ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Size: px
Start display at page:

Download "ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE"

Transcription

1 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communcaton Scences Handout 0 Prncples of Dgtal Communcatons Solutons to Problem Set 4 Mar. 6, 08 Soluton. If H = 0, we have Y = Z Z = Y Z, and f H =, we have Y = Z Z = Y Z. Therefore, Y = Y Z n all cases. Now snce Z s ndependent of H, we clearl have H Y (Y, Y Z ). Hence, Y s a suffcent statstc. Soluton. (a) The MAP decoder Ĥ() s gven b Ĥ() = arg max P Y H ( ) = T (Y ) takes two values wth the condtonal probabltes { 0 f = 0 or = f = or = 3. P T H (t 0) = { 0.7 f t = f t = P T H (t ) = { 0.3 f t = f t =. Therefore, the MAP decoder Ĥ(T ()) s Ĥ(T ()) = arg max P T (Y ) H (t ) = Hence, the two decoders are equvalent. (b) We have { 0 f t = 0 ( = 0 or = ) f t = ( = or = 3). and Pr{Y = 0 T (Y ) = 0, H = 0} = Pr{Y = 0 T (Y ) = 0, H = } = Pr{Y = 0, T (Y ) = 0 H = 0} Pr{T (Y ) = 0 H = 0} Pr{Y = 0, T (Y ) = 0 H = } Pr{T (Y ) = 0 H = } = = 4 7 = = 3. Thus Pr{Y = 0 T (Y ) = 0, H = 0} = Pr{Y = 0 T (Y ) = 0, H = }, hence H T (Y ) Y s not true, although the MAP decoders are equvalent. Soluton 3. (a) The MAP decson rule can alwas be wrtten as Ĥ() = arg max f Y H ( )P H () = arg max g (T ())h()p H () = arg max g (T ())P H (). The last step s vald because h() s a non-negatve constant whch s ndependent of and thus does not gve an further nformaton for our decson.

2 (b) Let us defne the event B = { : T () = t}. Then, f Y H,T (Y ) (, t) = f Y,T (Y ) H(, t )P H () f T (Y ) H (t )P H () Pr{Y =, T (Y ) = t H = } = Pr{T (Y ) = t H = } = f Y H( ) B () B f Y H( )d. = Pr{Y =, Y B H = } Pr{Y B H = } If f Y H ( ) = g (T ())h(), then f Y H,T (Y ) (, t) = g (T ())h() B () g B (T ())h()d = g (t)h() B () g (t) h()d B = h() B() B h()d. Hence, we see that f Y H,T (Y ) (, t) does not depend on, so H T (Y ) Y. (c) Note that P Yk H( ) = p, P Yk H(0 ) = p and Thus, we have where t = k k. P Y,...,Y n H(,..., n ) = P Y H( ) P Yn H( n ). P Y,...,Y n H(,..., n ) = p t ( p ) (n t), Choosng g (t) = p t ( p ) (n t) and h() =, we see that P Y,...,Y n H(,..., n ) fulflls the condton n the queston. (d) Because Y,..., Y n are ndependent, f Y,...,Y n H(,..., n ) = n k= e ( k m ) π = e n ( k m ) (π) n k= = (π) n n e k= k e nm ( n n k= k m ). Choosng g (t) = e nm (t m nk= ) and h(,..., n ) = (π) n e k, we see that f Y,...,Y n H(,..., n ) = g (T (,..., n ))h(,..., n ). Hence the condton n the queston s fulflled. Soluton 4.

3 (a) Wth the observaton Y beng Y, Thus the MAP rule s f Y X ( +) = π e ( ) and f Y X ( ) = π e (+) π e ( ) p whch can be further smplfed to obtan (b) Observe that π e (+) ( p), ln p p f Y Y X(, +) = { [0, ]} π e ( ) f Y Y X(, ) = 4 { [ 3, ]} π e ( +) Wth g + (u, ) = {u 0} e ( ) π g (u, ) = {u 0} e ( +) 4 π h(, ) = { 3 }, we fnd f Y Y X(, x) = g x (u, )h(, ) and the Fsher Neman theorem lets us conclude that t = (u, ) s a suffcent statstc. (c) The MAP rule mnmzes the error probablt and s gven b the lkelhood rato test Note that Λ(, ) = log f Y Y X(, +) f Y Y X(, ) log p p + < Λ(, ) = + log 0 3 < 0 So the decson regon looks as follows (wth θ = log p p ): 3

