CHAPTER 5 KARNAUGH MAPS

Size: px
Start display at page:

Download "CHAPTER 5 KARNAUGH MAPS"

Transcription

1 CHAPTER 5 1/36 KARNAUGH MAPS This chapter in the book includes: Objectives Study Guide 5.1 Minimum Forms of Switching Functions 5.2 Two- and Three-Variable Karnaugh Maps 5.3 Four-Variable Karnaugh Maps 5.4 Determination of Minimum Expressions 5.5 Five-Variable Karnaugh Maps 5.6 Other Uses of Karnaugh Maps 5.7 Other Forms of Karnaugh Maps Programmed Exercises Problems

2 Objectives 2/36 Topics introduced in this chapter: 1. Given a function (completely or in completely specified) of three to five variable, plot it on a Karnaugh map. The function may be given in minterm, maxterm, or algebraic form. 2. Determine the essential prime implicants of a function from a map. 3. Obtain the minimum sum-of-products or minimum product-of-sums form of a function from the map. 4. Determine all of the prime implicants of a function from a map. 5. Understand the relation between operations performed using the map and the corresponding algebraic operation.

3 5.1 Minimum Forms of Switching Functions 3/36 1. Combine terms by using XY XY X Do this repeatedly to eliminates as many literals as possible. A given term may be used more than once because X X X 2. Eliminate redundant terms by using the consensus theorems.

4 4/36 Fundamentals of Logic Design Chap Minimum Forms of Switching Functions ab bc c b b a abc abc c ab bc a c b a c b a F m c b a F (0,1,2,5,6,7) ),, ( ac bc b a abc abc c ab bc a c b a c b a F Example: Find a minimum sum-of-products

5 5/36 Fundamentals of Logic Design Chap Minimum Forms of Switching Functions ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( D C D B A D C C B A D B A D C B D C B C B A D B A D C B A D C B A D C B A D C B A D C B A D C B A Eliminate by consensus Example: Find a minimum product-of-sums

6 5.2 Two- and Three-Variable Karnaugh Maps 6/36 A 2-variable Karnaugh Map

7 5.2 Two- and Three-Variable Karnaugh Maps 7/36 Truth Table for a function F (a)

8 5.2 Two- and Three-Variable Karnaugh Maps 8/36 Truth Table and Karnaugh Map for Three-Variable Function

9 5.2 Two- and Three-Variable Karnaugh Maps 9/36 Location of Minterms on a Three-Variable Karnaugh Map

10 10/36 Fundamentals of Logic Design Chap Two- and Three-Variable Karnaugh Maps ),, ( M M M M M m m m c b a F Karnaugh Map of F(a, b, c) = m(1, 3, 5) = M(0, 2, 4, 6, 7)

11 5.2 Two- and Three-Variable Karnaugh Maps 11/36 Karnaugh Maps for Product Terms

12 5.2 Two- and Three-Variable Karnaugh Maps 12/36 Given Function f ( a, b, c) abc b c a

13 5.2 Two- and Three-Variable Karnaugh Maps 13/36 Simplification of a Three-Variable Function F T1 T2 a c b c

14 5.2 Two- and Three-Variable Karnaugh Maps 14/36 Complement of Map in Figure 5-6(a) F T 1 T 2 c ab

15 5.2 Two- and Three-Variable Karnaugh Maps 15/36 Karnaugh Maps Which Illustrate the Consensus Theorem Consensus term is redundant

16 5.2 Two- and Three-Variable Karnaugh Maps 16/36 Function with Two Minimal Forms F m(0,1,2,5,6,7 )

17 5.3 Four-Variable Karnaugh Maps 17/36 Location of Minterms on Four-Variable Karnaugh Map

18 5.3 Four-Variable Karnaugh Maps 18/36 Plot of acd + a b + d f ( a, b, c, d) acd a b d

19 5.3 Four-Variable Karnaugh Maps 19/36 Simplification of Four-Variable Functions

20 5.3 Four-Variable Karnaugh Maps 20/36 Simplification of an Incompletely Specified Function Don t care term

21 5.3 Four-Variable Karnaugh Maps 21/36 Figure s of f f x z wyz w y z x y 0s of f f y z wxz w xy f ( y z)( w x z)( w x y) minimum product of sum for f

22 5.4 Determination of Minimum Expressions Using Essential Prime Implicants 22/36 - Implicants of F : Any single 1 or any group of 1 s which can be combined together on a Map ( 관련항 ) - prime Implicants of F : A product term if it can not be combined with other terms to eliminate variable ( 주항 ) It is not Prime implicants since it can be combined with other terms Prime implicants It is not Prime implicants since it can be combined with other terms Prime implicants Fundamentals of Logic Design Chap. 5

