Exercises of Fundamentals of Chemical Processes

Size: px
Start display at page:

Download "Exercises of Fundamentals of Chemical Processes"

Transcription

1 Department of Energ Poltecnco d Mlano a Lambruschn MILANO Exercses of undamentals of Chemcal Processes Prof. Ganpero Gropp Exercse 7 ) Estmaton of the composton of the streams at the ext of an sothermal unt A unt s mantaned at a temperature of 80 C and at a pressure of 0 Pa. A mxture of ntromethane, acetone and acetontrle (molar composton reported n the table), s sent to the unt. Assumng deal gases and deal lqud mxture: ) calculate the bubble pressure and the dew pressure of the mxture at the temperature of the unt 2) calculate the bolng temperature and the dew temperature of the mxture at the pressure of the unt 3) evaluate f a vapor-lqud equlbrum condton s reached at the temperature and pressure of the unt 4) estmate the vaporaton rato and the composton of the lqud stream and of the vapor stream that are produced n the unt. or each spece, A, B and C are the parameters of Antone s equaton for the estmaton of the vapor pressure. Data Spece A B C Acetone Acetontrle Ntromethane ln SAT B SAT P A P Pa T C C T

2 2) Estmaton of the temperature and the composton of the streams at the ext of an adabatc unt A unt s mantaned at 00 Pa pressure. A mxture of n-hexane, n-octane and n-decane, whose composton n terms of molar fractons ( ) s reported n the table, s sent to the unt. The mxture fed to the unt s at 30 C and 304 Pa. Assumng deal gases and deal lqud mxture, and nowng that the drum s adabatc, calculate the temperature and the composton of the streams that ext the unt. or each spece, the specfc heat n the lqud phase, the specfc heat n the vapor phase and the enthalp of vaporaton ( H AP, at the normal bolng temperature) can be assumed as constant. The enthalpes of vaporaton are gven at the bolng temperature at atm. Data Speces A B C lq gas C P C P H AP (T N bol) [J/mol/ C] [J/mol/ C] [J/mol] n-hexane n-octane n-decane

3 Exercse ) Isothermal Gven that the pressure and the temperature of the unt are nown, 2N +2 unnown values must to be found, N beng the number of the speces n the unt. The equatons needed n the sstem are: global materal balance, N materal balances for the speces, and N equlbrum condtons for the -th spece between the lqud and the gas phase. L L x... N speces T,P,,x x... Nspeces s the molar fracton of the -th spece fed to the unt, the nlet molar flow rate, x s the molar fracton of the -th spece n the lqud stream L, s the molar fracton of the -th spece n the vapor stream, are the equlbrum constants for the materal transfer between the lqud and the vapor phase. In general, for each spece, the equlbrum constant depends on the temperature, the pressure and the composton of both the lqud and the vapor phases. In the exercse, gven that the gas s deal and the mxture s deal (.e. the Raoult s law s vald), t s possble to wrte the constants n a smple form, startng from the Antone s equaton for the estmaton of the saturaton pressures of the speces: T,P P T P SAT It s convenent to rearrange the problem b ntroducng the vaporaton rato : n ths wa, the problem of the determnaton the compostons of the lqud and the vapor phases s reduced to the determnaton of the vaporaton rato. Once ths rato s nown, the compostons are easl determned. The vaporaton rato s the fracton the feed flow that s vapored n the chamber. x B substtuton of the equlbrum condton x n, one obtans: x x x

4 The equaton requred to solve for the vaporaton rato s the constrant on the molar fractons x : 0 Eq. x peces peces Ths equaton (Eq. ) s non-lnear and must be solved wth a proper numerc procedure. In ths case, two solvng roots are fund for : a trval soluton s alwas found for = 0, whch corresponds to the absence of vaporaton. ollowng the same procedure of equaton, a second equaton s found (Eq. 2) for the soluton of the vaporaton rato b substtuton of the equlbrum constant relatonshp n x, as follows: 2 0 Eq. peces peces Equaton 2 s also non-lnear and must be solved numercall. Also n ths case, two solvng roots are found for the rato: = s a trval soluton for ths equaton, whch corresponds to the complete vaporaton of the ncomng feed. If the functons correspondng to equatons and 2 are consdered (g. a), t s noted that both the curves show a mnmum. Addtonall, unless an approprate value of s assgned as a frst attempt, some numercal procedures can dverge.

