Linear system of the Schrödinger equation Notes on Quantum Mechanics

Size: px
Start display at page:

Download "Linear system of the Schrödinger equation Notes on Quantum Mechanics"

Transcription

1 Lnear sstem of the Schrödnger equaton Notes on Quantum Mechancs htt://quantum.bu.edu/notes/quantummechancs/lnearsstems.df Last udated Wednesda, October 9, 003 :0:08 Corght 003 Dan Dll Deartment of Chemstr, Boston Unverst, Boston MA 05 In numercal alcatons of quantum mechancs n chemstr, a owerful method of solvng the Schrödnger equaton, H Y a = E a Y a s to exress the unnown wavefuncton, Y a, n terms of nown bass functons,, as Y a = c a. The result s a lnear sstem of equatons for the exanson coeffcents, c a. Here s what the lnear sstem loos le for an exanson n terms of three bass functons. where H - E a H H 3 H H - E a H 3 H 3 H 3 H 33 - E a z c a c a c 3 a z = 0 H = HxL * H HxL x. For ths examle, we have three equatons n four unnowns: the three exanson coeffcents, c a, and the energ, E a. The wa to roceed s to frst determne the values of the energ b requrng that the matrx H - E a H H 3 H H - E a H 3 H 3 H 3 H 33 - E a does not have an nverse, for f t dd have an nverse, then the soluton would be H - E a H H 3 H H - E a H 3 H 3 H 3 H 33 - E a z z - H - E a H H 3 H H - E a H 3 H 3 H 3 H 33 - E a z c a c a c 3 a z = c a c a c 3 a z = 0, that s, all of the exanson coeffcents would be equal to 0 and so the wavefuncton, Y a, would vansh!

2 Lnear sstem of the Schrödnger equaton Now, the nverse of a matrx s roortonal to the recrocal of ts determnant, and so we can ensure that a matrx does not have an nverse b arrangng for ts determnant to be equal to 0. We do ths b fndng those values of E a at whch the determnant vanshes. For an n µ n matrx, the determnant s an n-th order olnomal n E Ça and so there wll be as man values of the energ at whch the determnant vanshes as there are bass functons. Once the values of the energ, E a, have been determned, we are left wth a homogeneous sstem of equatons for the unnown exanson coeffcents, c a. The wa to solve ths sstem of equatons s to set one of the exanson coeffcents equal to, set asde the corresondng equaton of the lnear sstem, and then solve the remanng set of equatons. For the 3 µ 3 examle, settng c a =, the remanng equatons to solve are H - E a H 3 z c a z =- H z. H 3 H 33 - E a c 3 a H 3 We can solve ths to for the remanng coeffcents, c a and c 3 a. The result s Y a = N H + c a + 3 a c 3 a L where the normalzaton constant, N, corrects for the fact that we have set c a =. The last ste s to determne the value of N usng» Y a» x = N À + c a + 3 a c 3 a À x = N H + c a + c 3 a L, where n the second equalt we have assumed the orthonormalt of the bass functons,. The fnal result s that Y a = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ H + c a + 3 a c 3 a L + c a + c 3 a s the normalzed wavefuncton corresondng to the energ E a. à Partcle on a bum rng To see how ths method of solvng the Schrödnger equaton wors, let's consder a artcle movng on a bum rng. A artcle on a smooth rng has onl netc energ, snce the otental energ s zero on the rng. We can mae the rng "bum" b addng the otental energ V HfL = Ñ ÅÅÅÅÅÅÅÅ I sn HfL. Here s a lot of ths otental energ, n unts Ñ ê H IL. Corght 003 Dan Dll (dan@bu.edu). All rghts reserved

