The Schrödinger Equation

Size: px
Start display at page:

Download "The Schrödinger Equation"

Transcription

1 Chapter 1 The Schrödnger Equaton 1.1 (a) F; () T; (c) T. 1. (a) Ephoton = hν = hc/ λ =( J s)( m/s)/( m) = J. () E = (5 1 6 J/s)( 1 8 s) =.1 J = n( J) and n = Use of Ephoton = hc/ λ gves (6. 1 )( J s)( m/s) E = = 399 kj m 1.4 (a) Tmax = hν Φ = ( J s)( m/s)/( 1 9 m) (.75 ev)( J/eV) = J = 3.45 ev. () The mnmum photon energy needed to produce the photoelectrc effect s (.75 ev)( J/eV) = hν =hc/λ = ( J s)( m/s)/λ and λ = m = 451 nm. (c) Snce the mpure metal has a smaller work functon, there wll e more energy left over after the electron escapes and the maxmum T s larger for mpure Na. / T 1.5 (a) At hgh frequences, we have e ν >> 1 and the 1 n the denomnator of Planck s formula can e neglected to gve Wen s formula. () The Taylor seres for the exponental functon s x e = 1 + x+ x /! +. For x << 1, we can neglect x and hgher powers to gve e 1 x. Takng x hν / kt, we have for Planck s formula at low frequences a ν h h kt = π ν π ν = πν ν/ T hν/ kt e 1 c ( e 1) c ( hν / kt) c x 1.6 λ = hm / v = 137 hmc / = 137( J s)/( kg)( m/s) = m =.33 nm. 1-1 Copyrght 14 Pearson Educaton, Inc.

2 1.7 Integraton gves x at tme t, then 1 x = gt + gt + t + c ( v ). If we know that the partcle had poston 1 x = gt + ( gt + v ) t + c and c 1 = x gt v t. Susttuton of the expresson for c nto the equaton for x gves 1 v x = x g( t t ) + ( t t ). 1.8 ( / )( Ψ/ t) = ( / m)( Ψ/ x ) + VΨ. For 1 Ψ= ae t e mx /, we fnd 1 1 Ψ / t = Ψ, Ψ / x = m xψ, and Ψ/ x = m Ψ m x( Ψ/ x) = m Ψ m x( m xψ ) = m Ψ+ 4 m x Ψ. Susttutng nto the tme-dependent Schrödnger equaton and then dvdng y Ψ, we get 1 ( / )( Ψ ) = ( / m)( m + 4 m x ) Ψ+ VΨ and V = mx. 1.9 (a) F; () F. (These statements are vald only for statonary states.) 1.1 ψ satsfes the tme-ndependent Schrödnger (1.19). 3 ψ / x = cxe 4cxe + 4c x e = (1.19) ecomes cx 3 ψ / x = e cx e ; 3 6cxe + 4c x e. Equaton ( / m)( 6cxe + 4 c x e ) + ( c x / m) xe = Exe. The x 3 terms cancel and E = 3 c/ m = 3( J s).(1 9 m) /4π ( kg) = J Only the tme-dependent equaton. 1.1 (a) 3 x / Ψ dx = (/ ) x e dx = (.9 nm)/(3. nm) 9 (3. 1 m) (.9 1 m) e (.1 1 m) = () For x, we have x = x and the proalty s gven y (1.3) and (A.7) as nm 3 nm / 3 / 3 nm (/ ) x x Ψ dx = x e dx = (/ ) e ( x / x / /4) x / nm = e ( x / + x/ + 1/) = e 4/3 (4/9 + /3 + 1/) + 1/ =.753. (c) Ψ s zero at x =, and ths s the mnmum possle proalty densty. (d) 3 x / 3 x/ dx x e dx x e dx w/ w/ = Ψ = (/ ) + (/ ). Let w = x n the frst ntegral on the rght. Ths ntegral ecomes we ( dw) we dw, whch equals the second ntegral on the rght [see Eq. (4.1)]. Hence 3 x / 3 3 Ψ dx = (4 / ) x e dx = (4 / )[!/ ( / ) ] = 1, where (A.8) n the Appendx was used. 1- Copyrght 14 Pearson Educaton, Inc.

