Quantum Mechanics I - Session 4

Size: px
Start display at page:

Download "Quantum Mechanics I - Session 4"

Transcription

1 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton Rotaton n D Dagonalzng a matrx 6

2 Operators In order to dene a lnear operator we need to dene how the operator operates on each vector n the space..e for each ket ψ we need to dene A ψ = φ For example the dentty operator s dened by ψ = ψ. If a bass s orthonormal then t has the very useful property that = n n n. () proof: ψ = ( n n n ) ψ = n n n m c m m = n,m n n m c m = n,m c mδ nm n = n c n n = ψ However, t s sucent to dene how a lnear operator acts on all the members of a certan bass nstead of on all the members of the space. That s, f A n = m a m,n m () then we know that A ψ = A n c n n = n,m a m,n c n m. (3) The numbers a m,n are the matrx representaton of the operator A n the bass { n }. Once agan, they are to be found usng the nner-product m A n = l a l,n m l = a m,n, (4) these are called the matrx elements of A. We can use these numbers n order to wrte the operator n a derent way A = a n,m n m (5) n,m Wth ths denton t s easy to see that ψ A φ = ( ψ A) φ = ψ (A ψ ) How does the hermtan conjugate of that operator looks lke? By denton we have m A n == n A m = a n,m. (6) Thnkng of t as a matrx, we have changed the rows and the columns and taken the complexconjugate of each entry.

3 Lnear operators can be multpled, the result beng a lnear operator by tself. B ψ = ϕ and A ϕ = ξ then Suppose AB ψ = A(B ψ ) = A ϕ = ξ. (7) In general of course the operator AB s not equal to the operator BA snce the order of In the matrx representaton of operators ths s convenently done by multplyng the matrces. We'll denote the matrx representaton of the operator AB by the coecents (AB) n,m, so (AB) n,m = n AB m (8) ( ) = n A l l B m = l l n A l l B m = l a n,l b l,m. Queston: Let K be the operator dened by K = φ ψ where φ and ψ are two vectors of the space state.. Under what condton s K Hermtan?. Calculate K. Under what condton s K a projector? 3. Show that K can always be wrtten n the form K = λp P where λ s a constant to be calculated and P and P are projectors. Answer:. The denton of Hermtan s K j = ( j K ) On the one hand, pluggng n K ( j K ) = ( j φ ψ ) = ψ φ j so we see that the requrement s. The denton of a projector s φ ψ = ψ φ K = K K = φ ψ φ ψ so the requrement s ψ φ = 3

4 3. We can always wrte K as K = φ φ ψ ψ / φ ψ Change of Bass Generally there are many derent orthonormal bass we can choose for a gven vector space. Let us revew how we go from one representaton { n } to another { ξ }. We saw that ψ = n c n n, (9) wth c n = n ψ. We can also wrte ψ = ξ e ξ ξ, (0) wth e ξ = ξ ψ. The transformaton s done by usng the dentty operator ψ = c n n = c n ξ ξ n = ( ) c n ξ n ξ () n n ξ n so we conclude that e ξ = n ξ n c n. wth s ξ,n = ξ n we get that ξ e ξ = n s ξ,n c n. () We can thnk of t as a matrx multplyng a vector. A change of bass s lke a rotaton. Denng the operator S = ξ,n s ξ,n ξ n (3) we have that S ψ s the rotated vector. How does the representaton of operators transform from one bass to another? We'll use agan the dentty operator A = a n,m n m = a n,m ξ ξ n m η η = n,m n ξ η = ( ) a n,m ξ n m η ξ η. (4) ξ,η n,m So the new coecents of the matrx representaton α ξ,η are gven by α ξ,η = a n,m ξ n m η. (5) n,m 4

5 Ths can be wrtten agan usng a matrx multplcaton formalsm. Usng the same operator S we get that α ξ,η = n,m s ξ,n a n,m s η,m (6) = n,m s ξ,n a n,m ( s ) m,η or, n matrx form (usng the notaton à to wrte the operator A n the new bass) à = SAS. (7) The operator S s a untary operator, whch means t has an mportant property S S = SS =. (8) 3 Egenvectors and Egenvalues 3. Denton An Egenvector, v, of a matrx, M s dened as M v = λ v (9) where the scalar λ s the Egenvalue of the matrx. The nterpretaton of the egenvector s that of a vector that when s multpled by the matrx remans n the same drecton but only changes ts magntude. The way to nd the egenvalues of a matrx s the followng. Frst you calculate the characterstc polynomal of the matrx dened as M λi = 0 (0) where I s the unt matrx. Solvng for λ gves us the egenvalues of a matrx and then solvng 9 gves us the egenvectors (up to a multplcaton by a scalar). 3. Rotaton n D The rotaton of a coordnate system n D s done by the matrx ( ) cos θ sn θ sn θ cos θ Lets nd the egenvalues and egenvectors of ths matrx. The characterstc polynomal s λ cos θλ + = 0 or n other words λ λ(e θ + e θ ) + = 0 5