3 Lnear sstem of the Schrödnger equaton 3 VHfL ÅÅÅÅÅ 3 ÅÅÅÅÅÅÅÅÅ f Potental energ, n unts Ñ ê H IL, of a bum rng. The otental energ has mnma along the x drectons and maxma along the drectons. To construct the lnear sstem of the Schrödnger equaton for a artcle movng on a rng n ths otental energ, we need the ntegrals V mm' = F m HfL * ÅÅÅÅÅÅÅÅ Ñ 0 I sn HfL z F m' HfL x. The value of such ntegrals, n unts Ñ ê H IL, s / for m = m', - ê for m = m', and 0 otherwse. Ths means that the ntegrals of the hamltonan, H mm' = Ñ ÅÅÅÅÅÅÅÅ I ÅÅÅÅÅÅÅÅÅÅÅÅ f + sn HfL z - of a artcle on ths bum rng for bass functons wth m = 0, and, are, n unts Ñ ê H IL, m' = 0 m' = m' = m = 0 0 m = 9 0 m = Use the values of the ntegrals V mm' to show these values are correct. If we exress the wavefuncton of the artcle on the bum rng as the exanson Y a HfL =F 0 HfL c 0 a +F HfL c a +F HfL c a, then the normalzed wavefunctons, Y a HfL, and corresondng energes, E a, n unts Ñ ê H IL, are α Ψ α E α φ φ φ.5556 Normalzed wavefunctons, Y a HfL, and corresondng energes, E a, n unts Ñ ê H IL, for a artcle n a rng n a otental energ Ñ ê H IL sn HfL, usng a exanson n rng bass functons, F m HfL, for m = 0, and. Corght 003 Dan Dll (dan@bu.edu). All rghts reserved

4 Lnear sstem of the Schrödnger equaton Show that these results are correct. Here s the comoston of each wavefuncton, Y a HfL, n terms of the ercentage contrbuton of the three rng bass functons, F 0 HfL, F HfL and F HfL. Φ 0 Φ Φ Ψ Ψ Ψ Percentage comoston of each bum rng wavefuncton, Y a HfL, n terms of the fve rng bass states, F m HfL, for m = 0, and. Show that these results are correct. Fnall, here are the robablt denstes corresondng to the three wavefunctons, Y HfL, Y HfL and Y 3 HfL.»Y» ÅÅÅÅÅ 3 ÅÅÅÅÅÅÅÅÅ f Probablt denstes corresondng to the three wavefunctons Y HfL (horzontal lne), Y HfL (oscllatng thn gre lne) and Y 3 HfL (oscllatng thc gre lne). Show that these results are correct. The horzontal lne s for energ E =.5 Ñ ê H IL; ths energ s ust the sum of the netc energ and the otental energ exectaton values for m =. The oscllatng thn gre lne s for energ E = 0.8 Ñ ê H IL. Ths energ s slghtl less than the sum of the netc energ and the otental energ exectaton values for m = 0. The decrease s due to the robablt denst beng slghtl larger n the otental valles (along x) and slghtl smaller at the otental eas (along ). The oscllatng thc gre lne s for energ E =.56 Ñ ê H IL; ths energ s slghtl more than the sum of the netc energ and the otental energ exectaton values for m =. The ncrease s due to the robablt denst beng slghtl larger at the otental eas (along ) and slghtl smaller n the otental valles (along x). à Imrovng the energes and egenvalues In ths method of solvng the Schrödnger equaton, as addtonal bass functons are added, the more accurate the energes and wavefunctons become. To llustrate ths, we can resolve the artcle on a bum rng usng a fve-member bass consstng of the rng functons F m HfL wth m = 0,,, 3 and. Corght 003 Dan Dll (dan@bu.edu). All rghts reserved