5 gure solvng functons Eq and 2 as a functon of the vaporaton rato. If equatons and 2 are combned (b subtracton), equaton 3 s found, also nown as the Rachford-Rce equaton. Ths equaton s stable from a numercal vewpont, snce t decreases monotoncall and has onl one solvng root between 0 and (g. b). peces peces x 0 Eq. 3 Before addressng the numercal soluton, t s convenent to verf whether or not the operatng condtons allow for a non-trval soluton of the vaporaton rato. In order to perform ths verfcaton, t s suffcent to calculate the bubble pressure and the dew pressure of the feed stream at the temperature and to verf f the pressure of the unt s comprsed n between: P dew T P P T bubble If ths condton s verfed, the vaporaton rato s comprsed between 0 and, and a lqud current and a vapor current exst at the equlbrum under the operatng condtons of the unt. In the exercse, the dew and bubble pressures are: P BUBBLE = 40 Pa P DEW = 03 Pa

6 Smlarl, the dew temperature and the bubble temperature can be calculated at the pressure and a vaporaton rato exsts between 0 and n case the temperature s comprsed between ther values: T BUBBLE = 72. C T DEW = 82.0 C In the exercse, a non-trval soluton exsts. The fnal vaporaton rato has the followng value: = Wth ths value, the followng compostons are calculated for the outcomng streams: Speces P SAT [Pa] K x Acetone Acetontrle Ntromethane Exercse 2) Adabatc lash Unt In ths case, the pressure of the unt s nown, but the temperature s unnown. Compared to the solvng sstem of the prevous exercse, n ths case an addtonal equaton s requred, whch s the enthalp balance on the unt. Gven that the unt s adabatc, the enthalp balance reads as follows: H L ) H ) H ) 0 OUT OUT Smlarl to the prevous case, t s convenent to reduce the problem to the determnaton of two unnowns onl, the vaporaton rato and the temperature T, nstead of solvng for the compostons of the two streams. The enthalp balance must be coupled wth the Rachford-Rce equaton: peces T T, P, P 0 In the exercse, the mxtures are deal and the gas s deal. The equlbrum constants are a functon of the pressure of the unt and of ts temperature, whch s unnown. Therefore, the Rachford-Rce equaton must be solved smultaneousl wth the enthalp balance, gvng rse to a sstem of two equatons n two unnowns, T and. The enthalp balance can be wrtten as:

7 h h ) h ) h ) L x h ) ) 0 L x h ) 0 L rom the estmaton of the dew temperature and of the bubble temperature of the nlet feed, the nlet feed s lqud, beng ts temperature (30 C) lower than the bubble temperature: T T bubble dew Pfeed 49.3 P 90.34C feed C In the enthalp balance, t s possble to choose as the reference the nlet feed, taen n the lqud state, at the temperature T, pressure P feed and composton. Thus, the enthalp of the nlet feed s null: h ) 0 Chosen the reference, t s possble to derve the specfc molar enthalp of the speces n each of the outcomng streams. or the lqud current, neglectng the pressure effects, t results: L h LASH ) c p, T T Lq T dt or the vapor stream, for each spece, the value of the H AP n the data s gven at the normal bolng pont (that s, at the bolng temperature of the pure spece at atm, P = atm, T = T N bol). It s then reasonable to follow the enthalp pathwa: h ) N T bol, Lq cp T T AP N, dt H bol, ) TLASH ap cp, N T bol, T dt or both phases, the specfc heats are consdered constant. B substtutng the specfc molar enthalp values n the enthalp balance, the second equaton of the sstem s obtaned: Lq N AP N ap N Lq c p, T bol, T H bol, ) c p, T LASH Tbol, x c p, T LASH T 0

8 An teratve procedure can be adopted for the numercal soluton. rst, t s possble to solve the enthalp balance as a functon of the vaporaton rato b assumng a temperature; then, the Rachford-Rce equaton s solved for the T value, gven the value of calculated n the prevous step. The procedure s then repeated up to the convergence. Dfferentl from the sothermal, n the adabatc t s not possble to verf a pror the exstence of a non-trval soluton of the vaporaton rato. The condton: T T bubble P s n fact onl necessar, but not suffcent for the exstence of a vaporaton rato dfferent from 0 or. On the one hand, the depressuraton of the nlet feed from P to P as a consequence of the soenthalpc lamnaton ma not be suffcent to vapore part of the nlet current; on the other hand, the coolng of the nlet temperature from T to T feed ma brng the nlet feed under ts bubble temperature at P. In the present case, the followng values can be used as frst attempts: = 0.5 and T = 5 C. At the end of the teratve procedure, the solvng values are: T 0.366C The compostons of the outlet currents are: K x T N bolng [ C] h lqud h vapor [J/mol] [J/mol] n-hexane n-octane n-decane

