Frequency calculations can serve a number of different purposes:

Size: px
Start display at page:

Download "Frequency calculations can serve a number of different purposes:"

Transcription

1 4. Frequency calculatons Frequency calculatons can serve a number of dfferent purposes: To predct the IR and Raman spectra of molecules (frequences and ntenstes. To compute force constants for a geometry optmzaton. To dentfy the nature of statonary ponts on the potental energy surface. To compute zero-pont vbraton and thermal energy correctons to total energes as well as other thermodynamc quanttes of nterest such and the enthalpy and entropy of the system. Energy calculatons and geometry optmzatons gnore the vbratons n molecular systems. In ths way, these computatons use an dealzed vew of nuclear poston. In realty, the nucle n molecules are constantly n moton. Because vbratonal motons tend to be hghly localzed wthn molecules, and the energy spacngs assocated wth ndvdual lnages tend to be reasonably smlar rrespectve of remote molecular functonalty, IR and Raman spectroscopes have a long hstory of use n structure determnaton. bratonal frequences also have other mportant uses, for example n netcs and computatonal geometry optmzaton so ther accurate predcton has been a long-standng computatonal goal. 4.. bratonal analyss Frst, consder a smple datomc molecule. The PES s one-dmensonal (datomc has only one degree of freedom - the bond length q and typcally loong somewhat le the sold curve below: q (q q 0 q As we now from physcal chemstry, the vbratonal problem for a datomc s equvalent the problem of moton of a partcle wth the reduced mass on the PES. Schrodnger equaton s:

2 d ( q ( q E ( q (4. dq For small devatons from equlbrum (mnmum the potental (q can be approxmated by a quadratc functon (parabola - the dashed curve above. Sounds famlar? It was already done above n equaton.4, except here the reference pont q0 s the mnmum: ( q ( q 0 d dq x0 ( q q 0 d dq q0 ( q q 0 (4. that means that the frst dervatve at q0 s zero, leavng only the constant and the quadratc term n 4.. To smplfy, we wll rescale the axes, so that: (q0 = 0 q0 = 0 and defne the force constant : d dq q0 Substtutng to (4. we have a Schrodnger equaton for the harmonc oscllator: d q ( q E ( q (4. dq whch has well nown solutons. In partcular, the energy levels of the lnear harmonc oscllator are quantzed as: E n n h, n = 0,,, (4.4 where h s Planc constant and s the vbratonal frequency that depends on the force constant and (reduced mass: (4.5 Ths s the frequency wth whch the molecule vbrates and s usually gven as a wavenumber ~ (4.6 c c

3 n cm - (called wavenumbers. For a polyatomc molecule wth atoms the PES, as we now, has 6 ( 5 for a lnear molecule dmensons. Typcally, the vbratonal calculatons are done n Cartesan coordnates where the surface s dmensonal. The potental energy (=(,,, where etc. are devatons from the equlbrum poston (energy mnmum s agan expanded n the Taylor seres up to the second order around the mnmum, gvng the Schrodnger equaton: ( (, E H m (4.7 n (4.7 m are actual atomc masses and H s our old frend Hessan, the by matrx of force constants: q q H H (4.8 Equaton of (4.7 s a system of coupled dfferental equatons, whch are solved, as coupled equatons usually are, by uncouplng them. That means transformng the Hessan to a new coordnate system, called normal coordnates and denoted, where t s dagonal. The transformaton s wrtten as: S, =,,, (4.9 the coupled system of equatons then becomes ndependent equatons: ( ( E, =,,, (4.0 for whch we now the solutons, because each equaton s nothng else than the Schrodnger equaton for one lnear harmonc oscllator, the same as (4..

4 Several notes about the normal coordnates and vbratonal frequences: The whole dervaton of ths secton maes sense only when the molecule s n ts energy mnmum or, alternatvely, a saddle pont. Both ensure that the frst dervatve n the Taylor expanson of energy (4. s zero. If t s not zero,.e. f the geometry s not optmzed, the whole thng goes rght out the wndow! Even though we have normal coordnates for equatons, only 6 (for a general nonlnear polyatomc are meanngful, the remanng 6 have zero vbratonal frequences, because they correspond to the translatons and rotatons of the molecule as a whole. In practce they may not be exactly zero: resdual couplngs between the external and nternal degrees of freedom are present for mperfectly optmzed structures (and n practce nothng s perfect. However, the external degrees of freedom can be proected out of the Cartesan force felds to elmnate ths problem. bratonal frequences calculated for equlbrum structures are postve real numbers, because the force constants are postve (second dervatve s postve at a mnmum of a functon. However, for saddle pont (transton states one force constant s negatve, yeldng, by equaton (4.5, an magnary frequency. Imagnary frequences (usually reported as negatve values are telltale sgns of saddle ponts! ormal mode coordnates contan the atomc masses: they are mass-weghted. Each normal mode has ts characterstc reduced mass ust le the datomc oscllator (eqn. 4.. ormal modes are complcated mxtures (combnatons of Cartesan coordnates and motons of the ndvdual atoms n the molecule. They can be delocalzed,.e. the partcular normal mode can nvolve movement of most or all atoms n the molecule. The above procedure s farly straghtforward, once the Hessan matrx s avalable. Calculaton of the Hessan,.e. the force constants,.e. the second dervatves of the energy, s the mportant and the hard part. Remember that the Hessan matrx contans x = 9 values and, even though t s symmetrc, requrng calculaton of only /(9 + values, t s stll a lot of calculaton. Above we have already dscussed analytcal vs. numercal gradents and Hessans. Frequency calculatons are farly straghtforward wth methods that have mplemented analytcal second dervatves, more tme consumng for methods wth analytcal gradents (the second dervatves can be obtaned by fnte dfferentaton of the gradents, but lmted to small molecules for methods where not even analytcal frst dervatves are mplemented. bratonal frequences are tradtonally of prmary nterest to chemsts. However, vbratonal spectra, such as IR and Raman, are not made of frequences only. Spectrum by defnton s the plot of ntensty versus frequency. That means ntenstes are also mportant, n fact, for physcal chemsts perhaps even more mportant, because more nterestng physcs s n the ntenstes than n the frequences. 4