23 5.4 Determination of Minimum Expressions Using Essential Prime Implicants 23/36 Determination of All Prime Implicants

24 5.4 Determination of Minimum Expressions Using Essential Prime Implicants 24/36 Because all of the prime implicants of a function are generally not needed in forming the minimum sum of products, selecting prime implicants is needed. - CD is not needed to cover for minimum expression -B C, AC, BD are essential prime implicants - CD is not an essential prime implicants Fundamentals of Logic Design Chap. 5

25 5.4 Determination of Minimum Expressions Using Essential Prime Implicants 25/36 1. First, find essential prime implicants ( 필수주항 ) 2. If minterms are not covered by essential prime implicants only, more prime implicants must be added to form minimum expression. Note: 1 s shaded in blue are covered by only one prime implicant. All other 1 s are covered by at least two prime implicants. A BD A C A B D ACD or BCD

26 5.4 Determination of Minimum Expressions Using Essential Prime Implicants 26/36 Flowchart for Determining a Minimum Sum of Products Using a Karnaugh Map

27 5.4 Determination of Minimum Expressions Using Essential Prime Implicants 27/36 1. A B covers 1 6 and its adjacent essential PI 2. AB D covers 1 10 and its adjacent essential PI 3. AC D is chosen for minimal cover AC D is not an essential PI

28 5.5 Five-variable Karnaugh Maps 28/36 5 변수카노맵 4 변수카노맵위에하나를더위치시켜 3 차원으로만들수있다. 하층은 m 0 에서 m 15 까지, 상층은 m 16 에서 m 31 까지 4 변수카노맵각각의사각형을대각선으로나눠 2 차원으로만들수도있다. A A 00 DE BC A 1/0 BC DE

29 5.5 Five-Variable Karnaugh Maps 29/36 Five-Variable Karnaugh Map

30 5.5 Five-Variable Karnaugh Maps 30/36 Figure 5-22

31 5.5 Five-Variable Karnaugh Maps 31/36 Figure 5-23 F( A, B, C, D, E) m(0,1,4,5,13,15,20,21,22,23,24,26,28,30,31) F Resulting minimum solution A B D ABE ACD A BCE AB C or P1 P2 P3 P4 B CD

32 5.5 Five-Variable Karnaugh Maps 32/36 Figure 5-24 F( A, B, C, D, E) m(0,1,3,8,9,14,15,16,17,19,25,27,31) Final solution C D E F B C D B C E A C D A BCD ABDE or P 1 P 2 P 3 P 4 P 5 AC E Fundamentals of Logic Design Chap. 5

33 5.6 Other Uses of Karnaugh Maps 33/36 Fig Show Equivalence of two functions using karnaugh map minturm expansion of f is f maxterm expansion of f is f m(0,2,3,4,8,10,11,15) same M (1,5,6,7,9,12,16,14) Figure 5-25 Factoring expression

34 5.6 Other Uses of Karnaugh Maps 34/36 Minimize solution Figure 5-26 F ABCD B CDE A B BCE Using the consensus theorem: F ABCD B CDE A B BCE ACDE minimum solution : F A B BCE ACDE ACDE

35 5.7 Other Forms of Karnaugh Maps 35/36 Figure Veitch Diagrams

36 5.7 Other Forms of Karnaugh Maps 36/36 Figure Other Forms of Five-Variable Karnaugh Maps

37 5.7 Other Forms of Karnaugh Maps 37/36 Figure Other Forms of Five-Variable Karnaugh Maps

UNIT 5 KARNAUGH MAPS Spring 2011

UNIT 5 KARNAUGH MAPS Spring 2011 UNIT 5 KRNUGH MPS Spring 2 Karnaugh Maps 2 Contents Minimum forms of switching functions Two- and three-variable Four-variable Determination of minimum expressions using essential prime implicants Five-variable

More information

Logic Design I (17.341) Fall Lecture Outline

Logic Design I (17.341) Fall Lecture Outline Logic Design I (17.341) Fall 2011 Lecture Outline Class # 06 October 24, 2011 Dohn Bowden 1 Today s Lecture Administrative Main Logic Topic Homework 2 Course Admin 3 Administrative Admin for tonight Syllabus

More information

Karnaugh Maps Objectives

Karnaugh Maps Objectives Karnaugh Maps Objectives For Karnaugh Maps of up to 5 variables Plot a function from algebraic, minterm or maxterm form Obtain minimum Sum of Products and Product of Sums Understand the relationship between

