahl 1958 Garapin et al. 1978 McClintock 1953 King-Wilson 1975 Sanger et al. 1977 Rothberg et al. 2011 Jeffreys et al. 1985 Bacterial Genetics
Caenorhabditis elegans
Caenorhabditis elegans Why C. elegans? Sea urchins have told us much about embryogenesis. They are suited well for study in the lab; however, they do not tell us much about the genetics involved in embryogenesis.
Mitosis, development, regeneration and cell differentiation
Mitosis, development, regeneration and cell differentiation Mitosis is a type of cell division by binary fission (splitting in two) which occurs in certain eukaryotic cells. Mitosis generates new body
CELL CYCLE AND DIFFERENTIATION
CELL CYCLE AND DIFFERENTIATION Dewajani Purnomosari Department of Histology and Cell Biology Faculty of Medicine Universitas Gadjah Mada d.purnomosari@ugm.ac.id WHAT IS CELL CYCLE? 09/12/14 d.purnomosari@ugm.ac.id
Midterm 1. Average score: 74.4 Median score: 77
Midterm 1 Average score: 74.4 Median score: 77 NAME: TA (circle one) Jody Westbrook or Jessica Piel Section (circle one) Tue Wed Thur MCB 141 First Midterm Feb. 21, 2008 Only answer 4 of these 5 problems.
Chapter 18 Regulation of Gene Expression
Chapter 18 Regulation of Gene Expression Differential gene expression Every somatic cell in an individual organism contains the same genetic information and replicated from the same original fertilized
Cellular Growth & Reproduction. Biology 1B Ms. Morris
Cellular Growth & Reproduction Biology 1B Ms. Morris Friday, February 7, 2014 Warm Up: Look around at the other people in the classroom. What types of variation (differences) do you see? What similarities
Development. 27 April 2017
Development 27 April 2017 Development Development in multicellular organisms allow for cells and organ structures with specialized functions Development occurs at many points in the life cycle of an animal
Biology 4361 Developmental Biology The Genetics of Axis Specification in Drosophila November 2, 2006
Biology 4361 Developmental Biology The Genetics of Axis Specification in Drosophila November 2, 2006 EARLY DROSOPHILA DEVELOPMENT Fertilization 1) Drosophila egg activation occurs at ovulation - eggs are
9/4/2015 INDUCTION CHAPTER 1. Neurons are similar across phyla Thus, many different model systems are used in developmental neurobiology. Fig 1.
INDUCTION CHAPTER 1 Neurons are similar across phyla Thus, many different model systems are used in developmental neurobiology Fig 1.1 1 EVOLUTION OF METAZOAN BRAINS GASTRULATION MAKING THE 3 RD GERM LAYER
Cell-cell communication in development Review of cell signaling, paracrine and endocrine factors, cell death pathways, juxtacrine signaling, differentiated state, the extracellular matrix, integrins, epithelial-mesenchymal
Passive. mechanisms. Active. mechanisms. Cell diffusion. Movement. Movement. Movement. Mechanisms that do not require cellular energy such as:
Passive mechanisms Mechanisms that do not require cellular energy such as: Diffusion Facilitated diffusion Osmosis Filtration Active mechanisms Mechanisms that do require cellular energy such as: Active
Mesoderm Induction CBT, 2018 Hand-out CBT March 2018
Mesoderm Induction CBT, 2018 Hand-out CBT March 2018 Introduction 3. Books This module is based on the following books: - 'Principles of Developement', Lewis Wolpert, et al., fifth edition, 2015 - 'Developmental
Temporal regulation of gene expression in the blastoderm Drosophila embryo
Temporal regulation of gene expression in the blastoderm Drosophila embryo Glenn K. Yasuda, 1,3 Jayne Baker, 2 and Gerold Schubiger 2 1Department of Genetics, SK-50, and 2Department of Zoology, NJ-15,
Cell-Cell Communication in Development
Biology 4361 - Developmental Biology Cell-Cell Communication in Development June 23, 2009 Concepts Cell-Cell Communication Cells develop in the context of their environment, including: - their immediate
Role of Organizer Chages in Late Frog Embryos
Ectoderm Germ Layer Frog Fate Map Frog Fate Map Role of Organizer Chages in Late Frog Embryos Organizer forms three distinct regions Notochord formation in chick Beta-catenin localization How does beta-catenin
Cell Growth and Division
Cell Growth and Division Growth, Development, and Reproduction Q: How does a cell produce a new cell? 10.1 Why do cells divide? WHAT I KNOW SAMPLE ANSWER: Cells divide to produce more cells. WHAT I LEARNED