6 whose soluton s λ = e θ λ = e θ The egenvectors are gven by ( e θ + e θ e θ e θ ) eθ +e (x ) ( ) θ x = e θ e θ + e θ y y ( + e θ + e θ e θ + e θ whose soluton s ( ) The other egenvector s gven by ) ( ) ( ) x x = y y ( e θ + e θ e θ e θ ) eθ +e (x ) ( ) θ x = e θ e θ + e θ y y and ts soluton s ( ) We see that the egenvalues have a mgantude of whch s expected snce the matrx s untary (preserves the lengthes of vectors). 4 Dagonalzng a matrx Assume that A has n dstnct egenvalues. Then A s dagonalzable. Moreover, f P s the matrx wth the columns C, C,..., and Cn the n egenvectors of A, then the matrx P AP s a dagonal matrx (just lke equaton 7). As an example let us dagonalze the matrx 0 The polynomal s who has the trval soluton λ 3 + 4λ + 4λ = 0 λ = 0 The other two are gven by 6

7 λ = λ 3 = + and the egenvectors are 0 λ 3 λ So we have 0 λ 3 λ P = The nverse of P s gven by 0 P = λ 3 λ λ λ 3 (λ λ λ 3 λ λ λ 3 ) 3 So the dagonal matrx s gven by P P = 0 λ λ The dagonal matrx always has the egenvalues on the dagonal correspondng to the egenvectors column n P. 7

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

(A and B must have the same dmensons to be able to add them together.) Addton s commutatve and assocatve, just lke regular addton. A matrx A multpled

(A and B must have the same dmensons to be able to add them together.) Addton s commutatve and assocatve, just lke regular addton. A matrx A multpled CNS 185: A Bref Revew of Lnear Algebra An understandng of lnear algebra s crtcal as a steppng-o pont for understandng neural networks. Ths handout ncludes basc dentons, then quckly progresses to elementary

More information

1 Vectors over the complex numbers

1 Vectors over the complex numbers Vectors for quantum mechancs 1 D. E. Soper 2 Unversty of Oregon 5 October 2011 I offer here some background for Chapter 1 of J. J. Sakura, Modern Quantum Mechancs. 1 Vectors over the complex numbers What

More information

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0 Quantum Mechancs, Advanced Course FMFN/FYSN7 Solutons Sheet Soluton. Lets denote the two operators by  and ˆB, the set of egenstates by { u }, and the egenvalues as  u = a u and ˆB u = b u. Snce the

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

332600_08_1.qxp 4/17/08 11:29 AM Page 481

332600_08_1.qxp 4/17/08 11:29 AM Page 481 336_8_.qxp 4/7/8 :9 AM Page 48 8 Complex Vector Spaces 8. Complex Numbers 8. Conjugates and Dvson of Complex Numbers 8.3 Polar Form and DeMovre s Theorem 8.4 Complex Vector Spaces and Inner Products 8.5

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

MATH Sensitivity of Eigenvalue Problems

MATH Sensitivity of Eigenvalue Problems MATH 537- Senstvty of Egenvalue Problems Prelmnares Let A be an n n matrx, and let λ be an egenvalue of A, correspondngly there are vectors x and y such that Ax = λx and y H A = λy H Then x s called A

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q For orthogonal curvlnear coordnates, eˆ grad a a= ( aˆ ˆ e). h q (98) Expandng the dervatve, we have, eˆ aˆ ˆ e a= ˆ ˆ a h e + q q 1 aˆ ˆ ˆ a e = ee ˆˆ ˆ + e. h q h q Now expandng eˆ / q (some of the detals

More information

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3 Lorentz Group Lng Fong L ontents Lorentz group. Generators............................................. Smple representatons..................................... 3 Lorentz group In the dervaton of Drac

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 018 019 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Solutions to Problem Set 6

Solutions to Problem Set 6 Solutons to Problem Set 6 Problem 6. (Resdue theory) a) Problem 4.7.7 Boas. n ths problem we wll solve ths ntegral: x sn x x + 4x + 5 dx: To solve ths usng the resdue theorem, we study ths complex ntegral:

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

Computing π with Bouncing Balls

Computing π with Bouncing Balls by Let the mass of two balls be M and m, where M = (6 n )m for n N. The larger ball s rolled towards the lghter ball, whch ear a wall and ntally at rest. Fnd the number of collsons between the two balls

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

More information

NOTES ON SIMPLIFICATION OF MATRICES

NOTES ON SIMPLIFICATION OF MATRICES NOTES ON SIMPLIFICATION OF MATRICES JONATHAN LUK These notes dscuss how to smplfy an (n n) matrx In partcular, we expand on some of the materal from the textbook (wth some repetton) Part of the exposton

