EXAM INFORMATION. Harmonic Oscillator. Anharmonic Oscillator 1 ~ 1. Rigid Rotor

Size: px
Start display at page:

Download "EXAM INFORMATION. Harmonic Oscillator. Anharmonic Oscillator 1 ~ 1. Rigid Rotor"

Transcription

1 EXAM INFORMATION Harmonc Oscllator Hamltonan: H d dx 1 kx Energy Levels: 1 k mm 1 En n n 0,1,, c m m 1 Anharmonc Oscllator Energy Levels: E n 1 ~ 1 n hc n hcx ~ e n 0,1,,... Rgd Rotor Quantum Numbers: J = 0, 1,, 3,... M=0, ±1, ±,..., ±J h Energy Levels: ~ ~ h E J J J 1 J J 1hcB B 8 I 8 Ic Moment of Inerta: Lnear Polyatomc: m r Datomc: m m I 1 I r m1 m Boltzmann Dstrbuton: N g e E / kt Frst Order Perturbaton Theory: E (0) * H (1) (0) d Quadratc Equaton: b b ax bx c 0 x a 4ac INTEGRALS 1 1 sn xdx x sn x 4 x x sn x cos x xsn xdx x x 1 x cos x x sn xdx snx

2 Constants and Conversons: h = 6.63x10-34 J s ħ = h/ = 1.05x10-34 J s k = 1.38x10-3 J/K c = 3.00x10 8 m/s = 3.00x10 10 cm/s NA = 6.0x10 3 mol -1 1 Å = m 1 amu = 1.66x10-7 kg 1 J = 1 kg m /s 1 N = 1 kg m/s 1 N/m = 1 kg/s Cv Character Table CV E C V(xz) V (yz) A z x, y, z A Rz xy B x, Ry xz B y, Rx yz Transton Moment: x y M 0 M 0 M 0 j M z 0 k M M x 0 y 0 e e x 0 y 0 M z 0 e z 0 Raman Matrx Elements: uv 0 u = x, y, or z and v = x, y, or z

3 CHEM 510 Exam March 7, 015 Name (38) 1. For ths problem, assume that the molecule, dfluorodslyne, SF, s lnear, wth the structure: F-SS-F Note: Assume that the atomc mass of F s 19 amu and the atomc mass of S s 8 amu (8) (a) The second and thrd lnes n the rotatonal Raman spectrum of dfluorodslyne are found at frequences of cm -1 and 0.53 cm -1, respectvely. Calculate the value of the rotatonal constant, B, n cm -1. Note: The selecton rule for the rotatonal Raman spectrum s DJ = + Note: For parts, (b), (c), and (d) you can use the value, B ~ = 0.04 cm -1 f your answer to part (a) s far from ths value. (8) (b) For the Rotatonal Saffy spectrum, the selecton rule s DJ = +3. Calculate (1) the frequency of the fourth (4th.) lne n the Rotatonal Saffy spectrum of dfluorodslyne (n cm -1 ); () the energy of the photon absorbed for ths transton, Eph = DE (n J)

4 Prob. 1 (Cont'd) Note: For parts, (b), (c), and (d) you can use the value, B ~ = 0.04 cm -1 f your answer to part (a) s far from ths value. (10) (c) Calculate the rato of ntenstes of the 150th. lne to that of the 50th. lne n the rotatonal Raman spectrum of dfluoroslyne at 150 o C

5 Prob. 1 (Cont'd) Note: For parts, (b), (c), and (d) you can use the value, B ~ = 0.04 cm -1 f your answer to part (a) s far from ths value. (1) (d) The SS bond length n dfluorodslyne s RSS =.0 Å. Calculate the S-F bond length, RSF, n Å. Hnt: Frst calculate the moment of nerta, I, n kg m, and then convert to amu Å before proceedng. (1 kg m = 6.0x10 46 amu Å ) Note: Wth a bt of thought, you won t need to use the quadratc equaton to solve for RS-H. However, f you do need t, t s on the nfo. sheet Addtonal Space for Prob. 1d on next page f needed

6 Prob. 1d (Cont'd) Addtonal Space f needed

7 (10). The vbratonal force constant of Deuterum Fluorde, D- 19 F, s 840 N/m (Newton/meter) = 840 kg/s. Calculate the Zero-Pont vbratonal energy of D-F, n kj/mol.