4 Decde + θ Decde (d) When s sent an error wll happen ether when > or when 0 and θ. The frst of these cannot happen, and the second happens wth probablt Q( + θ). 4 When + s sent an error wll happen ether when < 0 or when 0 and θ. The frst of these cannot happen, and the second happens wth probablt Q( θ). So the error probablt s gven b wth θ = Soluton 5. log p p. p 4 Q( + θ) + p Q( θ) (a) Inequalt (a) follows from the Bhattachara Bound. Usng the defnton of DMC, t s straghtforward to see that P Y X ( c 0 ) = P Y X ( c ) = n P Y X ( c 0, ) = n P Y X ( c, ). = and (b) follows b substtutng the above values n (a). Equalt (c) s obtaned b observng that s the same as,..., n (the frst one beng a vector notaton for the sum over all possble,..., n ). In (c), we see that we want the sum of all possble products. Ths s the same as summng over each and takng the product of the resultng sum for all. Ths results n equalt (d). We obtan (e) b wrtng (d) n a more concse form. When c 0, = c,, P Y X ( c 0, )P Y X ( c, ) = P Y X ( c 0, ). Therefore, P Y X ( c 0, )P Y X ( c, ) = P Y X ( c 0, ) =. 4

5 Ths does not affect the product, so we are onl nterested n the terms where c 0, c,. We form the product of all such sums where c 0, c,. We then look out for terms where c 0, = a and c, = b, a b, and rase the sum to the approprate power. (Eg. If we have the product prpqrpqrr, we would wrte t as p 3 q r 4 ). Hence equalt (f). (b) For a bnar nput channel, we have onl two source smbols X = {a, b}. Thus, (c) The value of z s: P e z n(a,b) z n(b,a) = z n(a,b)+n(b,a) = z d H(c 0,c ). () For a bnar nput Gaussan channel, z = f Y X ( 0)f Y X ( ) d = ( exp E ). () For the Bnar Smmetrc Channel (BSC), z = Pr{ = 0 x = 0} Pr{ = 0 x = } + Pr{ = x = 0} Pr{ = x = } = δ( δ). () For the Bnar Erasure Channel (BEC), Soluton 6. z = Pr{ = 0 x = 0} Pr{ = 0 x = } + Pr{ = E x = 0} Pr{ = E x = } + Pr{ = x = 0} Pr{ = x = } = 0 + δ + 0 = δ. B smmetr: P 00 = Pr{(N a) (N a)} = Pr{(N a)} Pr{(N a)} )] = Q. P 0 = P 03 = Pr{(N (b a)) (N a)} = Pr{N b a} Pr{N a} ( ) b a )] = Q Q. P 0 = Pr{(N (b a)) (N (b a))} = Pr{N b a} Pr{N b a} [ ( )] b a = Q. 5

6 Equvalentl, P 0δ = Pr{(Y R 0 ) (Y R ) (Y R ) (Y R 3 ) c 0 was sent} = P 00 P 0 P 0 P 03 )] ( ) b a )] [ ( )] b a = Q Q Q Q ) ( )] b a = Q + Q. P 0δ = Pr{(N [a, b a]) (N [a, b a])} = Pr{N [a, b a]} + Pr{N [a, b a]} Pr{(N [a, b a]) (N [a, b a])} ) ( )] [ b a ( a ) ( )] b a = Q Q Q Q, whch gves the same result as before. 6

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem.

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem. Lecture 14 (03/27/18). Channels. Decodng. Prevew of the Capacty Theorem. A. Barg The concept of a communcaton channel n nformaton theory s an abstracton for transmttng dgtal (and analog) nformaton from

More information

Error Probability for M Signals

Error Probability for M Signals Chapter 3 rror Probablty for M Sgnals In ths chapter we dscuss the error probablty n decdng whch of M sgnals was transmtted over an arbtrary channel. We assume the sgnals are represented by a set of orthonormal

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan.