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component Department of Energ oltecnco d Mlano Va Lambruschn - 05 MILANO Eercses of Fundamentals of Chemcal rocesses rof. Ganpero Gropp Eercse 8 Estmaton of the composton of the lqud and vapor streams etng a unt

More information

Outlet temperature of a WGS reactor (Stage I) for the conversion of CO, applied for the abatement of CO to a fixed value.

Outlet temperature of a WGS reactor (Stage I) for the conversion of CO, applied for the abatement of CO to a fixed value. Department of Energy Poltecnco d Mlano Va Lambruschn 56 MILAN Exercses of Fundamentals of Chemcal Processes Prof. Ganpero Gropp Exercse utlet temperature of a WGS reactor (Stage I for the converson of

More information

Assignment 4. Adsorption Isotherms

Assignment 4. Adsorption Isotherms Insttute of Process Engneerng Assgnment 4. Adsorpton Isotherms Part A: Compettve adsorpton of methane and ethane In large scale adsorpton processes, more than one compound from a mxture of gases get adsorbed,

More information

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem SOLUTION TO HOMEWORK #7 #roblem 1 10.1-1 a. In order to solve ths problem, we need to know what happens at the bubble pont; at ths pont, the frst bubble s formed, so we can assume that all of the number

More information

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization 10.34 Numercal Methods Appled to Chemcal Engneerng Fall 2015 Homework #3: Systems of Nonlnear Equatons and Optmzaton Problem 1 (30 ponts). A (homogeneous) azeotrope s a composton of a multcomponent mxture

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Name: SID: Dscusson Sesson: Chemcal Engneerng Thermodynamcs 141 -- Fall 007 Thursday, November 15, 007 Mdterm II SOLUTIONS - 70 mnutes 110 Ponts Total Closed Book and Notes (0 ponts) 1. Evaluate whether

More information

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium ETE 30 Lectures # 24 & 25 Chapter 2 Gas Lqud Equlbrum Thermal Equlbrum Object A hgh T, Object B low T Intal contact tme Intermedate tme. Later tme Mechancal Equlbrum ressure essels Vale Closed Vale Open

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

3. Be able to derive the chemical equilibrium constants from statistical mechanics. Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be

More information

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model Lecture 4. Thermodynamcs [Ch. 2] Energy, Entropy, and Avalablty Balances Phase Equlbra - Fugactes and actvty coeffcents -K-values Nondeal Thermodynamc Property Models - P-v-T equaton-of-state models -

More information

(1) The saturation vapor pressure as a function of temperature, often given by the Antoine equation:

(1) The saturation vapor pressure as a function of temperature, often given by the Antoine equation: CE304, Sprng 2004 Lecture 22 Lecture 22: Topcs n Phase Equlbra, part : For the remander of the course, we wll return to the subject of vapor/lqud equlbrum and ntroduce other phase equlbrum calculatons

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure nhe roblem-solvng Strategy hapter 4 Transformaton rocess onceptual Model formulaton procedure Mathematcal Model The mathematcal model s an abstracton that represents the engneerng phenomena occurrng n

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 16 8/4/14 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 214. Real Vapors and Fugacty Henry s Law accounts or the propertes o extremely dlute soluton. s shown n Fgure

More information

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by ES 5 (phy 40). a) Wrte the zeroth law o thermodynamcs. b) What s thermal conductvty? c) Identyng all es, draw schematcally a P dagram o the arnot cycle. d) What s the ecency o an engne and what s the coecent

More information

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram Adabatc Sorpton of Ammona-Water System and Depctng n p-t-x Dagram J. POSPISIL, Z. SKALA Faculty of Mechancal Engneerng Brno Unversty of Technology Techncka 2, Brno 61669 CZECH REPUBLIC Abstract: - Absorpton