8 (10) 3. The Thermodynamc Dssocaton Energy of F s D0 = 151. kj/mol, and the fundamental vbratonal frequency s 890 cm -1. Calculate the Spectroscopc Dssocaton Energy, De, of F.

9 (10) 4. The observed vbratonal frequency of the frst overtone (0) L-H radcal s at 671 cm -1. The frequency of the hot band (1) s at 131 cm -1. Calculate the harmonc frequency ( ~ ) and the anharmoncty constant (xe).

10 x (10) 5. The ground-state wavefuncton for a partcle n a box s: Asn a Consder a partcle n a box wth the perturbng potental: x sn a a V(x) x < 0 V0 V(x) = x a 0 x a V(x) x > a Calculate the frst order perturbaton theory correcton to the energy of a partcle n the ground-state wth the above perturbng potental. Note: Your answer should be of the form of a numercal value tmes V0.

11 () 6. Consder three of the CH bendng vbratons of cs-1,-dchloroethene, whch belongs to the Cv pont group. The vbratons (and symmetres) are: H F C C H F ~ 1 = 870 cm -1 (a) ~ = 1380 cm -1 (b1) ~ 3 = 760 cm -1 (b) (8) (a) Calculate frequency (1) n cm -1 and () n Hz (s -1 ) of the transton: (,0,1) (0,,). (6) (b) Consder the combnaton band 1 + [.e. (0,0,0) (1,,0)]. Determne whether or not ths transton s IR Actve. NOTE: You MUST show your work for credt.

12 (6) (c) Consder the combnaton mode, 1-3 [.e. (0,0,1) (1,0,0)]. Determne whether or not ths combnaton mode s IR actve. NOTE: You MUST show your work for credt. () (d) Whch, f any, of the above ndvdual fundamental vbratons (transton from 0 to 1) are IR Actve (just the answers - no explanaton necessary)

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle: EXAM INFORMATION Radial Distribution Function: P() r RDF() r Br R() r B is the normalization constant., p Operator: p ^ d dx Heisenberg Uncertainty Principle: n ax n! Integrals: xe dx n1 a x p Particle

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle: EXAM INFORMATION Radial Distribution Function: P() r RDF() r Br R() r B is the normalization constant., p Operator: p ^ d dx Heisenberg Uncertainty Principle: n ax n! Integrals: xe dx n1 a x p Particle

More information

Molecular structure: Diatomic molecules in the rigid rotor and harmonic oscillator approximations Notes on Quantum Mechanics

Molecular structure: Diatomic molecules in the rigid rotor and harmonic oscillator approximations Notes on Quantum Mechanics Molecular structure: Datomc molecules n the rgd rotor and harmonc oscllator approxmatons Notes on Quantum Mechancs http://quantum.bu.edu/notes/quantummechancs/molecularstructuredatomc.pdf Last updated

More information

Programming Project 1: Molecular Geometry and Rotational Constants

Programming Project 1: Molecular Geometry and Rotational Constants Programmng Project 1: Molecular Geometry and Rotatonal Constants Center for Computatonal Chemstry Unversty of Georga Athens, Georga 30602 Summer 2012 1 Introducton Ths programmng project s desgned to provde

More information

THERMAL DISTRIBUTION IN THE HCL SPECTRUM OBJECTIVE

THERMAL DISTRIBUTION IN THE HCL SPECTRUM OBJECTIVE ame: THERMAL DISTRIBUTIO I THE HCL SPECTRUM OBJECTIVE To nvestgate a system s thermal dstrbuton n dscrete states; specfcally, determne HCl gas temperature from the relatve occupatons of ts rotatonal states.

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mt.edu 5.62 Physcal Chemstry II Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 5.62 Sprng 2008 Lecture 34 Page Transton

More information

Chapter 11 Angular Momentum

Chapter 11 Angular Momentum Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle

More information

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system). EWTO S LAWS Consder two partcles. 1 1. If 1 0 then 0 wth p 1 m1v. 1 1 2. 1.. 3. 11 These laws only apply when vewed from an nertal coordnate system (unaccelerated system). consder a collecton of partcles

More information

Department of Chemistry Purdue University Garth J. Simpson

Department of Chemistry Purdue University Garth J. Simpson Objectves: 1. Develop a smple conceptual 1D model for NLO effects. Extend to 3D and relate to computatonal chemcal calculatons of adabatc NLO polarzabltes. 2. Introduce Sum-Over-States (SOS) approaches