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan. THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY Wllam A. Pearlman 2002 References: S. Armoto - IEEE Trans. Inform. Thy., Jan. 1972 R. Blahut - IEEE Trans. Inform. Thy., July 1972 Recall

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Bernoulli Numbers and Polynomials

Bernoulli Numbers and Polynomials Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

More information

Lecture 20: Hypothesis testing

Lecture 20: Hypothesis testing Lecture : Hpothess testng Much of statstcs nvolves hpothess testng compare a new nterestng hpothess, H (the Alternatve hpothess to the borng, old, well-known case, H (the Null Hpothess or, decde whether

More information

} Often, when learning, we deal with uncertainty:

} Often, when learning, we deal with uncertainty: Uncertanty and Learnng } Often, when learnng, we deal wth uncertanty: } Incomplete data sets, wth mssng nformaton } Nosy data sets, wth unrelable nformaton } Stochastcty: causes and effects related non-determnstcally

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

EGR 544 Communication Theory

EGR 544 Communication Theory EGR 544 Communcaton Theory. Informaton Sources Z. Alyazcoglu Electrcal and Computer Engneerng Department Cal Poly Pomona Introducton Informaton Source x n Informaton sources Analog sources Dscrete sources

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Communication with AWGN Interference

Communication with AWGN Interference Communcaton wth AWG Interference m {m } {p(m } Modulator s {s } r=s+n Recever ˆm AWG n m s a dscrete random varable(rv whch takes m wth probablty p(m. Modulator maps each m nto a waveform sgnal s m=m

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Wreless Informaton Transmsson System Lab. Chapter 7 Channel Capacty and Codng Insttute of Communcatons Engneerng atonal Sun Yat-sen Unversty Contents 7. Channel models and channel capacty 7.. Channel models

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Special Relativity and Riemannian Geometry. Department of Mathematical Sciences

Special Relativity and Riemannian Geometry. Department of Mathematical Sciences Tutoral Letter 06//018 Specal Relatvty and Reannan Geoetry APM3713 Seester Departent of Matheatcal Scences IMPORTANT INFORMATION: Ths tutoral letter contans the solutons to Assgnent 06. BAR CODE Learn

More information

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

MAE140 - Linear Circuits - Winter 16 Midterm, February 5 Instructons ME140 - Lnear Crcuts - Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Limited Dependent Variables and Panel Data. Tibor Hanappi

Limited Dependent Variables and Panel Data. Tibor Hanappi Lmted Dependent Varables and Panel Data Tbor Hanapp 30.06.2010 Lmted Dependent Varables Dscrete: Varables that can take onl a countable number of values Censored/Truncated: Data ponts n some specfc range

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z )

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z ) C4B Machne Learnng Answers II.(a) Show that for the logstc sgmod functon dσ(z) dz = σ(z) ( σ(z)) A. Zsserman, Hlary Term 20 Start from the defnton of σ(z) Note that Then σ(z) = σ = dσ(z) dz = + e z e z

More information

Modelli Clamfim Equazioni differenziali 7 ottobre 2013

Modelli Clamfim Equazioni differenziali 7 ottobre 2013 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal 7 ottobre 2013 professor Danele Rtell danele.rtell@unbo.t 1/18? Ordnary Dfferental Equatons A dfferental equaton s an equaton that defnes a relatonshp

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

Rockefeller College University at Albany

Rockefeller College University at Albany Rockefeller College Unverst at Alban PAD 705 Handout: Maxmum Lkelhood Estmaton Orgnal b Davd A. Wse John F. Kenned School of Government, Harvard Unverst Modfcatons b R. Karl Rethemeer Up to ths pont n

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhscsAndMathsTutor.com phscsandmathstutor.com June 005 5. The random varable X has probablt functon k, = 1,, 3, P( X = ) = k ( + 1), = 4, 5, where k s a constant. (a) Fnd the value of k. (b) Fnd the eact

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) Maxmum Lkelhood Estmaton (MLE) Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Wnter 01 UCSD Statstcal Learnng Goal: Gven a relatonshp between a feature vector x and a vector y, and d data samples (x,y

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Maximal Margin Classifier

Maximal Margin Classifier CS81B/Stat41B: Advanced Topcs n Learnng & Decson Makng Mamal Margn Classfer Lecturer: Mchael Jordan Scrbes: Jana van Greunen Corrected verson - /1/004 1 References/Recommended Readng 1.1 Webstes www.kernel-machnes.org

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

Consider the following passband digital communication system model. c t. modulator. t r a n s m i t t e r. signal decoder.