More information

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University General Thermodynamcs for Process Smulaton Dr. Jungho Cho, Professor Department of Chemcal Engneerng Dong Yang Unversty Four Crtera for Equlbra μ = μ v Stuaton α T = T β α β P = P l μ = μ l1 l 2 Thermal

More information

Design Equations. ν ij r i V R. ν ij r i. Q n components. = Q f c jf Qc j + Continuous Stirred Tank Reactor (steady-state and constant phase)

Design Equations. ν ij r i V R. ν ij r i. Q n components. = Q f c jf Qc j + Continuous Stirred Tank Reactor (steady-state and constant phase) Desgn Equatons Batch Reactor d(v R c j ) dt = ν j r V R n dt dt = UA(T a T) r H R V R ncomponents V R c j C pj j Plug Flow Reactor d(qc j ) dv = ν j r 2 dt dv = R U(T a T) n r H R Q n components j c j

More information

Modelli Clamfim Equazioni differenziali 7 ottobre 2013

Modelli Clamfim Equazioni differenziali 7 ottobre 2013 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal 7 ottobre 2013 professor Danele Rtell danele.rtell@unbo.t 1/18? Ordnary Dfferental Equatons A dfferental equaton s an equaton that defnes a relatonshp

More information

Chemical Engineering Department University of Washington

Chemical Engineering Department University of Washington Chemcal Engneerng Department Unversty of Washngton ChemE 60 - Exam I July 4, 003 - Mass Flow Rate of Steam Through a Turbne (5 onts) Steam enters a turbne at 70 o C and.8 Ma and leaves at 00 ka wth a qualty

More information

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9.

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9. 9.9 Real Solutons Exhbt Devatons from Raoult s Law If two volatle and mscble lquds are combned to form a soluton, Raoult s law s not obeyed. Use the expermental data n Table 9.3: Physcal Chemstry 00 Pearson

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Gasometric Determination of NaHCO 3 in a Mixture

Gasometric Determination of NaHCO 3 in a Mixture 60 50 40 0 0 5 15 25 35 40 Temperature ( o C) 9/28/16 Gasometrc Determnaton of NaHCO 3 n a Mxture apor Pressure (mm Hg) apor Pressure of Water 1 NaHCO 3 (s) + H + (aq) Na + (aq) + H 2 O (l) + CO 2 (g)

More information

McCabe-Thiele Diagrams for Binary Distillation

McCabe-Thiele Diagrams for Binary Distillation McCabe-Thele Dagrams for Bnary Dstllaton Tore Haug-Warberg Dept. of Chemcal Engneerng August 31st, 2005 F V 1 V 2 L 1 V n L n 1 V n+1 L n V N L N 1 L N L 0 VN+1 Q < 0 D Q > 0 B FIGURE 1: Smplfed pcture

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS INTRODUCTION TO CHEMICAL PROCESS SIMULATORS DWSIM Chemcal Process Smulator A. Carrero, N. Qurante, J. Javaloyes October 2016 Introducton to Chemcal Process Smulators Contents Monday, October 3 rd 2016

More information

Non-Ideality Through Fugacity and Activity

Non-Ideality Through Fugacity and Activity Non-Idealty Through Fugacty and Actvty S. Patel Deartment of Chemstry and Bochemstry, Unversty of Delaware, Newark, Delaware 19716, USA Corresondng author. E-mal: saatel@udel.edu 1 I. FUGACITY In ths dscusson,

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit Problem Set #6 soluton, Chem 340, Fall 2013 Due Frday, Oct 11, 2013 Please show all work for credt To hand n: Atkns Chap 3 Exercses: 3.3(b), 3.8(b), 3.13(b), 3.15(b) Problems: 3.1, 3.12, 3.36, 3.43 Engel

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands The ChemSep Book Harry A. Koojman Consultant Ross Taylor Clarkson Unversty, Potsdam, New York Unversty of Twente, Enschede, The Netherlands Lbr Books on Demand www.bod.de Copyrght c 2000 by H.A. Koojman

More information

V T for n & P = constant

V T for n & P = constant Pchem 365: hermodynamcs -SUMMARY- Uwe Burghaus, Fargo, 5 9 Mnmum requrements for underneath of your pllow. However, wrte your own summary! You need to know the story behnd the equatons : Pressure : olume