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 208 Dr Jean M Standard March 9, 208 Name KEY Physical Chemistry II Exam 2 Solutions ) (4 points) The harmonic vibrational frequency (in wavenumbers) of LiH is 4057 cm Based upon this

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 2017 Dr Jean M Standard March 10, 2017 Name KEY Physical Chemistry II Exam 2 Solutions 1) (14 points) Use the potential energy and momentum operators for the harmonic oscillator to

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

Frequency calculations can serve a number of different purposes:

Frequency calculations can serve a number of different purposes: 4. Frequency calculatons Frequency calculatons can serve a number of dfferent purposes: To predct the IR and Raman spectra of molecules (frequences and ntenstes. To compute force constants for a geometry

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

5.76 Lecture #21 2/28/94 Page 1. Lecture #21: Rotation of Polyatomic Molecules I

5.76 Lecture #21 2/28/94 Page 1. Lecture #21: Rotation of Polyatomic Molecules I 5.76 Lecture # /8/94 Page Lecture #: Rotaton of Polatomc Molecules I A datomc molecule s ver lmted n how t can rotate and vbrate. * R s to nternuclear as * onl one knd of vbraton A polatomc molecule can

More information

Dynamics of a Superconducting Qubit Coupled to an LC Resonator

Dynamics of a Superconducting Qubit Coupled to an LC Resonator Dynamcs of a Superconductng Qubt Coupled to an LC Resonator Y Yang Abstract: We nvestgate the dynamcs of a current-based Josephson juncton quantum bt or qubt coupled to an LC resonator. The Hamltonan of

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

CHE450G Final Exam. CP-109 December 11, :30-12:30 AM

CHE450G Final Exam. CP-109 December 11, :30-12:30 AM CH450G Fnal xam CP-09 December, 2006 0:30-2:30 AM Last name Frst Name Score [ /5] 00 = % () Construct a physcally realstc molecular orbtal dagram for CS. Draw all SALC s, molecular orbtals, and provde

More information

The Schrödinger Equation

The Schrödinger Equation Chapter 1 The Schrödnger Equaton 1.1 (a) F; () T; (c) T. 1. (a) Ephoton = hν = hc/ λ =(6.66 1 34 J s)(.998 1 8 m/s)/(164 1 9 m) = 1.867 1 19 J. () E = (5 1 6 J/s)( 1 8 s) =.1 J = n(1.867 1 19 J) and n

More information

Rigid body simulation

Rigid body simulation Rgd bod smulaton Rgd bod smulaton Once we consder an object wth spacal etent, partcle sstem smulaton s no longer suffcent Problems Problems Unconstraned sstem rotatonal moton torques and angular momentum

More information

Modeling of Dynamic Systems

Modeling of Dynamic Systems Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.

More information

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Electronic Quantum Monte Carlo Calculations of Energies and Atomic Forces for Diatomic and Polyatomic Molecules

Electronic Quantum Monte Carlo Calculations of Energies and Atomic Forces for Diatomic and Polyatomic Molecules RESERVE HIS SPACE Electronc Quantum Monte Carlo Calculatons of Energes and Atomc Forces for Datomc and Polyatomc Molecules Myung Won Lee 1, Massmo Mella 2, and Andrew M. Rappe 1,* 1 he Maknen heoretcal

More information

Calculation of the Herman Wallis effect in vibrational overtone transitions in a linear molecule: Comparison with HCN experimental results

Calculation of the Herman Wallis effect in vibrational overtone transitions in a linear molecule: Comparison with HCN experimental results Calculaton of the Herman Walls effect n vbratonal overtone transtons n a lnear molecule: Comparson wth HCN expermental results Danele Romann a) and Kevn K. Lehmann Department of Chemstry, Prnceton Unversty,

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Summer 2014 Fnal Exam NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

Quantum Mechanics I Problem set No.1

Quantum Mechanics I Problem set No.1 Quantum Mechancs I Problem set No.1 Septembe0, 2017 1 The Least Acton Prncple The acton reads S = d t L(q, q) (1) accordng to the least (extremal) acton prncple, the varaton of acton s zero 0 = δs = t

More information

Lecture 4: Polyatomic Spectra

Lecture 4: Polyatomic Spectra Lecture 4: Polyatomic Spectra 1. From diatomic to polyatomic Ammonia molecule A-axis. Classification of polyatomic molecules 3. Rotational spectra of polyatomic molecules N 4. Vibrational bands, vibrational

More information

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Vibrating Beam

GEO-SLOPE International Ltd, Calgary, Alberta, Canada   Vibrating Beam GEO-SLOPE Internatonal Ltd, Calgary, Alberta, Canada www.geo-slope.com Introducton Vbratng Beam Ths example looks at the dynamc response of a cantlever beam n response to a cyclc force at the free end.