More information

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps EE210: Switching Systems Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps Prof. YingLi Tian Feb. 21/26, 2019 Department of Electrical Engineering The City College of New York

More information

Lecture 7: Karnaugh Map, Don t Cares

Lecture 7: Karnaugh Map, Don t Cares EE210: Switching Systems Lecture 7: Karnaugh Map, Don t Cares Prof. YingLi Tian Feb. 28, 2019 Department of Electrical Engineering The City College of New York The City University of New York (CUNY) 1

More information

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011 Problem 2-1 Recall that a minterm is a cube in which every variable appears. A Boolean expression in SOP form is canonical if every cube in the expression has a unique representation in which all of the

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

CHAPTER 3 BOOLEAN ALGEBRA

CHAPTER 3 BOOLEAN ALGEBRA CHAPTER 3 BOOLEAN ALGEBRA (continued) This chapter in the book includes: Objectives Study Guide 3.1 Multiplying Out and Factoring Expressions 3.2 Exclusive-OR and Equivalence Operations 3.3 The Consensus

More information

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions EE210: Switching Systems Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions Prof. YingLi Tian Feb. 15, 2018 Department of Electrical Engineering The City College of New York The

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata Simplification of Boolean Functions Dept. of CSE, IEM, Kolkata 1 Simplification of Boolean Functions: An implementation of a Boolean Function requires the use of logic gates. A smaller number of gates,

More information

COM111 Introduction to Computer Engineering (Fall ) NOTES 6 -- page 1 of 12

COM111 Introduction to Computer Engineering (Fall ) NOTES 6 -- page 1 of 12 COM111 Introduction to Computer Engineering (Fall 2006-2007) NOTES 6 -- page 1 of 12 Karnaugh Maps In this lecture, we will discuss Karnaugh maps (K-maps) more formally than last time and discuss a more

More information

Midterm1 Review. Jan 24 Armita

Midterm1 Review. Jan 24 Armita Midterm1 Review Jan 24 Armita Outline Boolean Algebra Axioms closure, Identity elements, complements, commutativity, distributivity theorems Associativity, Duality, De Morgan, Consensus theorem Shannon

More information

Optimizations and Tradeoffs. Combinational Logic Optimization

Optimizations and Tradeoffs. Combinational Logic Optimization Optimizations and Tradeoffs Combinational Logic Optimization Optimization & Tradeoffs Up to this point, we haven t really considered how to optimize our designs. Optimization is the process of transforming

More information

CSE 140: Components and Design Techniques for Digital Systems

CSE 140: Components and Design Techniques for Digital Systems Lecture 4: Four Input K-Maps CSE 4: Components and Design Techniques for Digital Systems CK Cheng Dept. of Computer Science and Engineering University of California, San Diego Outlines Boolean Algebra

More information

This form sometimes used in logic circuit, example:

This form sometimes used in logic circuit, example: Objectives: 1. Deriving of logical expression form truth tables. 2. Logical expression simplification methods: a. Algebraic manipulation. b. Karnaugh map (k-map). 1. Deriving of logical expression from

More information

Unit 2 Session - 6 Combinational Logic Circuits

Unit 2 Session - 6 Combinational Logic Circuits Objectives Unit 2 Session - 6 Combinational Logic Circuits Draw 3- variable and 4- variable Karnaugh maps and use them to simplify Boolean expressions Understand don t Care Conditions Use the Product-of-Sums

More information

UNIT 4 MINTERM AND MAXTERM EXPANSIONS

UNIT 4 MINTERM AND MAXTERM EXPANSIONS UNIT 4 MINTERM AND MAXTERM EXPANSIONS Spring 2 Minterm and Maxterm Expansions 2 Contents Conversion of English sentences to Boolean equations Combinational logic design using a truth table Minterm and

More information

Karnaugh Map & Boolean Expression Simplification

Karnaugh Map & Boolean Expression Simplification Karnaugh Map & Boolean Expression Simplification Mapping a Standard POS Expression For a Standard POS expression, a 0 is placed in the cell corresponding to the product term (maxterm) present in the expression.