Consider the following passband digital communication system model. c t. modulator. t r a n s m i t t e r. signal decoder. PASSBAND DIGITAL MODULATION TECHNIQUES Consder the followng passband dgtal communcaton system model. cos( ω + φ ) c t message source m sgnal encoder s modulator s () t communcaton xt () channel t r a n

More information

Exercises of Chapter 2

Exercises of Chapter 2 Exercses of Chapter Chuang-Cheh Ln Department of Computer Scence and Informaton Engneerng, Natonal Chung Cheng Unversty, Mng-Hsung, Chay 61, Tawan. Exercse.6. Suppose that we ndependently roll two standard

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Regression Analysis Resource Allocaton and Decson Analss (ECON 800) Sprng 04 Foundatons of Regresson Analss Readng: Regresson Analss (ECON 800 Coursepak, Page 3) Defntons and Concepts: Regresson Analss statstcal technques

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

E Tail Inequalities. E.1 Markov s Inequality. Non-Lecture E: Tail Inequalities

E Tail Inequalities. E.1 Markov s Inequality. Non-Lecture E: Tail Inequalities Algorthms Non-Lecture E: Tal Inequaltes If you hold a cat by the tal you learn thngs you cannot learn any other way. Mar Twan E Tal Inequaltes The smple recursve structure of sp lsts made t relatvely easy

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006)

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006) ECE 534: Elements of Informaton Theory Solutons to Mdterm Eam (Sprng 6) Problem [ pts.] A dscrete memoryless source has an alphabet of three letters,, =,, 3, wth probabltes.4,.4, and., respectvely. (a)

More information

Systems of Equations (SUR, GMM, and 3SLS)

Systems of Equations (SUR, GMM, and 3SLS) Lecture otes on Advanced Econometrcs Takash Yamano Fall Semester 4 Lecture 4: Sstems of Equatons (SUR, MM, and 3SLS) Seemngl Unrelated Regresson (SUR) Model Consder a set of lnear equatons: $ + ɛ $ + ɛ

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Online Appendix to The Allocation of Talent and U.S. Economic Growth

Online Appendix to The Allocation of Talent and U.S. Economic Growth Onlne Appendx to The Allocaton of Talent and U.S. Economc Growth Not for publcaton) Chang-Ta Hseh, Erk Hurst, Charles I. Jones, Peter J. Klenow February 22, 23 A Dervatons and Proofs The propostons n the

More information

The written Master s Examination

The written Master s Examination he wrtten Master s Eamnaton Opton Statstcs and Probablty SPRING 9 Full ponts may be obtaned for correct answers to 8 questons. Each numbered queston (whch may have several parts) s worth the same number

More information

Supplement to Clustering with Statistical Error Control

Supplement to Clustering with Statistical Error Control Supplement to Clusterng wth Statstcal Error Control Mchael Vogt Unversty of Bonn Matthas Schmd Unversty of Bonn In ths supplement, we provde the proofs that are omtted n the paper. In partcular, we derve

More information

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers 9. Comple Numbers. Numbers revsted. Imagnar number : General form of comple numbers 3. Manpulaton of comple numbers 4. The Argand dagram 5. The polar form for comple numbers 9.. Numbers revsted We saw

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13]

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13] Algorthms Lecture 11: Tal Inequaltes [Fa 13] If you hold a cat by the tal you learn thngs you cannot learn any other way. Mark Twan 11 Tal Inequaltes The smple recursve structure of skp lsts made t relatvely

More information

Complete subgraphs in multipartite graphs

Complete subgraphs in multipartite graphs Complete subgraphs n multpartte graphs FLORIAN PFENDER Unverstät Rostock, Insttut für Mathematk D-18057 Rostock, Germany Floran.Pfender@un-rostock.de Abstract Turán s Theorem states that every graph G

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Laboratory 1c: Method of Least Squares

Laboratory 1c: Method of Least Squares Lab 1c, Least Squares Laboratory 1c: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly

More information

Goodness of fit and Wilks theorem

Goodness of fit and Wilks theorem DRAFT 0.0 Glen Cowan 3 June, 2013 Goodness of ft and Wlks theorem Suppose we model data y wth a lkelhood L(µ) that depends on a set of N parameters µ = (µ 1,...,µ N ). Defne the statstc t µ ln L(µ) L(ˆµ),

More information

Important Instructions to the Examiners:

Important Instructions to the Examiners: Summer 0 Examnaton Subject & Code: asc Maths (70) Model Answer Page No: / Important Instructons to the Examners: ) The Answers should be examned by key words and not as word-to-word as gven n the model

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1)

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1) . (a) (cos θ + sn θ) = cos θ + cos θ( sn θ) + cos θ(sn θ) + (sn θ) = cos θ cos θ sn θ + ( cos θ sn θ sn θ) (b) from De Movre s theorem (cos θ + sn θ) = cos θ + sn θ cos θ + sn θ = (cos θ cos θ sn θ) +

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors

Stat260: Bayesian Modeling and Inference Lecture Date: February 22, Reference Priors Stat60: Bayesan Modelng and Inference Lecture Date: February, 00 Reference Prors Lecturer: Mchael I. Jordan Scrbe: Steven Troxler and Wayne Lee In ths lecture, we assume that θ R; n hgher-dmensons, reference

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Solutions to Homework 7, Mathematics 1. 1 x. (arccos x) (arccos x) 1

Solutions to Homework 7, Mathematics 1. 1 x. (arccos x) (arccos x) 1 Solutons to Homework 7, Mathematcs 1 Problem 1: a Prove that arccos 1 1 for 1, 1. b* Startng from the defnton of the dervatve, prove that arccos + 1, arccos 1. Hnt: For arccos arccos π + 1, the defnton

More information

Generative classification models

Generative classification models CS 675 Intro to Machne Learnng Lecture Generatve classfcaton models Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Data: D { d, d,.., dn} d, Classfcaton represents a dscrete class value Goal: learn

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem SOLUTION TO HOMEWORK #7 #roblem 1 10.1-1 a. In order to solve ths problem, we need to know what happens at the bubble pont; at ths pont, the frst bubble s formed, so we can assume that all of the number

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 89 Fall 206 Introducton to Machne Learnng Fnal Do not open the exam before you are nstructed to do so The exam s closed book, closed notes except your one-page cheat sheet Usage of electronc devces

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium?

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium? APPLIED WELFARE ECONOMICS AND POLICY ANALYSIS Welfare Propertes of General Equlbrum What can be sad about optmalty propertes of resource allocaton mpled by general equlbrum? Any crteron used to compare

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maxmum Lkelhood Estmaton INFO-2301: Quanttatve Reasonng 2 Mchael Paul and Jordan Boyd-Graber MARCH 7, 2017 INFO-2301: Quanttatve Reasonng 2 Paul and Boyd-Graber Maxmum Lkelhood Estmaton 1 of 9 Why MLE?

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Société de Calcul Mathématique SA

Société de Calcul Mathématique SA Socété de Calcul Mathématque SA Outls d'ade à la décson Tools for decson help Probablstc Studes: Normalzng the Hstograms Bernard Beauzamy December, 202 I. General constructon of the hstogram Any probablstc

More information

Laboratory 3: Method of Least Squares

Laboratory 3: Method of Least Squares Laboratory 3: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly they are correlated wth

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

9.913 Pattern Recognition for Vision. Class IV Part I Bayesian Decision Theory Yuri Ivanov

9.913 Pattern Recognition for Vision. Class IV Part I Bayesian Decision Theory Yuri Ivanov 9.93 Class IV Part I Bayesan Decson Theory Yur Ivanov TOC Roadmap to Machne Learnng Bayesan Decson Makng Mnmum Error Rate Decsons Mnmum Rsk Decsons Mnmax Crteron Operatng Characterstcs Notaton x - scalar

More information

e - c o m p a n i o n

e - c o m p a n i o n OPERATIONS RESEARCH http://dxdoorg/0287/opre007ec e - c o m p a n o n ONLY AVAILABLE IN ELECTRONIC FORM 202 INFORMS Electronc Companon Generalzed Quantty Competton for Multple Products and Loss of Effcency

More information

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation Econ 388 R. Butler 204 revsons Lecture 4 Dummy Dependent Varables I. Lnear Probablty Model: the Regresson model wth a dummy varables as the dependent varable assumpton, mplcaton regular multple regresson

More information

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013 Lagrange Multplers Monday, 5 September 013 Sometmes t s convenent to use redundant coordnates, and to effect the varaton of the acton consstent wth the constrants va the method of Lagrange undetermned

More information