More information

Title: Radiative transitions and spectral broadening

Title: Radiative transitions and spectral broadening Lecture 6 Ttle: Radatve transtons and spectral broadenng Objectves The spectral lnes emtted by atomc vapors at moderate temperature and pressure show the wavelength spread around the central frequency.

More information

Lecture Torsion Properties for Line Segments and Computational Scheme for Piecewise Straight Section Calculations

Lecture Torsion Properties for Line Segments and Computational Scheme for Piecewise Straight Section Calculations Lecture - 003 Torson Propertes for Lne Segments and Computatonal Scheme for Pecewse Straght Secton Calculatons ths conssts of four parts (and how we wll treat each) A - dervaton of geometrc algorthms for

More information

Lecture 6: Diatomic gases (and others)

Lecture 6: Diatomic gases (and others) Lecture 6: Datomc gases and others) General rule for calculatng n complex systems Ams: Deal wth a quantsed datomc molecule: Translatonal degrees of freedom last lecture); Rotaton and Vbraton. Partton functon

More information

Important Instructions to the Examiners:

Important Instructions to the Examiners: Summer 0 Examnaton Subject & Code: asc Maths (70) Model Answer Page No: / Important Instructons to the Examners: ) The Answers should be examned by key words and not as word-to-word as gven n the model

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Solutions to Problems Fundamentals of Condensed Matter Physics

Solutions to Problems Fundamentals of Condensed Matter Physics Solutons to Problems Fundamentals of Condensed Matter Physcs Marvn L. Cohen Unversty of Calforna, Berkeley Steven G. Loue Unversty of Calforna, Berkeley c Cambrdge Unversty Press 016 1 Acknowledgement

More information

APPENDIX F A DISPLACEMENT-BASED BEAM ELEMENT WITH SHEAR DEFORMATIONS. Never use a Cubic Function Approximation for a Non-Prismatic Beam

APPENDIX F A DISPLACEMENT-BASED BEAM ELEMENT WITH SHEAR DEFORMATIONS. Never use a Cubic Function Approximation for a Non-Prismatic Beam APPENDIX F A DISPACEMENT-BASED BEAM EEMENT WITH SHEAR DEFORMATIONS Never use a Cubc Functon Approxmaton for a Non-Prsmatc Beam F. INTRODUCTION { XE "Shearng Deformatons" }In ths appendx a unque development

More information

Session 7. Spectroscopy and Thermochemistry. Session 7 Overview: Part A I. Prediction of Vibrational Frequencies (IR)

Session 7. Spectroscopy and Thermochemistry. Session 7 Overview: Part A I. Prediction of Vibrational Frequencies (IR) Sesson 7 Spectroscopy and Thermochemstry CCCE 2008 1 Sesson 7 Overvew: Part A I. Predcton of Vbratonal Frequences (IR) II. Thermochemstry Part B III. Predcton of Electronc Transtons (UV-Vs) IV. NMR Predctons

More information

FICTION OR REALITY? Jeanna Buldyreva. Institute UTINAM UMR CNRS 6213 University of Franche-Comte, Besancon, France. Jean Vander Auwera

FICTION OR REALITY? Jeanna Buldyreva. Institute UTINAM UMR CNRS 6213 University of Franche-Comte, Besancon, France. Jean Vander Auwera A THEORETICAL MODEL FOR WIDE-BAND IR-ABSORPTION MOLECULAR SPECTRA AT ANY PRESSURE: FICTION OR REALITY? eanna Buldyreva Insttute UTINAM UMR CNRS 613 Unversty o Franche-Comte, Besancon, France ean Vander