3 1.13 The nterval s small enough to e consdered nfntesmal (snce Ψ changes neglgly wthn ths nterval). At t =, we have Ψ dx = (3/ π c ) x e dx = [3/π(. Å) 6 ] 1/ (. Å) e (.1 Å) = / x / c nm 1 / / 1.51 nm dx a e x a dx e x a / a 1.5 nm 1.5 nm Ψ = = = ( e 3. + e 3. )/ = (a) Ths functon s not real and cannot e a proalty densty. () Ths functon s negatve when x < and cannot e a proalty densty. (c) Ths functon s not normalzed (unless = π ) and can t e a proalty densty (a) There are four equally proale cases for two chldren: BB, BG, GB, GG, where the frst letter gves the gender of the older chld. The BB posslty s elmnated y the gven nformaton. Of the remanng three possltes BG, GB, GG, only one has two grls, so the proalty that they have two grls s 1/3. () The fact that the older chld s a grl elmnates the BB and BG cases, leavng GB and GG, so the proalty s 1/ that the younger chld s a grl The 138 peak arses from the case 1 C 1 CF 6, whose proalty s (.9889) = The 139 peak arses from the cases 1 C 13 CF 6 and 13 C 1 CF 6, whose proalty s (.9889)(.111) + (.111)(.9889) =.195. The 14 peak arses from 13 C 13 CF 6, whose proalty s (.111) =.13. (As a check, these add to 1.) The 139 peak heght s (.195/.9779)1 =.4. The 14 peak heght s (.13/.9779)1 = There are 6 cards, spades and 4 nonspades, to e dstruted etween B and D. Imagne that 13 cards, pcked at random from the 6, are dealt to B. The proalty that (1) 6 every card dealt to B s a nonspade s = = Lkewse, the (5) 5. proalty that D gets 13 nonspades s 6. If B does not get all nonspades and D does not 5 get all nonspades, then each must get one of the two spades and the proalty that each 6 6 gets one spade s 1 = 13/5. (A commonly gven answer s: There are four 5 5 possle outcomes, namely, oth spades to B, oth spades to D, spade 1 to B and spade to D, spade to B and spade 1 to D, so the proalty that each gets one spade s /4 = 1/. Ths answer s wrong, ecause the four outcomes are not all equally lkely.) 1-3 Copyrght 14 Pearson Educaton, Inc.

4 1.19 (a) The Maxwell dstruton of molecular speeds; () the normal (or Gaussan) dstruton. 1. (a) Real; () magnary; (c) real; (d) magnary; (e) magnary; (f) real; (g) real; (h) real; () real. 1.1 (a) A pont on the x axs three unts to the rght of the orgn. () A pont on the y axs one unt elow the orgn. (c) A pont n the second quadrant wth x coordnate and y coordnate = = = = (a) = 1. () (d) * = ( ) = 1. (e) 3 = = ( 1) =. (c) (1 + 5 )( 3 ) = = = ( ) = ( 1) = 1. (f) = = = = (a) 4 () ; (c) 6 3; (d) / (a) 1, 9 ; (), π/3; π/3 π/3 (c) z = e = ( 1) e. Snce 1 has asolute value 1 and phas, we have π π/3 (4 π/3) z = e e = e = re, so the asolute value s and the phase s 4π/3 radans. (d) 1/ 1/ 1/ z = ( x + y ) = [1 + ( ) ] = 5 ; tan θ = yx / = /1 = and θ = 63.4 = 96.6 = radans. 1.6 On a crcle of radus 5. On a lne startng from the orgn and makng an angle of 45 wth the postve x axs. / 1.7 (a) = 1 ; () 1= 1 ; 1/ (c) Usng the answers to Pro. 1.5(d), we have 5 e ; 1/ 1/ (d) r = [( 1) + ( 1) ] = ; θ = = 5 = 3.97 rad; 1/ 3.97 e. 1.8 (a) Usng Eq. (1.36) wth n = 3, we have ( π /3) e = 1, e = cos( π/3) + sn( π/3) = /, and e (4 π /3) 1-4 Copyrght 14 Pearson Educaton, Inc. =.5 3 /.