5 Lnear sstem of the Schrödnger equaton 5 The ntegrals of the hamltonan, H mm' = Ñ ÅÅÅÅÅÅÅÅ I ÅÅÅÅÅÅÅÅÅÅÅÅ f + sn HfL z - of a artcle on ths bum rng for bass functons wth m = 0,,, 3 and, are, n unts Ñ ê H IL, m' = 0 m' = m' = m' = m' = 3 m = m = m = m = m = The normalzed wavefunctons, Y a HfL, and corresondng energes, E a, n unts Ñ êh IL, are α Ψ α E α φ φ φ φ φ φ φ φ φ φ 0.8 Normalzed wavefunctons, Y a HfL, and corresondng energes, E a, n unts Ñ ê H IL, for a artcle n a rng n a otental energ Ñ ê H IL sn HfL, usng a exanson n rng bass functons, F m HfL, for m = 0,,, 3 and. Here s the comoston of each wavefuncton, Y a HfL, n terms of the ercentage contrbuton of the fve rng bass functons. Φ 0 Φ Φ Φ Φ 3 Ψ Ψ Ψ Ψ Ψ Percentage comoston of each bum rng wavefuncton, Y a HfL, n terms of the fve rng bass states, F m HfL, for m = 0,,, 3 and. Fnall, here are the robablt denstes corresondng to the fve wavefunctons, Y a HfL ÅÅÅÅÅ 3 ÅÅÅÅÅÅÅÅÅ Probablt denstes corresondng to the fve wavefunctons Y a HfL. At f =ê, the orderng of the curves and redomnant rng bass functon contrbuton, from bottom to to, are Ha, ml = H5, 0L (blac curve), Ha, ml = H, L (red curve), Ha, ml = H3, L (green curve), Ha, ml = H, 3L (ellow curve), and Ha, ml = H, L (blue curve). Corght 003 Dan Dll (dan@bu.edu). All rghts reserved

6 6 Lnear sstem of the Schrödnger equaton The frst thng to note s that, as n the three-member bass, the denstes (a = and 5) that are reduced at the otental bums and enhanced at the otental valles corresond to lower energes than the sum of the netc energ and the otental energ exectaton values for domnate value of m for the gven Y a, and the denstes (a =, 3 and ) that are enhanced at the otental bums and reduced at the otental valles corresond to hgher energes than the sum of the netc energ and the otental energ exectaton values for domnate value of m for the gven Y a. The second thng to note s that whereas n the three-member bass the denst of the level wth m = remaned constant and ts energ dd not change from the sum of the netc energ and the otental energ exectaton values for m =, now the denst s shfted awa from the bums nto the valles, and the energ s corresondngl lowered. Ths s balanced b a shft of the redomnantl m = 3 denst awa from the valles and onto the bums, and t corresondng ncreased energ, relatve to the sum of the netc energ and the otental energ exectaton values for m = 3. à Comarng the three- and fve-member bass results It s ver nstructve to comare the energ changes that result usng the three-member bass wth those that result usng the fve member bass. Here s a tabulaton of the three-member bass results, m E m E m +V m E α E α HE m V m L Rng functon netc energes, E m, rng functon netc energes lus otental bum otental energes, V m, energes E a, and the change n energ, E a - HE m - V m L, for a artcle on a rng n a otental energ sn HfL, usng a exanson n rng bass functons, F m HfL, for m = 0, and. All energes are n unts Ñ ê H IL. and here s a tabulaton of the fve-member bass results, m E m E m +V m E α E α HE m V m L Rng functon netc energes, E m, rng functon netc energes lus otental bum otental energes, V m, energes E a, and the change n energ, E a - HE m - V m L, for a artcle on a rng n a otental energ sn HfL, usng a exanson n rng bass functons, F m HfL, for m = 0,,, 3 and. All energes are n unts Ñ ê H IL. The e thng to note n these results and ther comarson s that the energes, E a, for the fve-member bass are lower than those for the three member bass. Ths s an examle of a general result nown as the searaton theorem. The theorem has two arts: Frst, unless we use all of the bass functons of a comlete set, the resultng energes, E a, wll be hgher than the exact energes; second, the more bass functons we nclude, the closer wll be the energes, E a, to the exact energes, that s, enlargng a lnear sstem alwas lowers energes, E a. Ths roert of lnear sstems of the Schrödnger equaton means that we can get good aroxmatons to exact energes of at least the lowest several levels wthout havng to usng a huge number of bass functons. The reason s that addng more and more bass functons results n smaller and smaller mrovement to the energes of the lowest levels. It s for ths reason that ths method of worng wth the Schrödnger equaton s so owerful and so wdesread n alcatons of quantum mechancs to chemcal sstems. Corght 003 Dan Dll (dan@bu.edu). All rghts reserved