More information

5.76 Lecture #5 2/07/94 Page 1 of 10 pages. Lecture #5: Atoms: 1e and Alkali. centrifugal term ( +1)

5.76 Lecture #5 2/07/94 Page 1 of 10 pages. Lecture #5: Atoms: 1e and Alkali. centrifugal term ( +1) 5.76 Lecture #5 /07/94 Page 1 of 10 pages 1e Atoms: H, H + e, L +, etc. coupled and uncoupled bass sets Lecture #5: Atoms: 1e and Alkal centrfugal term (+1) r radal Schrödnger Equaton spn-orbt l s r 3

More information

Chapter 11: Angular Momentum

Chapter 11: Angular Momentum Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

More information

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods Chapter Eght Energy Method 8. Introducton 8. Stran energy expressons 8.3 Prncpal of statonary potental energy; several degrees of freedom ------ Castglano s frst theorem ---- Examples 8.4 Prncpal of statonary

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbaton Theory In Moller-Plesset (MP) perturbaton theory one taes the unperturbed Hamltonan for an atom or molecule as the sum of the one partcle Foc operators H F() where the egenfunctons

More information

CHEM 301: Homework assignment #12

CHEM 301: Homework assignment #12 CHEM 301: Homework assignment #12 Solutions 1. Let s practice converting between wavelengths, frequencies, and wavenumbers. (10%) Express a wavelength of 442 nm as a frequency and as a wavenumber. What

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

V. ROTATIONAL (MICROWAVE) SPECTROSCOPY

V. ROTATIONAL (MICROWAVE) SPECTROSCOPY V. ROTATONAL (MCROWAVE) SPECTROSCOPY n 934 Cleeton and Wllams observed absorptons at mcrowave frequences by NH 3, and thus MW spectroscopy began. World War proved to be a boon to the development of technology

More information

Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Homework Solutions

Chapter 5 Molecular Vibrations and Time-Independent Perturbation Theory Homework Solutions Chapter 5 Molecular Vibrations and ime-independent Perturbation heory Homework Solutions. 4 y Form of solution: n 3 4 y anx a axax a3x a4x... n Specific Recursion Relations dy 3 aax3a3x 4 a4x... a 6a3x

More information

PHYSICS 231 Review problems for midterm 2

PHYSICS 231 Review problems for midterm 2 PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October

More information

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

More information

ERRATA. COMPUTER-AIDED ANALYSIS OF MECHANICAL SYSTEMS Parviz E. Nikravesh Prentice-Hall, (Corrections as of November 2014)

ERRATA. COMPUTER-AIDED ANALYSIS OF MECHANICAL SYSTEMS Parviz E. Nikravesh Prentice-Hall, (Corrections as of November 2014) ERRATA COMPUTER-AIDED ANALYSIS OF MECHANICAL SYSTEMS Parvz E. Nkravesh Prentce-Hall, 1988 (Correctons as of November 2014 Address to an error s gven n the frst column by the page number and n the second

More information

5. Response properties in ab initio schemes

5. Response properties in ab initio schemes 5. Response propertes n ab nto schemes A number of mportant physcal observables s expressed va dervatves of total energy (or free energy) E. Examples are: E R 2 E R a R b forces on the nucle; crtcal ponts

More information

Chapter 21 - The Kinetic Theory of Gases

Chapter 21 - The Kinetic Theory of Gases hapter 1 - he Knetc heory o Gases 1. Δv 8.sn 4. 8.sn 4. m s F Nm. 1 kg.94 N Δ t. s F A 1.7 N m 1.7 a N mv 1.6 Use the equaton descrbng the knetc-theory account or pressure:. hen mv Kav where N nna NA N

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

More information

Statistics MINITAB - Lab 2

Statistics MINITAB - Lab 2 Statstcs 20080 MINITAB - Lab 2 1. Smple Lnear Regresson In smple lnear regresson we attempt to model a lnear relatonshp between two varables wth a straght lne and make statstcal nferences concernng that

More information

UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 FINITE ELEMENT AND DIFFERENCE SOLUTIONS

UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 FINITE ELEMENT AND DIFFERENCE SOLUTIONS OCD0 UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 07/08 FINITE ELEMENT AND DIFFERENCE SOLUTIONS MODULE NO. AME6006 Date: Wednesda 0 Ma 08 Tme: 0:00