5 1.9 () We see that ω n (1.36) satsfes ωω * = e = 1, so the nth roots of 1 all have asolute value 1. When k n (1.36) ncreases y 1, the phase ncreases y π/n. e e cosθ + sn θ [cos( θ) + sn( θ)] cosθ + sn θ (cosθ sn θ) = = = sn θ, where (.14) was used. e + e cosθ + sn θ + [cos( θ) + sn( θ)] cosθ + snθ + cosθ snθ = = = cos θ. 1.3 (a) From f = ma, 1 N = 1 kg m/s. () 1 J = 1 kg m /s QQ 1 (1.6 1 C)79(1.6 1 C) 1.31 F = = 4πε r 4π ( C /N-m )(3. 1 m) 1 13 where and 79 are the atomc numers of He and Au. =.45 N, 1.3 (a) () xsn(3 x ) + x (1 x )cos(3 x ) = 4xsn(3 x ) + 4x cos(3 x ). 3 x 1 ( x + ) = (8+ ) (1+ 1) = (a) T; () F; (c) F; (d) T; (e) F; (f) T. 1-5 Copyrght 14 Pearson Educaton, Inc.

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ]

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ] 1 Prolem (10P) Show that f X s a random varale, then E[X] = arg mn E[(X ) 2 ] Thus a good predcton for X s E[X] f the squared dfference s used as the metrc. The followng rules are used n the proof: 1.

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3. r r. Position, Velocity, and Acceleration Revisited Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

What would be a reasonable choice of the quantization step Δ?

What would be a reasonable choice of the quantization step Δ? CE 108 HOMEWORK 4 EXERCISE 1. Suppose you are samplng the output of a sensor at 10 KHz and quantze t wth a unform quantzer at 10 ts per sample. Assume that the margnal pdf of the sgnal s Gaussan wth mean

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1)

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1) . (a) (cos θ + sn θ) = cos θ + cos θ( sn θ) + cos θ(sn θ) + (sn θ) = cos θ cos θ sn θ + ( cos θ sn θ sn θ) (b) from De Movre s theorem (cos θ + sn θ) = cos θ + sn θ cos θ + sn θ = (cos θ cos θ sn θ) +

More information

ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competition Saturday April 30, 2011 ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V. Physcs 4 Solutons to Chapter 3 HW Chapter 3: Questons:, 4, 1 Problems:, 15, 19, 7, 33, 41, 45, 54, 65 Queston 3-1 and 3 te (clockwse), then and 5 te (zero), then 4 and 6 te (counterclockwse) Queston 3-4

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

kq r 2 2kQ 2kQ (A) (B) (C) (D)

kq r 2 2kQ 2kQ (A) (B) (C) (D) PHYS 1202W MULTIPL CHOIC QUSTIONS QUIZ #1 Answer the followng multple choce questons on the bubble sheet. Choose the best answer, 5 pts each. MC1 An uncharged metal sphere wll (A) be repelled by a charged

More information

Mathematics Intersection of Lines

Mathematics Intersection of Lines a place of mnd F A C U L T Y O F E D U C A T I O N Department of Currculum and Pedagog Mathematcs Intersecton of Lnes Scence and Mathematcs Educaton Research Group Supported b UBC Teachng and Learnng Enhancement

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Conservation of Angular Momentum = "Spin"

Conservation of Angular Momentum = Spin Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

MTH 263 Practice Test #1 Spring 1999

MTH 263 Practice Test #1 Spring 1999 Pat Ross MTH 6 Practce Test # Sprng 999 Name. Fnd the area of the regon bounded by the graph r =acos (θ). Observe: Ths s a crcle of radus a, for r =acos (θ) r =a ³ x r r =ax x + y =ax x ax + y =0 x ax

More information

Title: Radiative transitions and spectral broadening

Title: Radiative transitions and spectral broadening Lecture 6 Ttle: Radatve transtons and spectral broadenng Objectves The spectral lnes emtted by atomc vapors at moderate temperature and pressure show the wavelength spread around the central frequency.