More information

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters

More information

#64. ΔS for Isothermal Mixing of Ideal Gases

#64. ΔS for Isothermal Mixing of Ideal Gases #64 Carnot Heat Engne ΔS for Isothermal Mxng of Ideal Gases ds = S dt + S T V V S = P V T T V PV = nrt, P T ds = v T = nr V dv V nr V V = nrln V V = - nrln V V ΔS ΔS ΔS for Isothermal Mxng for Ideal Gases

More information

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to ChE Lecture Notes - D. Keer, 5/9/98 Lecture 6,7,8 - Rootndng n systems o equatons (A) Theory (B) Problems (C) MATLAB Applcatons Tet: Supplementary notes rom Instructor 6. Why s t mportant to be able to

More information

Prediction of steady state input multiplicities for the reactive flash separation using reactioninvariant composition variables

Prediction of steady state input multiplicities for the reactive flash separation using reactioninvariant composition variables Insttuto Tecnologco de Aguascalentes From the SelectedWorks of Adran Bonlla-Petrcolet 2 Predcton of steady state nput multplctes for the reactve flash separaton usng reactonnvarant composton varables Jose

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Binding energy of a Cooper pairs with non-zero center of mass momentum in d-wave superconductors

Binding energy of a Cooper pairs with non-zero center of mass momentum in d-wave superconductors Bndng energ of a Cooper pars wth non-zero center of mass momentum n d-wave superconductors M.V. remn and I.. Lubn Kazan State Unverst Kremlevsaa 8 Kazan 420008 Russan Federaton -mal: gor606@rambler.ru

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING Postal Correspondence GATE & PSUs -MT To Buy Postal Correspondence Packages call at 0-9990657855 1 TABLE OF CONTENT S. No. Ttle Page no. 1. Introducton 3 2. Dffuson 10 3. Dryng and Humdfcaton 24 4. Absorpton

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Lecture. Polymer Thermodynamics 0331 L Chemical Potential Prof. Dr. rer. nat. habl. S. Enders Faculty III for Process Scence Insttute of Chemcal Engneerng Department of Thermodynamcs Lecture Polymer Thermodynamcs 033 L 337 3. Chemcal Potental Polymer Thermodynamcs

More information

Adsorption: A gas or gases from a mixture of gases or a liquid (or liquids) from a mixture of liquids is bound physically to the surface of a solid.

Adsorption: A gas or gases from a mixture of gases or a liquid (or liquids) from a mixture of liquids is bound physically to the surface of a solid. Searatons n Chemcal Engneerng Searatons (gas from a mxture of gases, lquds from a mxture of lquds, solds from a soluton of solds n lquds, dssolved gases from lquds, solvents from gases artally/comletely

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

Modelli Clamfim Equazioni differenziali 22 settembre 2016

Modelli Clamfim Equazioni differenziali 22 settembre 2016 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal 22 settembre 2016 professor Danele Rtell danele.rtell@unbo.t 1/22? Ordnary Dfferental Equatons A dfferental equaton s an equaton that defnes a relatonshp

More information

Name ID # For relatively dilute aqueous solutions the molality and molarity are approximately equal.

Name ID # For relatively dilute aqueous solutions the molality and molarity are approximately equal. Name ID # 1 CHEMISTRY 212, Lect. Sect. 002 Dr. G. L. Roberts Exam #1/Sprng 2000 Thursday, February 24, 2000 CLOSED BOOK EXM No notes or books allowed. Calculators may be used. tomc masses of nterest are

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

NAME and Section No.

NAME and Section No. Chemstry 391 Fall 2007 Exam I KEY (Monday September 17) 1. (25 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). Defne the terms: open system, closed system and solated system

More information

Mass Transfer Processes

Mass Transfer Processes Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Lecture 5. Stoichiometry Dimensionless Parameters. Moshe Matalon N X. 00 i. i M i. i=1. i=1

Lecture 5. Stoichiometry Dimensionless Parameters. Moshe Matalon N X. 00 i. i M i. i=1. i=1 Summer 23 Lecture 5 Stochometry Dmensonless Parameters Stochometry Gven the reacton M dn or n terms of the partal masses dm ( )W N X dn j j M we have seen that there s a relaton between the change n the

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

A Modulated Hydrothermal (MHT) Approach for the Facile. Synthesis of UiO-66-Type MOFs

A Modulated Hydrothermal (MHT) Approach for the Facile. Synthesis of UiO-66-Type MOFs Supplementary Informaton A Modulated Hydrothermal (MHT) Approach for the Facle Synthess of UO-66-Type MOFs Zhgang Hu, Yongwu Peng, Zx Kang, Yuhong Qan, and Dan Zhao * Department of Chemcal and Bomolecular

More information

Ph.D. Qualifying Examination in Kinetics and Reactor Design

Ph.D. Qualifying Examination in Kinetics and Reactor Design Knetcs and Reactor Desgn Ph.D.Qualfyng Examnaton January 2006 Instructons Ph.D. Qualfyng Examnaton n Knetcs and Reactor Desgn January 2006 Unversty of Texas at Austn Department of Chemcal Engneerng 1.