2. Draw two water molecules. Using a dotted line, show a hydrogen bond that could form between them.
Biology Final Review Packet Directions: Answer the questions below. You may use any notes, worksheets, or your textbook to find the answers. The questions are divided up based on the different units we
Life of the Cell. Learning Objectives
Life of the Cell Society on a micro-scale 1 Learning Objectives 1. What are the characteristics that distinguish prokaryotic and eukaryotic cells? Which type of cell is believed to be older (more primitive)?
Why Flies? stages of embryogenesis. The Fly in History
The Fly in History 1859 Darwin 1866 Mendel c. 1890 Driesch, Roux (experimental embryology) 1900 rediscovery of Mendel (birth of genetics) 1910 first mutant (white) (Morgan) 1913 first genetic map (Sturtevant
Cells and Tissues PART B
3 Cells and Tissues PART B PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB Cellular Physiology: Membrane
LS_C2-quizzes, Version: 1 1
Name: Select the term that best completes the statement. A. cell division B. chromosomes C. cells D. divides E. centromere F. DNA G. chromatids H. nucleus Date: 1. is the chemical code that contains information
Mitosis. Meiosis MP3. Why do cells divide? Why Do Cells Need To Divide? Vocab List Chapter 10 & 11. What has to happen before a cell divides? divides?
MP3 Vocab List Chapter 10 & 11 Mitosis Anaphase Mitosis Cell Cycle Telophase Cytokinesis Cell Division Metaphase 4 Daughter Cells Prophase Meiosis Diploid Somatic Cells Interphase Haploid Parent Cell Gametes
Questions in developmental biology. Differentiation Morphogenesis Growth/apoptosis Reproduction Evolution Environmental integration
Questions in developmental biology Differentiation Morphogenesis Growth/apoptosis Reproduction Evolution Environmental integration Representative cell types of a vertebrate zygote => embryo => adult differentiation
Extranuclear Inheritance
Extranuclear Inheritance Extranuclear Inheritance The past couple of lectures, we ve been exploring exceptions to Mendel s principles of transmission inheritance. Scientists have observed inheritance patterns
Activation of a receptor. Assembly of the complex
Activation of a receptor ligand inactive, monomeric active, dimeric When activated by growth factor binding, the growth factor receptor tyrosine kinase phosphorylates the neighboring receptor. Assembly
Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction
Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction NC Essential Standard: 1.2.2 Analyze how cells grow and reproduce in terms of interphase, mitosis, and cytokinesis
Chapter 3: Cells. Lectures by Mark Manteuffel, St. Louis Community College
Chapter 3: Cells Lectures by Mark Manteuffel, St. Louis Community College Learning Objectives Be able to describe: what a cell is & two main classes of cells. structure & functions of cell membranes. how
Paraxial and Intermediate Mesoderm
Biology 4361 Paraxial and Intermediate Mesoderm December 6, 2007 Mesoderm Formation Chick Major Mesoderm Lineages Mesodermal subdivisions are specified along a mediolateral axis by increasing amounts of
Evolutionary Developmental Biology
Evolutionary Developmental Biology a.k.a. EVO-DEVO Paedomorphosis is common among salamanders. Note how this hellbender (top) and mudpuppy (bottom) both have gills, paddle tails, and weaker limbs... Top:
Fertilization. Key Concepts. Introduction. Activation Changes Juxtaposition Acrosome Syngamy Membrane Potential Cortical Reaction Electrophysiology
Fertilization 1 Activation Changes Juxtaposition Acrosome Syngamy Membrane Potential Cortical Reaction Electrophysiology Key Concepts 2 Sexual Reproduction Fertilization Syngamy Conjugation Parthenogenesis
Mitosis & Meiosis Practice Questions
Name: Date: 1. The diagram shown represents a cell that will undergo mitosis. Which diagrams below best illustrate the nuclei of the daughter cells that result from a normal mitotic cell division of the
Station What are the statements to the cell theory? 2. What are the two categories of cells?