More information

1. Review of Mechanics Newton s Laws

1. Review of Mechanics Newton s Laws . Revew of Mechancs.. Newton s Laws Moton of partcles. Let the poston of the partcle be gven by r. We can always express ths n Cartesan coordnates: r = xˆx + yŷ + zẑ, () where we wll always use ˆ (crcumflex)

More information

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PES 1120 Spring 2014, Spendier Lecture 6/Page 1 PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons -> charged rod -> charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura

More information

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen omplex Varables hapter 8 Integraton n the omplex Plane March, Lecturer: Shh-Yuan hen Except where otherwse noted, content s lcensed under a BY-N-SA. TW Lcense. ontents ontour ntegrals auchy-goursat theorem

More information

Section 8.1 Exercises

Section 8.1 Exercises Secton 8.1 Non-rght Trangles: Law of Snes and Cosnes 519 Secton 8.1 Exercses Solve for the unknown sdes and angles of the trangles shown. 10 70 50 1.. 18 40 110 45 5 6 3. 10 4. 75 15 5 6 90 70 65 5. 6.

More information

Anglo-Chinese Junior College H2 Mathematics JC 2 PRELIM PAPER 1 Solutions

Anglo-Chinese Junior College H2 Mathematics JC 2 PRELIM PAPER 1 Solutions Anglo-Chnese Junor College H Mathematcs 97 8 JC PRELIM PAPER Solutons ( ( + + + + + 8 range of valdty: > or < but snce number, reject < wll result n the sq rt of a negatve . no. of

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before .1 Arc Length hat s the length of a curve? How can we approxmate t? e could do t followng the pattern we ve used before Use a sequence of ncreasngly short segments to approxmate the curve: As the segments

More information

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m Homework Solutons Problem In solvng ths problem, we wll need to calculate some moments of the Gaussan dstrbuton. The brute-force method s to ntegrate by parts but there s a nce trck. The followng ntegrals

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

Chapter 3 Describing Data Using Numerical Measures

Chapter 3 Describing Data Using Numerical Measures Chapter 3 Student Lecture Notes 3-1 Chapter 3 Descrbng Data Usng Numercal Measures Fall 2006 Fundamentals of Busness Statstcs 1 Chapter Goals To establsh the usefulness of summary measures of data. The

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Complex Numbers Practice 0708 & SP 1. The complex number z is defined by

Complex Numbers Practice 0708 & SP 1. The complex number z is defined by IB Math Hgh Leel: Complex Nmbers Practce 0708 & SP Complex Nmbers Practce 0708 & SP. The complex nmber z s defned by π π π π z = sn sn. 6 6 Ale - Desert Academy (a) Express z n the form re, where r and

More information

measurement and the charge the electric field will be calculated using E =. The direction of the field will be the . But, so

measurement and the charge the electric field will be calculated using E =. The direction of the field will be the . But, so THE ELECTRIC FIELD 6 Conceptual Questons 6.. A tny, postve test charge wll be placed at the pont n space and the force wll be measured. From the force F measurement and the charge the electrc feld wll

More information

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W] Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:

More information

TP A SOLUTION. For an ideal monatomic gas U=3/2nRT, Since the process is at constant pressure Q = C. giving ) =1000/(5/2*8.31*10)

TP A SOLUTION. For an ideal monatomic gas U=3/2nRT, Since the process is at constant pressure Q = C. giving ) =1000/(5/2*8.31*10) T A SOLUTION For an deal monatomc gas U/nRT, Snce the process s at constant pressure Q C pn T gvng a: n Q /( 5 / R T ) /(5/*8.*) C V / R and C / R + R 5 / R. U U / nr T (/ ) R T ( Q / 5 / R T ) Q / 5 Q

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

Physics 443, Solutions to PS 7

Physics 443, Solutions to PS 7 Physcs 443, Solutons to PS 7. Grffths 4.50 The snglet confguraton state s χ ) χ + χ χ χ + ) where that second equaton defnes the abbrevated notaton χ + and χ. S a ) S ) b χ â S )ˆb S ) χ In sphercal coordnates

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

For all questions, answer choice E) NOTA" means none of the above answers is correct.