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers 9. Comple Numbers. Numbers revsted. Imagnar number : General form of comple numbers 3. Manpulaton of comple numbers 4. The Argand dagram 5. The polar form for comple numbers 9.. Numbers revsted We saw

More information

A Self-Consistent Gibbs Excess Mixing Rule for Cubic Equations of State: derivation and fugacity coefficients

A Self-Consistent Gibbs Excess Mixing Rule for Cubic Equations of State: derivation and fugacity coefficients A Self-Consstent Gbbs Excess Mxng Rule for Cubc Equatons of State: dervaton and fugacty coeffcents Paula B. Staudt, Rafael de P. Soares Departamento de Engenhara Químca, Escola de Engenhara, Unversdade

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

CHEMICAL REACTIONS AND DIFFUSION

CHEMICAL REACTIONS AND DIFFUSION CHEMICAL REACTIONS AND DIFFUSION A.K.A. NETWORK THERMODYNAMICS BACKGROUND Classcal thermodynamcs descrbes equlbrum states. Non-equlbrum thermodynamcs descrbes steady states. Network thermodynamcs descrbes

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

= r. / cisely It was not isothermal, nor exactly adia- ! If / l/l /! i i \ i LjSj?

= r. / cisely It was not isothermal, nor exactly adia- ! If / l/l /! i i \ i LjSj? 376 Lea & Burke Physcs; The Nature of Thngs 19.44 J»(Pa) At constant V A \ LjSj?! '/! If / l/l /!! j j J [ ^ 1 I X j j> 1 ' : / J! 60 100 T('K) 200 Constant V lnes are mapped onto straght lnes on the P-T

More information

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY. Proceedngs of the th Brazlan Congress of Thermal Scences and Engneerng -- ENCIT 006 Braz. Soc. of Mechancal Scences and Engneerng -- ABCM, Curtba, Brazl,- Dec. 5-8, 006 A PROCEDURE FOR SIMULATING THE NONLINEAR

More information

Process Modeling. Improving or understanding chemical process operation is a major objective for developing a dynamic process model

Process Modeling. Improving or understanding chemical process operation is a major objective for developing a dynamic process model Process Modelng Improvng or understandng chemcal process operaton s a major objectve for developng a dynamc process model Balance equatons Steady-state balance equatons mass or energy mass or energy enterng

More information

A NOTE ON CES FUNCTIONS Drago Bergholt, BI Norwegian Business School 2011

A NOTE ON CES FUNCTIONS Drago Bergholt, BI Norwegian Business School 2011 A NOTE ON CES FUNCTIONS Drago Bergholt, BI Norwegan Busness School 2011 Functons featurng constant elastcty of substtuton CES are wdely used n appled economcs and fnance. In ths note, I do two thngs. Frst,

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

Chapter 3 Thermochemistry of Fuel Air Mixtures

Chapter 3 Thermochemistry of Fuel Air Mixtures Chapter 3 Thermochemstry of Fuel Ar Mxtures 3-1 Thermochemstry 3- Ideal Gas Model 3-3 Composton of Ar and Fuels 3-4 Combuston Stochometry t 3-5 The1 st Law of Thermodynamcs and Combuston 3-6 Thermal converson

More information

Homework Chapter 21 Solutions!!