More information

NONLINEAR NATURAL FREQUENCIES OF A TAPERED CANTILEVER BEAM

NONLINEAR NATURAL FREQUENCIES OF A TAPERED CANTILEVER BEAM Advanced Steel Constructon Vol. 5, No., pp. 59-7 (9) 59 NONLINEAR NATURAL FREQUENCIES OF A TAPERED CANTILEVER BEAM M. Abdel-Jaber, A.A. Al-Qasa,* and M.S. Abdel-Jaber Department of Cvl Engneerng, Faculty

More information

2010 vds-3d. Professor Kyongsu Yi. Vehicle Dynamics and Control Laboratory

2010 vds-3d. Professor Kyongsu Yi. Vehicle Dynamics and Control Laboratory 3D Dnamcs 2010 vds-3d Professor Kongsu Y 2010 VDCL Vehcle Dnamcs and Control Laborator 1 Knetcs of Rgd Bodes n Three Dmensons ma G Translatonal Dnamc Equaton of Rgd Bod (Newton Equaton F ma G Rotatonal

More information

Electron-Impact Double Ionization of the H 2

Electron-Impact Double Ionization of the H 2 I R A P 6(), Dec. 5, pp. 9- Electron-Impact Double Ionzaton of the H olecule Internatonal Scence Press ISSN: 9-59 Electron-Impact Double Ionzaton of the H olecule. S. PINDZOLA AND J. COLGAN Department

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ s SCHOOL OF COMPUTING, ENGINEERING ND MTHEMTICS SEMESTER EXMINTIONS 011/01 DYNMICS ME47 DR. N.D.D. MICHÉ Tme allowed: THREE hours nswer: ny FOUR from SIX questons Each queston carres 5 marks Ths s a CLOSED-BOOK

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Class: Life-Science Subject: Physics

Class: Life-Science Subject: Physics Class: Lfe-Scence Subject: Physcs Frst year (6 pts): Graphc desgn of an energy exchange A partcle (B) of ass =g oves on an nclned plane of an nclned angle α = 3 relatve to the horzontal. We want to study

More information

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES SYMMETRY II. J. M. GOICOECHEA. LECTURE 3 1 LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES 3.1 Direct products and many electron states Consider the problem of deciding upon the symmetry of

More information

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1 A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

(2mn, m 2 n 2, m 2 + n 2 )

(2mn, m 2 n 2, m 2 + n 2 ) MATH 16T Homewk Solutons 1. Recall that a natural number n N s a perfect square f n = m f some m N. a) Let n = p α even f = 1,,..., k. be the prme factzaton of some n. Prove that n s a perfect square f

More information

Notes on Analytical Dynamics

Notes on Analytical Dynamics Notes on Analytcal Dynamcs Jan Peters & Mchael Mstry October 7, 004 Newtonan Mechancs Basc Asssumptons and Newtons Laws Lonely pontmasses wth postve mass Newtons st: Constant velocty v n an nertal frame

More information

Problem Points Score Total 100

Problem Points Score Total 100 Physcs 450 Solutons of Sample Exam I Problem Ponts Score 1 8 15 3 17 4 0 5 0 Total 100 All wor must be shown n order to receve full credt. Wor must be legble and comprehensble wth answers clearly ndcated.

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Feld Theory III Prof. Erck Wenberg February 16, 011 1 Lecture 9 Last tme we showed that f we just look at weak nteractons and currents, strong nteracton has very good SU() SU() chral symmetry,

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

6.3.4 Modified Euler s method of integration

6.3.4 Modified Euler s method of integration 6.3.4 Modfed Euler s method of ntegraton Before dscussng the applcaton of Euler s method for solvng the swng equatons, let us frst revew the basc Euler s method of numercal ntegraton. Let the general from

More information

Effective Hamiltonians and Perturbation Theory

Effective Hamiltonians and Perturbation Theory Effectve amltonans and Perturbaton Theory Kaml Sara.5.7 Computatonal Molecular Spectroscopy.5.7 Eds. Per Jensen and P.R. Buner Wley&Sons Chapter 8: Perturbaton Theory Effectve amltonans and Force Constants

More information

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.