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 017 018 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

MATH Homework #2

MATH Homework #2 MATH609-601 Homework #2 September 27, 2012 1. Problems Ths contans a set of possble solutons to all problems of HW-2. Be vglant snce typos are possble (and nevtable). (1) Problem 1 (20 pts) For a matrx

More information

CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE. Jovanka Nikić

CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE. Jovanka Nikić 147 Kragujevac J. Math. 25 (2003) 147 154. CONDITIONS FOR INVARIANT SUBMANIFOLD OF A MANIFOLD WITH THE (ϕ, ξ, η, G)-STRUCTURE Jovanka Nkć Faculty of Techncal Scences, Unversty of Nov Sad, Trg Dosteja Obradovća

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

The exponential map of GL(N)

The exponential map of GL(N) The exponental map of GLN arxv:hep-th/9604049v 9 Apr 996 Alexander Laufer Department of physcs Unversty of Konstanz P.O. 5560 M 678 78434 KONSTANZ Aprl 9, 996 Abstract A fnte expanson of the exponental

More information

Quantum Mechanics for Scientists and Engineers

Quantum Mechanics for Scientists and Engineers Quantu Mechancs or Scentsts and Engneers Sangn K Advanced Coputatonal Electroagnetcs Lab redkd@yonse.ac.kr Nov. 4 th, 26 Outlne Quantu Mechancs or Scentsts and Engneers Blnear expanson o lnear operators

More information

On Finite Rank Perturbation of Diagonalizable Operators

On Finite Rank Perturbation of Diagonalizable Operators Functonal Analyss, Approxmaton and Computaton 6 (1) (2014), 49 53 Publshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba Avalable at: http://wwwpmfnacrs/faac On Fnte Rank Perturbaton of Dagonalzable

More information

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization DISCRIMINANTS AND RAMIFIED PRIMES KEITH CONRAD 1. Introducton A prme number p s sad to be ramfed n a number feld K f the prme deal factorzaton (1.1) (p) = po K = p e 1 1 peg g has some e greater than 1.

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

Errata to Invariant Theory with Applications January 28, 2017

Errata to Invariant Theory with Applications January 28, 2017 Invarant Theory wth Applcatons Jan Drasma and Don Gjswjt http: //www.wn.tue.nl/~jdrasma/teachng/nvtheory0910/lecturenotes12.pdf verson of 7 December 2009 Errata and addenda by Darj Grnberg The followng

More information

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that Backward Error Analyss for House holder Reectors We want to show that multplcaton by householder reectors s backward stable. In partcular we wsh to show fl(p A) = P (A) = P (A + E where P = I 2vv T s the

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Homework Notes Week 7

Homework Notes Week 7 Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

More information

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom.

The Dirac Equation for a One-electron atom. In this section we will derive the Dirac equation for a one-electron atom. The Drac Equaton for a One-electron atom In ths secton we wll derve the Drac equaton for a one-electron atom. Accordng to Ensten the energy of a artcle wth rest mass m movng wth a velocty V s gven by E

More information

arxiv: v2 [quant-ph] 29 Jun 2018

arxiv: v2 [quant-ph] 29 Jun 2018 Herarchy of Spn Operators, Quantum Gates, Entanglement, Tensor Product and Egenvalues Wll-Hans Steeb and Yorck Hardy arxv:59.7955v [quant-ph] 9 Jun 8 Internatonal School for Scentfc Computng, Unversty

More information

MEM633 Lectures 7&8. Chapter 4. Descriptions of MIMO Systems 4-1 Direct Realizations. (i) x u. y x

MEM633 Lectures 7&8. Chapter 4. Descriptions of MIMO Systems 4-1 Direct Realizations. (i) x u. y x MEM633 Lectures 7&8 Chapter 4 Descrptons of MIMO Systems 4- Drect ealzatons y() s s su() s y () s u () s ( s)( s) s y() s u (), s y() s u() s s s y() s u(), s y() s u() s ( s)( s) s () ( s ) y ( s) u (

More information

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to THE INVERSE POWER METHOD (or INVERSE ITERATION) -- applcaton of the Power method to A some fxed constant ρ (whch s called a shft), x λ ρ If the egenpars of A are { ( λ, x ) } ( ), or (more usually) to,

More information

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors:

Phys304 Quantum Physics II (2005) Quantum Mechanics Summary. 2. This kind of behaviour can be described in the mathematical language of vectors: MACQUARIE UNIVERSITY Department of Physcs Dvson of ICS Phys304 Quantum Physcs II (2005) Quantum Mechancs Summary The followng defntons and concepts set up the basc mathematcal language used n quantum mechancs,