More information

ELC224C. Karnaugh Maps

ELC224C. Karnaugh Maps KARNAUGH MAPS Function Simplification Algebraic Simplification Half Adder Introduction to K-maps How to use K-maps Converting to Minterms Form Prime Implicants and Essential Prime Implicants Example on

More information

ENG2410 Digital Design Combinational Logic Circuits

ENG2410 Digital Design Combinational Logic Circuits ENG240 Digital Design Combinational Logic Circuits Fall 207 S. Areibi School of Engineering University of Guelph Binary variables Binary Logic Can be 0 or (T or F, low or high) Variables named with single

More information

Gate-Level Minimization

Gate-Level Minimization Gate-Level Minimization Dr. Bassem A. Abdullah Computer and Systems Department Lectures Prepared by Dr.Mona Safar, Edited and Lectured by Dr.Bassem A. Abdullah Outline 1. The Map Method 2. Four-variable

More information

Lecture 4: Four Input K-Maps

Lecture 4: Four Input K-Maps Lecture 4: Four Input K-Maps CSE 4: Components and Design Techniques for Digital Systems Fall 24 CK Cheng Dept. of Computer Science and Engineering University of California, San Diego Outlines Boolean

More information

DIGITAL ELECTRONICS & it0203 Semester 3

DIGITAL ELECTRONICS & it0203 Semester 3 DIGITAL ELECTRONICS & it0203 Semester 3 P.Rajasekar & C.M.T.Karthigeyan Asst.Professor SRM University, Kattankulathur School of Computing, Department of IT 8/22/2011 1 Disclaimer The contents of the slides

More information

Boolean Algebra and Logic Design (Class 2.2 1/24/2013) CSE 2441 Introduction to Digital Logic Spring 2013 Instructor Bill Carroll, Professor of CSE

Boolean Algebra and Logic Design (Class 2.2 1/24/2013) CSE 2441 Introduction to Digital Logic Spring 2013 Instructor Bill Carroll, Professor of CSE Boolean Algebra and Logic Design (Class 2.2 1/24/2013) CSE 2441 Introduction to Digital Logic Spring 2013 Instructor Bill Carroll, Professor of CSE Today s Topics Boolean algebra applications in logic

More information

UNIT 3 BOOLEAN ALGEBRA (CONT D)

UNIT 3 BOOLEAN ALGEBRA (CONT D) UNIT 3 BOOLEAN ALGEBRA (CONT D) Spring 2011 Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions Exclusive-OR and Exclusive-NOR operations The consensus theorem Summary of algebraic

More information

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Aby K George, ECE Department, Wayne State University Contents The Map method Two variable

More information

Digital Logic Design. Combinational Logic

Digital Logic Design. Combinational Logic Digital Logic Design Combinational Logic Minterms A product term is a term where literals are ANDed. Example: x y, xz, xyz, A minterm is a product term in which all variables appear exactly once, in normal

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal

More information

Unit 6. Quine-McClusky Method. Unit 6 1

Unit 6. Quine-McClusky Method. Unit 6 1 Unit 6 Quine-McClusky Method Unit 6 1 Outline Determination of prime implicants The prime implicant chart Petrick s method Simplification of incompletely specified functions Unit 6 2 Overview (1/2) A systematic

More information

Chap 2. Combinational Logic Circuits

Chap 2. Combinational Logic Circuits Overview 2 Chap 2. Combinational Logic Circuits Spring 24 Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard Forms Part 2 Circuit Optimization Two-Level Optimization

More information

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive March 30, 2010 John Wawrzynek Spring 2010 EECS150 - Lec19-cl1 Page 1 Boolean Algebra I (Representations of Combinational

More information

Chapter 3. Boolean Algebra. (continued)

Chapter 3. Boolean Algebra. (continued) Chapter 3. Boolean Algebra (continued) Algebraic structure consisting of: set of elements B binary operations {+, -} unary operation {'} Boolean Algebra such that the following axioms hold:. B contains

More information

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Combinational Logic Design Using a Truth Table Minterm and Maxterm Expansions General Minterm and

More information

T9: Covering. Prove true by: Method 1: Perfect induction Method 2: Using other theorems and axioms. Number Theorem. T9 B (B+C) = B Covering

T9: Covering. Prove true by: Method 1: Perfect induction Method 2: Using other theorems and axioms. Number Theorem. T9 B (B+C) = B Covering T9: Covering Number Theorem Name T9 B (B+C) = B Covering Prove true by: Method 1: Perfect induction Method 2: Using other theorems and axioms Chapter 2 T9: Covering Number Theorem Name T9 B (B+C)

More information

1. Expand each of the following functions into a canonical sum-of-products expression.

1. Expand each of the following functions into a canonical sum-of-products expression. CHAPTER 4 PROLEMS 1. Expand each of the following functions into a canonical sum-of-products expression. (a) F(x, y, z) = xy + y z + x (b) F(w, x, y, z) = x y + wxy + w yz (c) F(A,,C,D) = AC + CD + C D