More information

Complex Numbers Alpha, Round 1 Test #123

Complex Numbers Alpha, Round 1 Test #123 Complex Numbers Alpha, Round Test #3. Wrte your 6-dgt ID# n the I.D. NUMBER grd, left-justfed, and bubble. Check that each column has only one number darkened.. In the EXAM NO. grd, wrte the 3-dgt Test

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

Linear system of the Schrödinger equation Notes on Quantum Mechanics

Linear system of the Schrödinger equation Notes on Quantum Mechanics Lnear sstem of the Schrödnger equaton Notes on Quantum Mechancs htt://quantum.bu.edu/notes/quantummechancs/lnearsstems.df Last udated Wednesda, October 9, 003 :0:08 Corght 003 Dan Dll (dan@bu.edu) Deartment

More information

A General Rotation Contortion Hamiltonian with Structure Relaxation: Application to the Precessing Internal Rotor Model

A General Rotation Contortion Hamiltonian with Structure Relaxation: Application to the Precessing Internal Rotor Model JOURNAL OF MOLECULAR SPECTROSCOPY 183, 157 162 (1997) ARTICLE NO. MS977268 A General Rotaton Contorton Hamltonan wth Structure Relaxaton: Applcaton to the Precessng Internal Rotor Model Allan L. L. East

More information

Identification of Instantaneous Modal Parameters of A Nonlinear Structure Via Amplitude-Dependent ARX Model

Identification of Instantaneous Modal Parameters of A Nonlinear Structure Via Amplitude-Dependent ARX Model Identfcaton of Instantaneous Modal Parameters of A Nonlnear Structure Va Ampltude-Dependent ARX Model We Chh Su(NCHC), Chung Shann Huang(NCU), Chng Yu Lu(NCU) Outlne INRODUCION MEHODOLOGY NUMERICAL VERIFICAION

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

The partition function is so important because everything else one ever wants (and can) know about the macroscopic system can be calculated from it:

The partition function is so important because everything else one ever wants (and can) know about the macroscopic system can be calculated from it: 5. Thermochemstry 5.. Molecular partton functon and thermodynamc quanttes One of the man goals of computatonal chemstry s to calculate macroscopc chemcal quanttes that we observe n the laboratory (e.g.

More information

Isothermal vs. adiabatic compression

Isothermal vs. adiabatic compression Isothermal vs. adabatc comresson 1. One and a half moles of a datomc gas at temerature 5 C are comressed sothermally from a volume of 0.015 m to a volume of 0.0015 m. a. Sketch the rocess on a dagram and

More information

Modeling and Simulation of a Hexapod Machine Tool for the Dynamic Stability Analysis of Milling Processes. C. Henninger, P.

Modeling and Simulation of a Hexapod Machine Tool for the Dynamic Stability Analysis of Milling Processes. C. Henninger, P. Smpack User Meetng 27 Modelng and Smulaton of a Heapod Machne Tool for the Dynamc Stablty Analyss of Mllng Processes C. Hennnger, P. Eberhard Insttute of Engneerng project funded by the DFG wthn the framework

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

Lecture 5: Quantitative Emission/Absorption

Lecture 5: Quantitative Emission/Absorption Lecture 5: Quanttatve Emsson/bsorpton. Eqn. of radatve transfer / Beer s Law o (ν) Gas (ν). Ensten theory of radaton 3. pectral absorpton coeffcent Collmated lht @ ν L 4. Radatve lfetme 5. Lne strenths

More information

Lecture 5: Ideal monatomic gas

Lecture 5: Ideal monatomic gas Lecture 5: Ideal monatomc gas Statstcal mechancs of the perfect gas Ams: Key new concepts and methods: Countng states Waves n a box. Demonstraton that β / kt Heat, work and Entropy n statstcal mechancs

More information

Note on the Electron EDM

Note on the Electron EDM Note on the Electron EDM W R Johnson October 25, 2002 Abstract Ths s a note on the setup of an electron EDM calculaton and Schff s Theorem 1 Basc Relatons The well-known relatvstc nteracton of the electron

More information

Chapter 11 Torque and Angular Momentum

Chapter 11 Torque and Angular Momentum Chapter Torque and Angular Momentum I. Torque II. Angular momentum - Defnton III. Newton s second law n angular form IV. Angular momentum - System of partcles - Rgd body - Conservaton I. Torque - Vector

More information

CHEM Atomic and Molecular Spectroscopy

CHEM Atomic and Molecular Spectroscopy CHEM 21112 Atomic and Molecular Spectroscopy References: 1. Fundamentals of Molecular Spectroscopy by C.N. Banwell 2. Physical Chemistry by P.W. Atkins Dr. Sujeewa De Silva Sub topics Light and matter

More information