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

Molecular structure: Diatomic molecules in the rigid rotor and harmonic oscillator approximations Notes on Quantum Mechanics

Molecular structure: Diatomic molecules in the rigid rotor and harmonic oscillator approximations Notes on Quantum Mechanics Molecular structure: Datomc molecules n the rgd rotor and harmonc oscllator approxmatons Notes on Quantum Mechancs http://quantum.bu.edu/notes/quantummechancs/molecularstructuredatomc.pdf Last updated

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors. SCALARS AND ECTORS All phscal uanttes n engneerng mechancs are measured usng ether scalars or vectors. Scalar. A scalar s an postve or negatve phscal uantt that can be completel specfed b ts magntude.

More information

Advanced Topics in Optimization. Piecewise Linear Approximation of a Nonlinear Function

Advanced Topics in Optimization. Piecewise Linear Approximation of a Nonlinear Function Advanced Tocs n Otmzaton Pecewse Lnear Aroxmaton of a Nonlnear Functon Otmzaton Methods: M8L Introducton and Objectves Introducton There exsts no general algorthm for nonlnear rogrammng due to ts rregular

More information

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom.

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom. The Drac Equaton for a One-electron atom In ths secton we wll derve the Drac equaton for a one-electron atom. Accordng to Ensten the energy of a artcle wth rest mass m movng wth a velocty V s gven by E

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Binding energy of a Cooper pairs with non-zero center of mass momentum in d-wave superconductors

Binding energy of a Cooper pairs with non-zero center of mass momentum in d-wave superconductors Bndng energ of a Cooper pars wth non-zero center of mass momentum n d-wave superconductors M.V. remn and I.. Lubn Kazan State Unverst Kremlevsaa 8 Kazan 420008 Russan Federaton -mal: gor606@rambler.ru

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers 9. Comple Numbers. Numbers revsted. Imagnar number : General form of comple numbers 3. Manpulaton of comple numbers 4. The Argand dagram 5. The polar form for comple numbers 9.. Numbers revsted We saw

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbaton Theory In Moller-Plesset (MP) perturbaton theory one taes the unperturbed Hamltonan for an atom or molecule as the sum of the one partcle Foc operators H F() where the egenfunctons

More information

Non-Ideality Through Fugacity and Activity

Non-Ideality Through Fugacity and Activity Non-Idealty Through Fugacty and Actvty S. Patel Deartment of Chemstry and Bochemstry, Unversty of Delaware, Newark, Delaware 19716, USA Corresondng author. E-mal: saatel@udel.edu 1 I. FUGACITY In ths dscusson,

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component Department of Energ oltecnco d Mlano Va Lambruschn - 05 MILANO Eercses of Fundamentals of Chemcal rocesses rof. Ganpero Gropp Eercse 8 Estmaton of the composton of the lqud and vapor streams etng a unt

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

The Fundamental Theorem of Algebra. Objective To use the Fundamental Theorem of Algebra to solve polynomial equations with complex solutions

The Fundamental Theorem of Algebra. Objective To use the Fundamental Theorem of Algebra to solve polynomial equations with complex solutions 5-6 The Fundamental Theorem of Algebra Content Standards N.CN.7 Solve quadratc equatons wth real coeffcents that have comple solutons. N.CN.8 Etend polnomal denttes to the comple numbers. Also N.CN.9,

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

3 d Rotations Rotating dumbbells in lab frame Moment of Inertial Tensor

3 d Rotations Rotating dumbbells in lab frame Moment of Inertial Tensor d Rotatons Rotatng dumells n la frame Moment of Inertal Tensor Revew of BCS and FCS sstems Component notaton for I β Moments and Products of Inerta I x, I, I z P x, P xz, P z Moment of Inerta for a cue