More information

L4: Karnaugh diagrams, two-, and multi-level minimization. Elena Dubrova KTH / ICT / ES

L4: Karnaugh diagrams, two-, and multi-level minimization. Elena Dubrova KTH / ICT / ES L4: Karnaugh diagrams, two-, and multi-level minimization Elena Dubrova KTH / ICT / ES dubrova@kth.se Combinatorial system a(t) not(a(t)) A combinatorial system has no memory - its output depends therefore

More information

Karnaugh Maps ف ر آ ا د : ا ا ب ا م آ ه ا ن ر ا

Karnaugh Maps ف ر آ ا د : ا ا ب ا م آ ه ا ن ر ا Karnaugh Maps مخطط آارنوف اعداد:محمد اسماعيل آلية علوم الحاسوب جامعة امدرمان الاهلية الاهداء الي آل من يسلك طريق العلم والمعرفة في هذا المجال Venn Diagrams Venn diagram to represent the space of minterms.

More information

Number System conversions

Number System conversions Number System conversions Number Systems The system used to count discrete units is called number system. There are four systems of arithmetic which are often used in digital electronics. Decimal Number

More information

Principles of Computer Architecture. Appendix B: Reduction of Digital Logic. Chapter Contents

Principles of Computer Architecture. Appendix B: Reduction of Digital Logic. Chapter Contents B-1 Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix B: Reduction of Digital Logic B-2 Chapter Contents B.1 Reduction of Combinational Logic and Sequential Logic B.2 Reduction

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Charles Kime & Thomas Kaminski 2004 Pearson Education, Inc. Terms of Use (Hyperlinks are active

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Chapter 2 - Part 1 2 Chapter 2 - Part 1 3 Chapter 2 - Part 1 4 Chapter 2 - Part

More information

Minimization techniques

Minimization techniques Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NSIK - 4 Minimization techniques By Prof. nand N. Gharu ssistant Professor Computer Department Combinational Logic Circuits Introduction Standard representation

More information

Logic Simplification. Boolean Simplification Example. Applying Boolean Identities F = A B C + A B C + A BC + ABC. Karnaugh Maps 2/10/2009 COMP370 1

Logic Simplification. Boolean Simplification Example. Applying Boolean Identities F = A B C + A B C + A BC + ABC. Karnaugh Maps 2/10/2009 COMP370 1 Digital Logic COMP370 Introduction to Computer Architecture Logic Simplification It is frequently possible to simplify a logical expression. This makes it easier to understand and requires fewer gates

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps

Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Introduction to Digital Logic Missouri S&T University CPE 2210 Karnaugh Maps Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology

More information

MC9211 Computer Organization

MC9211 Computer Organization MC92 Computer Organization Unit : Digital Fundamentals Lesson2 : Boolean Algebra and Simplification (KSB) (MCA) (29-2/ODD) (29 - / A&B) Coverage Lesson2 Introduces the basic postulates of Boolean Algebra

More information

Administrative Notes. Chapter 2 <9>

Administrative Notes. Chapter 2 <9> Administrative Notes Note: New homework instructions starting with HW03 Homework is due at the beginning of class Homework must be organized, legible (messy is not), and stapled to be graded Chapter 2

More information

Karnaugh Maps (K-Maps)

Karnaugh Maps (K-Maps) Karnaugh Maps (K-Maps) Boolean expressions can be minimized by combining terms P + P = P K-maps minimize equations graphically Put terms to combine close to one another B C C B B C BC BC BC BC BC BC BC

More information

Review for Test 1 : Ch1 5

Review for Test 1 : Ch1 5 Review for Test 1 : Ch1 5 October 5, 2006 Typeset by FoilTEX Positional Numbers 527.46 10 = (5 10 2 )+(2 10 1 )+(7 10 0 )+(4 10 1 )+(6 10 2 ) 527.46 8 = (5 8 2 ) + (2 8 1 ) + (7 8 0 ) + (4 8 1 ) + (6 8

More information

Digital Circuit And Logic Design I. Lecture 4

Digital Circuit And Logic Design I. Lecture 4 Digital Circuit And Logic Design I Lecture 4 Outline Combinational Logic Design Principles (2) 1. Combinational-circuit minimization 2. Karnaugh maps 3. Quine-McCluskey procedure Panupong Sornkhom, 2005/2

More information

Week-I. Combinational Logic & Circuits

Week-I. Combinational Logic & Circuits Week-I Combinational Logic & Circuits Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other logic operators IC families and