Station 1 1. What are the statements to the cell theory? 2. What are the two categories of cells? Station 2 3. List the main difference between prokaryotes and eukaryotes? 4. What are the similarities
LECTURE 10A: MEIO S S
LECTURE 10A: MEIOSIS Meiosis Definition INTRODUCTION 1. Meiosis is the production of gametes, which is a reduction division which means a diploid gamete produces haploid gametes - from a full complement
Reproduction. Part 1
Reproduction Part 1 Reproduction Reproduction and development are necessary for the continuation of any species. Every organism requires a set of coded instructions (their chromosomes) for specifying it
Introduction to Cells
Life Science Introduction to Cells All life forms on our planet are made up of cells. In ALL organisms, cells have the same basic structure. The scientist Robert Hooke was the first to see cells under
The Cell Cycle. Chapter 12
The Cell Cycle Chapter 12 Why are cells small? As cells get bigger they don t work as well WHY? Difficulties Larger Cells Have: More demands on its DNA Less efficient in moving nutrients/waste across its
Cellular Neuroanatomy II The Prototypical Neuron: Neurites. Reading: BCP Chapter 2
Cellular Neuroanatomy II The Prototypical Neuron: Neurites Reading: BCP Chapter 2 Major Internal Features of a Neuron The neuron is the functional unit of the nervous system. A typical neuron has a soma
To help you complete this review activity and to help you study for your test, you should read SC State Standards B
Name: Test Date: PAGE: Biology I: Unit 3 Cell Structure Review for Unit Test Directions: You should use this as a guide to help you study for your test. You should also read through your notes, worksheets,
Unit 4 Evaluation Question 1:
Name: Unit 4 Evaluation Question 1: /7 points A naturally occurring dominant mutant in mice is the Doublefoot (Dbf) mutant. Below is an image of the bones from a wildtype (wt) and Doublefoot mutant mouse.
What in the Cell is Going On?
What in the Cell is Going On? Robert Hooke naturalist, philosopher, inventor, architect... (July 18, 1635 - March 3, 1703) In 1665 Robert Hooke publishes his book, Micrographia, which contains his drawings
Neural development its all connected
Neural development its all connected How do you build a complex nervous system? How do you build a complex nervous system? 1. Learn how tissue is instructed to become nervous system. Neural induction 2.
Chapter 1 Molecules, Cells, and Model Organisms
Chapter 1 Molecules, Cells, and Model Organisms 1.1 The Molecules of Life 1.2 Prokaryotic Cell Structure and Function 1.3 Eukaryotic Cell Structure and Function 1.4 Unicellular Eukaryotic Model Organisms
Paraxial and Intermediate Mesoderm
Biology 4361 Paraxial and Intermediate Mesoderm December 6, 2007 Mesoderm Formation Chick Major Mesoderm Lineages Mesodermal subdivisions are specified along a mediolateral axis by increasing amounts of
OCR (A) Biology A-level
OCR (A) Biology A-level Topic 2.6: Cell division, cell diversity and cellular organisation Notes The role of mitosis and the cell cycle is to produce identical daughter cells for growth and asexual reproduction
Biology 067 Section 14 Cell Division. A. Definitions:
Biology 067 Section 14 Cell Division A. Definitions: In a human cell, a nucleus holds all the chromatin that condenses to form chromosomes when cells divide every cell in the body has the same set of chromosomes
Introduction to Cells
Life Science Introduction to Cells All life forms on our planet are made up of cells. In ALL organisms, cells have the same basic structure. The scientist Robert Hooke was the first to see cells under
SIGNIFICANCE OF EMBRYOLOGY
This lecture will discuss the following topics : Definition of Embryology Significance of Embryology Old and New Frontiers Introduction to Molecular Regulation and Signaling Descriptive terms in Embryology
v Scientists have identified 1.3 million living species of animals v The definition of an animal
Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal
How does a cell communicate? AP Biology Curriculum Framework
Enduring Understanding 3.D Cells communicate by generating, transmitting and receiving chemical signals. 1 Endocrine & Cell Communication Part I: Introduction to Communication You may wish to print a copy
Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells
Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells Understand how a simple biochemical oscillator can drive the
CHAPTER 12 - THE CELL CYCLE (pgs )
CHAPTER 12 - THE CELL CYCLE (pgs. 228-245) CHAPTER SEVEN TARGETS I. Describe the importance of mitosis in single-celled and multi-cellular organisms. II. Explain the organization of DNA molecules and their
10/4/2017. Chapter 39
Chapter 39 1 Reception 1 Reception 2 Transduction CYTOPLASM CYTOPLASM Cell wall Plasma membrane Phytochrome activated by light Cell wall Plasma membrane Phytochrome activated by light cgmp Second messenger
3.a.2- Cell Cycle and Meiosis
Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. 3.a.2- Cell Cycle and Meiosis EU 3.A: Heritable information provides for continuity of life.