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Digital Signal Processing

Digital Signal Processing Dgtal Sgnal Processng Dscrete-tme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

3 d Rotations Rotating dumbbells in lab frame Moment of Inertial Tensor

3 d Rotations Rotating dumbbells in lab frame Moment of Inertial Tensor d Rotatons Rotatng dumells n la frame Moment of Inertal Tensor Revew of BCS and FCS sstems Component notaton for I β Moments and Products of Inerta I x, I, I z P x, P xz, P z Moment of Inerta for a cue

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

7. Products and matrix elements

7. Products and matrix elements 7. Products and matrx elements 1 7. Products and matrx elements Based on the propertes of group representatons, a number of useful results can be derved. Consder a vector space V wth an nner product ψ

More information

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors Pont cloud to pont cloud rgd transformatons Russell Taylor 600.445 1 600.445 Fall 000-015 Mnmzng Rgd Regstraton Errors Typcally, gven a set of ponts {a } n one coordnate system and another set of ponts

More information

Inexact Newton Methods for Inverse Eigenvalue Problems

Inexact Newton Methods for Inverse Eigenvalue Problems Inexact Newton Methods for Inverse Egenvalue Problems Zheng-jan Ba Abstract In ths paper, we survey some of the latest development n usng nexact Newton-lke methods for solvng nverse egenvalue problems.

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 35, FIM 72 GU, PhD Tme: Place: Teachers: Allowed materal: Not allowed: January 2, 28, at 8 3 2 3 SB

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1) Complex Numbers If you have not yet encountered complex numbers, you wll soon do so n the process of solvng quadratc equatons. The general quadratc equaton Ax + Bx + C 0 has solutons x B + B 4AC A For

More information

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C Some basc nequaltes Defnton. Let V be a vector space over the complex numbers. An nner product s gven by a functon, V V C (x, y) x, y satsfyng the followng propertes (for all x V, y V and c C) (1) x +

More information

Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis Fsher Lnear Dscrmnant Analyss Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan Fsher lnear

More information

Exercises. 18 Algorithms

Exercises. 18 Algorithms 18 Algorthms Exercses 0.1. In each of the followng stuatons, ndcate whether f = O(g), or f = Ω(g), or both (n whch case f = Θ(g)). f(n) g(n) (a) n 100 n 200 (b) n 1/2 n 2/3 (c) 100n + log n n + (log n)

More information

CHAPTER 4. Vector Spaces

CHAPTER 4. Vector Spaces man 2007/2/16 page 234 CHAPTER 4 Vector Spaces To crtcze mathematcs for ts abstracton s to mss the pont entrel. Abstracton s what makes mathematcs work. Ian Stewart The man am of ths tet s to stud lnear

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fall 0 Analyss of Expermental easurements B. Esensten/rev. S. Errede We now reformulate the lnear Least Squares ethod n more general terms, sutable for (eventually extendng to the non-lnear case, and also

More information

Unit 5: Quadratic Equations & Functions

Unit 5: Quadratic Equations & Functions Date Perod Unt 5: Quadratc Equatons & Functons DAY TOPIC 1 Modelng Data wth Quadratc Functons Factorng Quadratc Epressons 3 Solvng Quadratc Equatons 4 Comple Numbers Smplfcaton, Addton/Subtracton & Multplcaton

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008

Ph 219a/CS 219a. Exercises Due: Wednesday 12 November 2008 1 Ph 19a/CS 19a Exercses Due: Wednesday 1 November 008.1 Whch state dd Alce make? Consder a game n whch Alce prepares one of two possble states: ether ρ 1 wth a pror probablty p 1, or ρ wth a pror probablty

More information

Lecture 3: Dual problems and Kernels

Lecture 3: Dual problems and Kernels Lecture 3: Dual problems and Kernels C4B Machne Learnng Hlary 211 A. Zsserman Prmal and dual forms Lnear separablty revsted Feature mappng Kernels for SVMs Kernel trck requrements radal bass functons SVM

More information

Random Walks on Digraphs

Random Walks on Digraphs Random Walks on Dgraphs J. J. P. Veerman October 23, 27 Introducton Let V = {, n} be a vertex set and S a non-negatve row-stochastc matrx (.e. rows sum to ). V and S defne a dgraph G = G(V, S) and a drected

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

If A(k ; ), A(k ; 2),..., A(`) are all nvertble, then one could use the state transton matrx to obtan x(k) from x(`) even when k < `, but we shall typ

If A(k ; ), A(k ; 2),..., A(`) are all nvertble, then one could use the state transton matrx to obtan x(k) from x(`) even when k < `, but we shall typ Unversty of Calforna Department of Mechancal Engneerng Lnear Systems Fall 999 (B. Bameh) Lecture 4: Dscrete-Tme Lnear State-Space Models In the prevous lecture we showed how dynamc models arse, and studed

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information