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

6. Hamilton s Equations

6. Hamilton s Equations 6. Hamlton s Equatons Mchael Fowler A Dynamcal System s Path n Confguraton Sace and n State Sace The story so far: For a mechancal system wth n degrees of freedom, the satal confguraton at some nstant

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure nhe roblem-solvng Strategy hapter 4 Transformaton rocess onceptual Model formulaton procedure Mathematcal Model The mathematcal model s an abstracton that represents the engneerng phenomena occurrng n

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica demo8.nb 1 DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA Obectves: - defne matrces n Mathematca - format the output of matrces - appl lnear algebra to solve a real problem - Use Mathematca to perform

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields EJTP 6, No. 0 009) 43 56 Electronc Journal of Theoretcal Physcs Non-nteractng Spn-1/ Partcles n Non-commutng External Magnetc Felds Kunle Adegoke Physcs Department, Obafem Awolowo Unversty, Ile-Ife, Ngera

More information

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density.

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density. 1 Unform Electron Gas Ths chapter llustrates the dea that all propertes of the homogeneous electron gas (HEG) can be calculated from electron densty. Intutve Representaton of Densty Electron densty n s

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Exercises of Fundamentals of Chemical Processes

Exercises of Fundamentals of Chemical Processes Department of Energ Poltecnco d Mlano a Lambruschn 4 2056 MILANO Exercses of undamentals of Chemcal Processes Prof. Ganpero Gropp Exercse 7 ) Estmaton of the composton of the streams at the ext of an sothermal

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

A proof of the dimension conjecture and of Jacobi's bound. François Ollivier (CNRS) LIX UMR CNRS École polytechnique

A proof of the dimension conjecture and of Jacobi's bound. François Ollivier (CNRS) LIX UMR CNRS École polytechnique A proof of the dmenson conjecture and of Jacob's bound Franços Ollver (CNRS) LIX UMR CNRS École polytechnque Jacob s bound Proposton. Let P 1,..., P n , a,j = ord xj P and = max σ S n Σ

More information

Electron-Impact Double Ionization of the H 2

Electron-Impact Double Ionization of the H 2 I R A P 6(), Dec. 5, pp. 9- Electron-Impact Double Ionzaton of the H olecule Internatonal Scence Press ISSN: 9-59 Electron-Impact Double Ionzaton of the H olecule. S. PINDZOLA AND J. COLGAN Department

More information

One Dimensional Axial Deformations

One Dimensional Axial Deformations One Dmensonal al Deformatons In ths secton, a specfc smple geometr s consdered, that of a long and thn straght component loaded n such a wa that t deforms n the aal drecton onl. The -as s taken as the

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Physics 443, Solutions to PS 7

Physics 443, Solutions to PS 7 Physcs 443, Solutons to PS 7. Grffths 4.50 The snglet confguraton state s χ ) χ + χ χ χ + ) where that second equaton defnes the abbrevated notaton χ + and χ. S a ) S ) b χ â S )ˆb S ) χ In sphercal coordnates

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Devce Applcatons Class 9 Group Theory For Crystals Dee Dagram Radatve Transton Probablty Wgner-Ecart Theorem Selecton Rule Dee Dagram Expermentally determned energy

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

VEKTORANALYS. GAUSS s THEOREM and STOKES s THEOREM. Kursvecka 3. Kapitel 6-7 Sidor 51-82

VEKTORANALYS. GAUSS s THEOREM and STOKES s THEOREM. Kursvecka 3. Kapitel 6-7 Sidor 51-82 VEKTORANAY Kursvecka 3 GAU s THEOREM and TOKE s THEOREM Kaptel 6-7 dor 51-82 TARGET PROBEM EECTRIC FIED MAGNETIC FIED N + Magnetc monopoles do not est n nature. How can we epress ths nformaton for E and

More information

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation 1 PHYS 705: Classcal Mechancs Hamlton-Jacob Equaton Hamlton-Jacob Equaton There s also a very elegant relaton between the Hamltonan Formulaton of Mechancs and Quantum Mechancs. To do that, we need to derve

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk.

Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk. Rectaton: Energy, Phys 207. Energy. Energes. An acorn fallng from an oak tree onto the sdewalk. The acorn ntal has gravtatonal potental energy. As t falls, t converts ths energy to knetc. When t hts the

More information

VEKTORANALYS GAUSS THEOREM STOKES THEOREM. and. Kursvecka 3. Kapitel 6 7 Sidor 51 82

VEKTORANALYS GAUSS THEOREM STOKES THEOREM. and. Kursvecka 3. Kapitel 6 7 Sidor 51 82 VEKTORANAY Kursvecka 3 GAU THEOREM and TOKE THEOREM Kaptel 6 7 dor 51 82 TARGET PROBEM Do magnetc monopoles est? EECTRIC FIED MAGNETIC FIED N +? 1 TARGET PROBEM et s consder some EECTRIC CHARGE 2 - + +

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs hyscs 151 Lecture Canoncal Transformatons (Chater 9) What We Dd Last Tme Drect Condtons Q j Q j = = j, Q, j, Q, Necessary and suffcent j j for Canoncal Transf. = = j Q, Q, j Q, Q, Infntesmal CT

More information

Digital PI Controller Equations

Digital PI Controller Equations Ver. 4, 9 th March 7 Dgtal PI Controller Equatons Probably the most common tye of controller n ndustral ower electroncs s the PI (Proortonal - Integral) controller. In feld orented motor control, PI controllers

More information

Lecture 14: Forces and Stresses

Lecture 14: Forces and Stresses The Nuts and Bolts of Frst-Prncples Smulaton Lecture 14: Forces and Stresses Durham, 6th-13th December 2001 CASTEP Developers Group wth support from the ESF ψ k Network Overvew of Lecture Why bother? Theoretcal

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order: 68A Solutons to Exercses March 05 (a) Usng a Taylor expanson, and notng that n 0 for all n >, ( + ) ( + ( ) + ) We can t nvert / because there s no Taylor expanson around 0 Lets try to calculate the nverse

More information

Example one-dimensional quantum systems Notes on Quantum Mechanics

Example one-dimensional quantum systems Notes on Quantum Mechanics Eample one-dimensional quantum sstems Notes on Quantum Mechanics http://quantum.bu.edu/notes/quantummechanics/eampledquantumsstems.pdf Last updated Wednesda, October 0, 004 6:03:47-05:00 Copright 004 Dan

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation Nonl. Analyss and Dfferental Equatons, ol., 4, no., 5 - HIKARI Ltd, www.m-har.com http://dx.do.org/.988/nade.4.456 Asymptotcs of the Soluton of a Boundary alue Problem for One-Characterstc Dfferental Equaton

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

+, where 0 x N - n. k k

+, where 0 x N - n. k k CO 745, Mdterm Len Cabrera. A multle choce eam has questons, each of whch has ossble answers. A student nows the correct answer to n of these questons. For the remanng - n questons, he checs the answers

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0 Quantum Mechancs, Advanced Course FMFN/FYSN7 Solutons Sheet Soluton. Lets denote the two operators by  and ˆB, the set of egenstates by { u }, and the egenvalues as  u = a u and ˆB u = b u. Snce the

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

The Decibel and its Usage

The Decibel and its Usage The Decbel and ts Usage Consder a two-stage amlfer system, as shown n Fg.. Each amlfer rodes an ncrease of the sgnal ower. Ths effect s referred to as the ower gan,, of the amlfer. Ths means that the sgnal

More information

Be true to your work, your word, and your friend.