More information

for Digital Systems Simplification of logic functions Tajana Simunic Rosing Sources: TSR, Katz, Boriello & Vahid

for Digital Systems Simplification of logic functions Tajana Simunic Rosing Sources: TSR, Katz, Boriello & Vahid SE140: omponents and Design Techniques for Digital Systems Simplification of logic functions Tajana Simunic Rosing 1 What we covered thus far: Number representations Where we are now inary, Octal, Hex,

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 2 Professor Brendan Morris, SEB 326, brendan.morris@unlv.edu http://www.ee.unlv.edu/~bmorris/cpe/ CPE: Digital Logic Design I Section 4: Dr. Morris Combinational Logic Design Chapter 2 Chapter

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev E&CE 223 Digital Circuits & Systems Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean Algebra & Logic Gates Major topics Boolean algebra NAND & NOR gates Boolean

More information

Computer Organization I. Lecture 13: Design of Combinational Logic Circuits

Computer Organization I. Lecture 13: Design of Combinational Logic Circuits Computer Organization I Lecture 13: Design of Combinational Logic Circuits Overview The optimization of multiple-level circuits Mapping Technology Verification Objectives To know how to optimize the multiple-level

More information

Combinational Logic Fundamentals

Combinational Logic Fundamentals Topic 3: Combinational Logic Fundamentals In this note we will study combinational logic, which is the part of digital logic that uses Boolean algebra. All the concepts presented in combinational logic

More information

Chapter 2. Digital Logic Basics

Chapter 2. Digital Logic Basics Chapter 2 Digital Logic Basics 1 2 Chapter 2 2 1 Implementation using NND gates: We can write the XOR logical expression B + B using double negation as B+ B = B+B = B B From this logical expression, we

More information

Logical Design of Digital Systems

Logical Design of Digital Systems Lecture 4 Table of Content 1. Combinational circuit design 2. Elementary combinatorial circuits for data transmission 3. Memory structures 4. Programmable logic devices 5. Algorithmic minimization approaches

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates Digital Circuits & Systems Lecture Transparencies (Boolean lgebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean lgebra & Logic Gates Major topics Boolean algebra NND & NOR gates Boolean algebra

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms Review EECS 150 - Components and Design Techniques for Digital Systems Lec 06 Minimizing Boolean Logic 9/16-04 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18

Total Time = 90 Minutes, Total Marks = 50. Total /50 /10 /18 University of Waterloo Department of Electrical & Computer Engineering E&CE 223 Digital Circuits and Systems Midterm Examination Instructor: M. Sachdev October 23rd, 2007 Total Time = 90 Minutes, Total

More information

Combinational Logic. Review of Combinational Logic 1

Combinational Logic. Review of Combinational Logic 1 Combinational Logic! Switches -> Boolean algebra! Representation of Boolean functions! Logic circuit elements - logic gates! Regular logic structures! Timing behavior of combinational logic! HDLs and combinational

More information

Unit 2 Boolean Algebra

Unit 2 Boolean Algebra Unit 2 Boolean Algebra 1. Developed by George Boole in 1847 2. Applied to the Design of Switching Circuit by Claude Shannon in 1939 Department of Communication Engineering, NCTU 1 2.1 Basic Operations

More information

CHAPTER 7. Exercises 17/ / /2 2 0

CHAPTER 7. Exercises 17/ / /2 2 0 CHAPTER 7 Exercises E7. (a) For the whole part, we have: Quotient Remainders 23/2 /2 5 5/2 2 2/2 0 /2 0 Reading the remainders in reverse order, we obtain: 23 0 = 0 2 For the fractional part we have 2

More information

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1 Ch 2. Combinational Logic II - Combinational Logic Contemporary Logic Design 1 Combinational logic Define The kind of digital system whose output behavior depends only on the current inputs memoryless:

More information

EEE130 Digital Electronics I Lecture #4

EEE130 Digital Electronics I Lecture #4 EEE130 Digital Electronics I Lecture #4 - Boolean Algebra and Logic Simplification - By Dr. Shahrel A. Suandi Topics to be discussed 4-1 Boolean Operations and Expressions 4-2 Laws and Rules of Boolean

More information

Simplifying Logic Circuits with Karnaugh Maps

Simplifying Logic Circuits with Karnaugh Maps Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified

More information

Reduction of Logic Equations using Karnaugh Maps

Reduction of Logic Equations using Karnaugh Maps Reduction of Logic Equations using Karnaugh Maps The design of the voting machine resulted in a final logic equation that was: z = (a*c) + (a*c) + (a*b) + (a*b*c) However, a simple examination of this

More information

Chapter-2 BOOLEAN ALGEBRA

Chapter-2 BOOLEAN ALGEBRA Chapter-2 BOOLEAN ALGEBRA Introduction: An algebra that deals with binary number system is called Boolean Algebra. It is very power in designing logic circuits used by the processor of computer system.