Homework Chapter 21 Solutions!! Homework Chapter 1 Solutons 1.7 1.13 1.17 1.19 1.6 1.33 1.45 1.51 1.71 page 1 Problem 1.7 A mole sample of oxygen gas s confned to a 5 lter vessel at a pressure of 8 atm. Fnd the average translatonal knetc

More information

Lecture 12. Transport in Membranes (2)

Lecture 12. Transport in Membranes (2) Lecture 12. Transport n embranes (2) odule Flow Patterns - Perfect mxng - Countercurrent flow - Cocurrent flow - Crossflow embrane Cascades External ass-transfer Resstances Concentraton Polarzaton and

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak Thermodynamcs II Department of Chemcal Engneerng Prof. Km, Jong Hak Soluton Thermodynamcs : theory Obectve : lay the theoretcal foundaton for applcatons of thermodynamcs to gas mxture and lqud soluton

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9 Chapter 9 Correlaton and Regresson 9. Correlaton Correlaton A correlaton s a relatonshp between two varables. The data can be represented b the ordered pars (, ) where s the ndependent (or eplanator) varable,

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1) Complex Numbers If you have not yet encountered complex numbers, you wll soon do so n the process of solvng quadratc equatons. The general quadratc equaton Ax + Bx + C 0 has solutons x B + B 4AC A For

More information

Computation of Phase Equilibrium and Phase Envelopes

Computation of Phase Equilibrium and Phase Envelopes Downloaded from orbt.dtu.dk on: Sep 24, 2018 Computaton of Phase Equlbrum and Phase Envelopes Rtschel, Tobas Kasper Skovborg; Jørgensen, John Bagterp Publcaton date: 2017 Document Verson Publsher's PDF,

More information

NAME and Section No. it is found that 0.6 mol of O

NAME and Section No. it is found that 0.6 mol of O NAME and Secton No. Chemstry 391 Fall 7 Exam III KEY 1. (3 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). In the reacton 3O O3 t s found that.6 mol of O are consumed. Fnd

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

8.592J: Solutions for Assignment 7 Spring 2005

8.592J: Solutions for Assignment 7 Spring 2005 8.59J: Solutons for Assgnment 7 Sprng 5 Problem 1 (a) A flament of length l can be created by addton of a monomer to one of length l 1 (at rate a) or removal of a monomer from a flament of length l + 1

More information

CHARACTERISTICS OF COMPLEX SEPARATION SCHEMES AND AN ERROR OF SEPARATION PRODUCTS OUTPUT DETERMINATION

CHARACTERISTICS OF COMPLEX SEPARATION SCHEMES AND AN ERROR OF SEPARATION PRODUCTS OUTPUT DETERMINATION Górnctwo Geonżynera Rok 0 Zeszyt / 006 Igor Konstantnovch Mladetskj * Petr Ivanovch Plov * Ekaterna Nkolaevna Kobets * Tasya Igorevna Markova * CHARACTERISTICS OF COMPLEX SEPARATION SCHEMES AND AN ERROR

More information

Note 10. Modeling and Simulation of Dynamic Systems

Note 10. Modeling and Simulation of Dynamic Systems Lecture Notes of ME 475: Introducton to Mechatroncs Note 0 Modelng and Smulaton of Dynamc Systems Department of Mechancal Engneerng, Unversty Of Saskatchewan, 57 Campus Drve, Saskatoon, SK S7N 5A9, Canada

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

General Formulas applicable to ALL processes in an Ideal Gas:

General Formulas applicable to ALL processes in an Ideal Gas: Calormetrc calculatons: dq mcd or dq ncd ( specc heat) Q ml ( latent heat) General Formulas applcable to ALL processes n an Ideal Gas: P nr du dq dw dw Pd du nc d C R ( monoatomc) C C R P Specc Processes:

More information

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communcaton Scences Handout 0 Prncples of Dgtal Communcatons Solutons to Problem Set 4 Mar. 6, 08 Soluton. If H = 0, we have Y = Z Z = Y

More information

THE IGNITION PARAMETER - A quantification of the probability of ignition

THE IGNITION PARAMETER - A quantification of the probability of ignition THE IGNITION PARAMETER - A quantfcaton of the probablty of ton INFUB9-2011 Topc: Modellng of fundamental processes Man author Nels Bjarne K. Rasmussen Dansh Gas Technology Centre (DGC) NBR@dgc.dk Co-author

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Chemistry 163B Free Energy and Equilibrium E&R ( ch 6)

Chemistry 163B Free Energy and Equilibrium E&R ( ch 6) Chemstry 163B Free Energy and Equlbrum E&R ( ch 6) 1 ΔG reacton and equlbrum (frst pass) 1. ΔG < spontaneous ( natural, rreversble) ΔG = equlbrum (reversble) ΔG > spontaneous n reverse drecton. ΔG = ΔHΔS

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information