Be true to your work, your word, and your friend. Chemstry 13 NT Be true to your work, your word, and your frend. Henry Davd Thoreau 1 Chem 13 NT Chemcal Equlbrum Module Usng the Equlbrum Constant Interpretng the Equlbrum Constant Predctng the Drecton

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

5.76 Lecture #21 2/28/94 Page 1. Lecture #21: Rotation of Polyatomic Molecules I

5.76 Lecture #21 2/28/94 Page 1. Lecture #21: Rotation of Polyatomic Molecules I 5.76 Lecture # /8/94 Page Lecture #: Rotaton of Polatomc Molecules I A datomc molecule s ver lmted n how t can rotate and vbrate. * R s to nternuclear as * onl one knd of vbraton A polatomc molecule can

More information

Matrix Mechanics Exercises Using Polarized Light

Matrix Mechanics Exercises Using Polarized Light Matrx Mechancs Exercses Usng Polarzed Lght Frank Roux Egenstates and operators are provded for a seres of matrx mechancs exercses nvolvng polarzed lght. Egenstate for a -polarzed lght: Θ( θ) ( ) smplfy

More information

The Schrödinger Equation

The Schrödinger Equation Chapter 1 The Schrödnger Equaton 1.1 (a) F; () T; (c) T. 1. (a) Ephoton = hν = hc/ λ =(6.66 1 34 J s)(.998 1 8 m/s)/(164 1 9 m) = 1.867 1 19 J. () E = (5 1 6 J/s)( 1 8 s) =.1 J = n(1.867 1 19 J) and n

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 3 Jan 2006

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 3 Jan 2006 arxv:cond-mat/0210519v2 [cond-mat.mes-hall] 3 Jan 2006 Non Equlbrum Green s Functons for Dummes: Introducton to the One Partcle NEGF equatons Magnus Paulsson Dept. of mcro- and nano-technology, NanoDTU,

More information

HMMT February 2016 February 20, 2016

HMMT February 2016 February 20, 2016 HMMT February 016 February 0, 016 Combnatorcs 1. For postve ntegers n, let S n be the set of ntegers x such that n dstnct lnes, no three concurrent, can dvde a plane nto x regons (for example, S = {3,

More information

Rigid body simulation

Rigid body simulation Rgd bod smulaton Rgd bod smulaton Once we consder an object wth spacal etent, partcle sstem smulaton s no longer suffcent Problems Problems Unconstraned sstem rotatonal moton torques and angular momentum

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

Elshaboury SM et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-2B (Mar-May); pp

Elshaboury SM et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-2B (Mar-May); pp Elshabour SM et al.; Sch. J. Phs. Math. Stat. 5; Vol-; Issue-B (Mar-Ma); pp-69-75 Scholars Journal of Phscs Mathematcs Statstcs Sch. J. Phs. Math. Stat. 5; (B):69-75 Scholars Academc Scentfc Publshers

More information

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods Chapter Eght Energy Method 8. Introducton 8. Stran energy expressons 8.3 Prncpal of statonary potental energy; several degrees of freedom ------ Castglano s frst theorem ---- Examples 8.4 Prncpal of statonary

More information

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX Hacettepe Journal of Mathematcs and Statstcs Volume 393 0 35 33 FORMUL FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIGONL MTRIX H Kıyak I Gürses F Yılmaz and D Bozkurt Receved :08 :009 : ccepted 5

More information

Title: Radiative transitions and spectral broadening

Title: Radiative transitions and spectral broadening Lecture 6 Ttle: Radatve transtons and spectral broadenng Objectves The spectral lnes emtted by atomc vapors at moderate temperature and pressure show the wavelength spread around the central frequency.

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

V.C The Niemeijer van Leeuwen Cumulant Approximation

V.C The Niemeijer van Leeuwen Cumulant Approximation V.C The Nemejer van Leeuwen Cumulant Approxmaton Unfortunately, the decmaton procedure cannot be performed exactly n hgher dmensons. For example, the square lattce can be dvded nto two sublattces. For

More information