More information

CHAPTER 7 MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES

CHAPTER 7 MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES CHAPTER 7 MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES This chapter in the book includes: Objectives Study Guide 7.1 Multi-Level Gate Circuits 7.2 NAND and NOR Gates 7.3 Design of Two-Level Circuits Using

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 2 Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe100/ CPE100: Digital Logic Design I Section 1004: Dr. Morris Combinational Logic Design Chapter

More information

Introduction to Karnaugh Maps

Introduction to Karnaugh Maps Introduction to Karnaugh Maps Review So far, you (the students) have been introduced to truth tables, and how to derive a Boolean circuit from them. We will do an example. Consider the truth table for

More information

3. PRINCIPLES OF COMBINATIONAL LOGIC

3. PRINCIPLES OF COMBINATIONAL LOGIC Principle of ombinational Logic -. PRINIPLES OF OMINTIONL LOGI Objectives. Understand the design & analysis procedure of combinational logic.. Understand the optimization of combinational logic.. efinitions

More information

Computer Science Final Examination Friday December 14 th 2001

Computer Science Final Examination Friday December 14 th 2001 Computer Science 03 60 265 Final Examination Friday December 14 th 2001 Dr. Robert D. Kent and Dr. Alioune Ngom Last Name: First Name: Student Number: INSTRUCTIONS EXAM DURATION IS 3 HOURs. CALCULATORS,

More information

Computer Organization I

Computer Organization I Computer Organization I Lecture 6: Boolean Algebra /2/29 Wei Lu CS283 Overview Two Principles in Boolean Algebra () Duality Principle (2) Complement Principle Standard Form of Logic Expression () Sum of

More information

Chapter 7 Logic Circuits

Chapter 7 Logic Circuits Chapter 7 Logic Circuits Goal. Advantages of digital technology compared to analog technology. 2. Terminology of Digital Circuits. 3. Convert Numbers between Decimal, Binary and Other forms. 5. Binary

More information

APPLİCATION OF BOOLEAN ALGEABRA

APPLİCATION OF BOOLEAN ALGEABRA APPLİCATION OF BOOLEAN ALGEABRA CHAPTER 4 Prof. Dr. Mehmet Akbaba Prof. Mehmet Akbaba Digital Logic 1 Multiplying Out and Factoring Expressions Given an expression in product-of-sums form, the corresponding

More information

Quine-McCluskey (Tabular) Minimization

Quine-McCluskey (Tabular) Minimization Quine-McCluskey (Tabular) Minimization Two step process utilizing tabular listings to: Identify prime implicants (implicant tables) Identify minimal PI set (cover tables) All work is done in tabular form

More information

Unit 2 Boolean Algebra

Unit 2 Boolean Algebra Unit 2 Boolean Algebra 2.1 Introduction We will use variables like x or y to represent inputs and outputs (I/O) of a switching circuit. Since most switching circuits are 2 state devices (having only 2

More information

Digital Logic Circuits - Switching Algebra - Combinational Circuits -

Digital Logic Circuits - Switching Algebra - Combinational Circuits - Digital Logic Circuits - Switching Algebra - Combinational Circuits - Dr. Voicu Groza SITE Hall, Room 57 562 58 ext. 259 Groza@EECS.uOttawa.ca Outline Logic Functions Boolean Algebra Logic Functions Minimization

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT2: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 2 Following the slides of Dr. Ahmed H. Madian ذو الحجة 438 ه Winter

More information

Combinatorial Logic Design Principles

Combinatorial Logic Design Principles Combinatorial Logic Design Principles ECGR2181 Chapter 4 Notes Logic System Design I 4-1 Boolean algebra a.k.a. switching algebra deals with boolean values -- 0, 1 Positive-logic convention analog voltages

More information

Chapter 2 Boolean Algebra and Logic Gates

Chapter 2 Boolean Algebra and Logic Gates Ch1: Digital Systems and Binary Numbers Ch2: Ch3: Gate-Level Minimization Ch4: Combinational Logic Ch5: Synchronous Sequential Logic Ch6: Registers and Counters Switching Theory & Logic Design Prof. Adnan