For all questions, answer choice E) NOTA means none of the above answers is correct. 0 MA Natonal Conventon For all questons, answer choce " means none of the above answers s correct.. In calculus, one learns of functon representatons that are nfnte seres called power 3 4 5 seres. For

More information

Error Bars in both X and Y

Error Bars in both X and Y Error Bars n both X and Y Wrong ways to ft a lne : 1. y(x) a x +b (σ x 0). x(y) c y + d (σ y 0) 3. splt dfference between 1 and. Example: Prmordal He abundance: Extrapolate ft lne to [ O / H ] 0. [ He

More information

Boundaries, Near-field Optics

Boundaries, Near-field Optics Boundares, Near-feld Optcs Fve boundary condtons at an nterface Fresnel Equatons : Transmsson and Reflecton Coeffcents Transmttance and Reflectance Brewster s condton a consequence of Impedance matchng

More information

3 Basic boundary value problems for analytic function in the upper half plane

3 Basic boundary value problems for analytic function in the upper half plane 3 Basc boundary value problems for analytc functon n the upper half plane 3. Posson representaton formulas for the half plane Let f be an analytc functon of z throughout the half plane Imz > 0, contnuous

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Solutions to Problem Set 6

Solutions to Problem Set 6 Solutons to Problem Set 6 Problem 6. (Resdue theory) a) Problem 4.7.7 Boas. n ths problem we wll solve ths ntegral: x sn x x + 4x + 5 dx: To solve ths usng the resdue theorem, we study ths complex ntegral:

More information

Spring 2002 Lecture #13

Spring 2002 Lecture #13 44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

More information

Classical Field Theory

Classical Field Theory Classcal Feld Theory Before we embark on quantzng an nteractng theory, we wll take a dverson nto classcal feld theory and classcal perturbaton theory and see how far we can get. The reader s expected to

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

Applied Stochastic Processes

Applied Stochastic Processes STAT455/855 Fall 23 Appled Stochastc Processes Fnal Exam, Bref Solutons 1. (15 marks) (a) (7 marks) The dstrbuton of Y s gven by ( ) ( ) y 2 1 5 P (Y y) for y 2, 3,... The above follows because each of

More information

Complex Numbers Alpha, Round 1 Test #123

Complex Numbers Alpha, Round 1 Test #123 Complex Numbers Alpha, Round Test #3. Wrte your 6-dgt ID# n the I.D. NUMBER grd, left-justfed, and bubble. Check that each column has only one number darkened.. In the EXAM NO. grd, wrte the 3-dgt Test

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

International Mathematical Olympiad. Preliminary Selection Contest 2012 Hong Kong. Outline of Solutions

International Mathematical Olympiad. Preliminary Selection Contest 2012 Hong Kong. Outline of Solutions Internatonal Mathematcal Olympad Prelmnary Selecton ontest Hong Kong Outlne of Solutons nswers: 7 4 7 4 6 5 9 6 99 7 6 6 9 5544 49 5 7 4 6765 5 6 6 7 6 944 9 Solutons: Snce n s a two-dgt number, we have

More information

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1) Complex Numbers If you have not yet encountered complex numbers, you wll soon do so n the process of solvng quadratc equatons. The general quadratc equaton Ax + Bx + C 0 has solutons x B + B 4AC A For

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013 Lagrange Multplers Monday, 5 September 013 Sometmes t s convenent to use redundant coordnates, and to effect the varaton of the acton consstent wth the constrants va the method of Lagrange undetermned

More information

MAGNETISM MAGNETIC DIPOLES

MAGNETISM MAGNETIC DIPOLES MAGNETISM We now turn to magnetsm. Ths has actually been used for longer than electrcty. People were usng compasses to sal around the Medterranean Sea several hundred years BC. However t was not understood

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

Unit 5: Quadratic Equations & Functions

Unit 5: Quadratic Equations & Functions Date Perod Unt 5: Quadratc Equatons & Functons DAY TOPIC 1 Modelng Data wth Quadratc Functons Factorng Quadratc Epressons 3 Solvng Quadratc Equatons 4 Comple Numbers Smplfcaton, Addton/Subtracton & Multplcaton