Mechanisms of Human Health and Disease. Developmental Biology
Mechanisms of Human Health and Developmental Biology Joe Schultz joe.schultz@nationwidechildrens.org D6 1 Dev Bio: Mysteries How do fertilized eggs become adults? How do adults make more adults? Why and
I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell.
I. Molecules & Cells A. Unit One: The Nature of Science a. How is the scientific method used to solve problems? b. What is the importance of controls? c. How does Darwin s theory of evolution illustrate
Model for the robust establishment of precise proportions in the early Drosophila embryo
Journal of Theoretical Biology 234 (2005) 13 19 www.elsevier.com/locate/yjtbi Model for the robust establishment of precise proportions in the early Drosophila embryo Tinri Aegerter-Wilmsen a, Christof
MCDB 4777/5777 Molecular Neurobiology Lecture 29 Neural Development- In the beginning
MCDB 4777/5777 Molecular Neurobiology Lecture 29 Neural Development- In the beginning Learning Goals for Lecture 29 4.1 Describe the contributions of early developmental events in the embryo to the formation
2 Robustness of Embryonic Spatial Patterning in Drosophila melanogaster
2 Robustness of Embryonic Spatial Patterning in Drosophila melanogaster David Umulis, Michael B. O Connor, and Hans G. Othmer Department of Chemical Engineering and Materials Science, University of Minnesota,
Eukaryotic Gene Expression
Eukaryotic Gene Expression Lectures 22-23 Several Features Distinguish Eukaryotic Processes From Mechanisms in Bacteria 123 Eukaryotic Gene Expression Several Features Distinguish Eukaryotic Processes
thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles
thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles 1 Response Mechanism tropism Definition A growth movement of part of plant in response to a directional stimulus examples Positive:
Investigation 7 Part 1: CELL DIVISION: MITOSIS
Investigation 7 Part 1: CELL DIVISION: MITOSIS How do eukaryotic cells divide to produce genetically identical cells? BACKGROUND One of the characteristics of living things is the ability to replicate
Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis.
Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis. The role of kinases and cyclin in the regulation of the cell cycle.
Cell Division and Reproduction
Cell Division and Reproduction What do you think this picture shows? If you guessed that it s a picture of two cells, you are right. In fact, the picture shows human cancer cells, and they are nearing
Topic 2.1 Cell Theory
Topic 2.1 Cell Theory Assessment Statements What you need to know: 2.1.1 Outline the cell theory. 2.1.2 Discuss evidence for the cell theory. 2.1.3 State that unicellular organisms carry out all the functions
Robustness of Tissue Patterns*
MCBU Project II - 2014 Robustness of Tissue Patterns* June, 2014 Frederic Y.M. Wan Mathematics University of California, Irvine Supported by: NIH Grants R01-GM67247 P50-GM66051 Biological Patterning The
Plant Molecular and Cellular Biology Lecture 10: Plant Cell Cycle Gary Peter
Plant Molecular and Cellular Biology Lecture 10: Plant Cell Cycle Gary Peter 9/10/2008 1 Learning Objectives Explain similarities and differences between fungal, mammalian and plant cell cycles Explain
Science 9 Unit 2 pack: Reproduction
Science 9 Unit 2 pack: Reproduction Name Ch 4: The Nucleus Ch 5: Mitosis Ch 6: Meiosis Students will develop an understanding of the processes of cell division as they pertain to reproduction. 0 Section
a. capture sunlight and absorb CO 2
BIO 274-01 Exam 1 Name Matching (10 pts) 1. Match each plant part with its function: root c a. capture sunlight and absorb CO 2 for photosynthesis leaves a b. provides support, conducts water and nutrients
Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations
Mechanisms of neuronal migration & Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 The cytoskeletal