More information

Fundamentals of Boolean Algebra

Fundamentals of Boolean Algebra UNIT-II 1 Fundamentals of Boolean Algebra Basic Postulates Postulate 1 (Definition): A Boolean algebra is a closed algebraic system containing a set K of two or more elements and the two operators and

More information

Solutions to Assignment No 5 Digital Techniques Fall 2007

Solutions to Assignment No 5 Digital Techniques Fall 2007 Solutions to Assignment No 5 Digital Techniques Fall 2007 André Deutz October 19, 2007 1 Simplifying and Manipulating Boolean Expressions 1. Simplification (a) Simplify each of the following expressions,

More information

CSE 140 Midterm I - Solution

CSE 140 Midterm I - Solution CSE 140 Midterm I - Solution 1. Answer the following questions given the logic circuit below. (15 points) a. (5 points) How many CMOS transistors does the given (unsimplified) circuit have. b. (6 points)

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active

More information

K-map Definitions. abc

K-map Definitions. abc K-map efinitions b a bc Implicant ny single or any group of s is called an implicant of F. ny possible grouping of s is an implicant. b a Prime Implicant implicant that cannot be combined with some other

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Part 1 Gate

More information

2 Application of Boolean Algebra Theorems (15 Points - graded for completion only)

2 Application of Boolean Algebra Theorems (15 Points - graded for completion only) CSE140 HW1 Solution (100 Points) 1 Introduction The purpose of this assignment is three-fold. First, it aims to help you practice the application of Boolean Algebra theorems to transform and reduce Boolean

More information

14:332:231 DIGITAL LOGIC DESIGN. Combinational Circuit Synthesis

14:332:231 DIGITAL LOGIC DESIGN. Combinational Circuit Synthesis :: DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering all Lecture #: Combinational Circuit Synthesis I Combinational Circuit Synthesis Recall: Combinational circuit

More information

The Karnaugh Map COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals

The Karnaugh Map COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals The Karnaugh Map COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Presentation Outline Boolean Function Minimization The Karnaugh Map (K-Map) Two, Three,

More information

Chapter 4 Optimized Implementation of Logic Functions

Chapter 4 Optimized Implementation of Logic Functions Chapter 4 Optimized Implementation of Logic Functions Logic Minimization Karnaugh Maps Systematic Approach for Logic Minimization Minimization of Incompletely Specified Functions Tabular Method for Minimization

More information

ELEC Digital Logic Circuits Fall 2014 Logic Minimization (Chapter 3)

ELEC Digital Logic Circuits Fall 2014 Logic Minimization (Chapter 3) ELE 2200-002 Digital Logic ircuits Fall 204 Logic Minimization (hapter 3) Vishwani D. grawal James J. Danaher Professor Department of Electrical and omputer Engineering uburn University, uburn, L 36849

More information

PI = { a.b.c, ac d, b cd, ab d, bd} cd

PI = { a.b.c, ac d, b cd, ab d, bd} cd Digital Logic Design: Principles and Practices ELG5195 (EACJ5705 ), Carleton CRN: 18371 Assignment #1 Question 1: a) Using iterated consensus find all the prime implicants of the following function: F(

More information

ECE 238L Boolean Algebra - Part I

ECE 238L Boolean Algebra - Part I ECE 238L Boolean Algebra - Part I August 29, 2008 Typeset by FoilTEX Understand basic Boolean Algebra Boolean Algebra Objectives Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand

More information

Working with Combinational Logic. Design example: 2x2-bit multiplier

Working with Combinational Logic. Design example: 2x2-bit multiplier Working with ombinational Logic Simplification two-level simplification exploiting don t cares algorithm for simplification Logic realization two-level logic and canonical forms realized with NNs and NORs

More information

Lecture 5. Karnaugh-Map

Lecture 5. Karnaugh-Map Lecture 5 - Lecture 5 Karnaugh-Map Lecture 5-2 Karnaugh-Map Set Logic Venn Diagram K-map Lecture 5-3 K-Map for 2 Variables Lecture 5-4 K-Map for 3 Variables C C C Lecture 5-5 Logic Expression, Truth Table,

More information

Hardware Design I Chap. 2 Basis of logical circuit, logical expression, and logical function

Hardware Design I Chap. 2 Basis of logical circuit, logical expression, and logical function Hardware Design I Chap. 2 Basis of logical circuit, logical expression, and logical function E-mail: shimada@is.naist.jp Outline Combinational logical circuit Logic gate (logic element) Definition of combinational

More information