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

Electricity and Magnetism - Physics 121 Lecture 10 - Sources of Magnetic Fields (Currents) Y&F Chapter 28, Sec. 1-7

Electricity and Magnetism - Physics 121 Lecture 10 - Sources of Magnetic Fields (Currents) Y&F Chapter 28, Sec. 1-7 Electrcty and Magnetsm - Physcs 11 Lecture 10 - Sources of Magnetc Felds (Currents) Y&F Chapter 8, Sec. 1-7 Magnetc felds are due to currents The Bot-Savart Law Calculatng feld at the centers of current

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D Chapter Twelve Integraton 12.1 Introducton We now turn our attenton to the dea of an ntegral n dmensons hgher than one. Consder a real-valued functon f : R, where the doman s a nce closed subset of Eucldean

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Army Ants Tunneling for Classical Simulations

Army Ants Tunneling for Classical Simulations Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q For orthogonal curvlnear coordnates, eˆ grad a a= ( aˆ ˆ e). h q (98) Expandng the dervatve, we have, eˆ aˆ ˆ e a= ˆ ˆ a h e + q q 1 aˆ ˆ ˆ a e = ee ˆˆ ˆ + e. h q h q Now expandng eˆ / q (some of the detals

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

DECOUPLING THEORY HW2

DECOUPLING THEORY HW2 8.8 DECOUPLIG THEORY HW2 DOGHAO WAG DATE:OCT. 3 207 Problem We shall start by reformulatng the problem. Denote by δ S n the delta functon that s evenly dstrbuted at the n ) dmensonal unt sphere. As a temporal

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review Chapter Four States of Stress Part Three When makng your choce n lfe, do not neglect to lve. Samuel Johnson Revew When we use matrx notaton to show the stresses on an element The rows represent the axs

More information

How Differential Equations Arise. Newton s Second Law of Motion

How Differential Equations Arise. Newton s Second Law of Motion page 1 CHAPTER 1 Frst-Order Dfferental Equatons Among all of the mathematcal dscplnes the theory of dfferental equatons s the most mportant. It furnshes the explanaton of all those elementary manfestatons

More information

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim Causal Damonds M. Aghl, L. Bombell, B. Plgrm Introducton The correcton to volume of a causal nterval due to curvature of spacetme has been done by Myrhem [] and recently by Gbbons & Solodukhn [] and later

More information

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that Backward Error Analyss for House holder Reectors We want to show that multplcaton by householder reectors s backward stable. In partcular we wsh to show fl(p A) = P (A) = P (A + E where P = I 2vv T s the

More information

Problem 1: To prove that under the assumptions at hand, the group velocity of an EM wave is less than c, I am going to show that

Problem 1: To prove that under the assumptions at hand, the group velocity of an EM wave is less than c, I am going to show that PHY 387 K. Solutons for problem set #7. Problem 1: To prove that under the assumptons at hand, the group velocty of an EM wave s less than c, I am gong to show that (a) v group < v phase, and (b) v group

More information

Chapter 11 Angular Momentum

Chapter 11 Angular Momentum Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle

More information

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point.

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point. Four bar lnkages 1 Four Bar Lnkages n Two Dmensons lnk has fed length and s oned to other lnks and also possbly to a fed pont. The relatve velocty of end B wth regard to s gven by V B = ω r y v B B = +y

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO.

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO. Slde Kng Saud Unersty College of Scence Physcs & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART ) LECTURE NO. 6 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED Lecture

More information

Laboratory 1c: Method of Least Squares

Laboratory 1c: Method of Least Squares Lab 1c, Least Squares Laboratory 1c: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

Review of Taylor Series. Read Section 1.2

Review of Taylor Series. Read Section 1.2 Revew of Taylor Seres Read Secton 1.2 1 Power Seres A power seres about c s an nfnte seres of the form k = 0 k a ( x c) = a + a ( x c) + a ( x c) + a ( x c) k 2 3 0 1 2 3 + In many cases, c = 0, and the

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information