5 Frst, as you now from P-chem, the selecton rules for the harmonc oscllator are n (4. therefore only a sngle quantum wth the energy correspondng to the vbratonal frequency, h, can be absorbed or emtted. IR absorpton ntensty for a partcular normal mode s proportonal to the change of the molecular electrc dpole moment e (don t confuse wth the reduced mass as the molecule vbrated along the normal coordnate squared: I IR e μ (4. Raman ntensty s proportonal to the change n polarzablty e wth respect to the partcular normal mode vbraton: I Raman e α (4. Ths means that for calculatons of ntenstes, dervatves of dpole moments (IR and polarzablty (Raman must also be calculated. Snce polarzablty s a hgher order property calculatng ts dervatves s more demandng than calculatng dpole dervatves: we can expect Raman calculatons to tae longer than IR calculatons (and also to be less accurate. 4.. bratonal calculatons n Gaussan Includng the Freq eyword n the route secton requests a frequency ob. The other sectons of the nput fle are the same as those we've consdered prevously. Because of the nature of the computatons nvolved, frequency calculatons are vald only at statonary ponts on the potental energy surface. Thus, frequency calculatons must be performed on optmzed structures. For ths reason, t s necessary to run a geometry optmzaton at the same level of theory (! pror to dong a frequency calculaton. It can be done by ncludng both Opt and Freq n the route secton of the ob, whch requests a geometry optmzaton followed mmedately by a frequency calculaton. However, the optmzaton performed s always a full optmzaton: constrants cannot be appled. Alternatvely, you can gve an optmzed geometry as the molecule specfcaton secton for a stand-alone frequency ob or read the optmzed geometry from the checpont fle saved from the prevous optmzaton ob. It may seem wrong to do constraned mnmzaton before frequency calculatons, snce constrans would volate the requrement of the fully optmzed structure. In some specal cases t s allowed and n fact necessary, but only wth extreme care! 5

6 Most convenently, the optmzaton and frequency obs can be lned together through --Ln-- command (see the secton.7 on mult-step obs above It s worth repeatng that a frequency ob must use the same theoretcal model and bass set as produced the optmzed geometry. Frequences computed wth a dfferent bass set or procedure have no valdty. We'll be usng the 6-G(d bass set for all of the examples and exercses n ths chapter. Ths s the smallest bass set that gves satsfactory results for frequency calculatons. For our frst example, we'll loo at the Hartree-Foc frequences for formaldehyde. Here s the route secton from the nput fle: %ch=formaldehyde.ch # RHF/6-G(d Freq Geom=AllChec Guess=Read Test Here the geometry s taen from a checpont fle that was saved from a prevous optmzaton ob on formaldehyde (at the same level of theory!. Frequences and ntenstes A frequency ob predcts the frequences, ntenstes (IR and Raman, and Raman depolarzaton ratos and scatterng actvtes for each spectral lne. ote the unts: Harmonc frequences (cm**-, IR ntenstes (KM/Mole, Raman scatterng actvtes (A**4/AMU, depolarzaton ratos for plane and unpolarzed ncdent lght, reduced masses (AMU, force constants (mdyne/a, and normal coordnates: B B A Frequences Red. masses Frc consts IR Inten Raman Actv Depolar (P Depolar (U Ths dsplay gves predcted values for the frst spectral lnes for formaldehyde. The other ones follow: A A B Frequences Red. masses Frc consts IR Inten Raman Actv Depolar (P Depolar (U The strongest IR lne s the 4 th, at 08 cm - wth the ntensty of 50 KM/Mole. 6

7 ormal Modes In addton to the frequences and ntenstes, the output also dsplays the dsplacements of the nucle correspondng to the normal mode assocated wth that spectral lne. The dsplacements are presented as YZ coordnates, n the standard orentaton: Standard orentaton: Center Atomc Atomc Coordnates (Angstroms umber umber Type Y Z The carbon and oxygen atoms are stuated on the Z-axs, and the plane of the molecule concdes wth the YZ-plane. Here s the frst normal mode for formaldehyde (t s dsplayed rght under the frequency and ntensty values for the mode : Atom A Y Z In the standard orentaton, the coordnates for all four atoms are 0. When nterpretng normal mode output, the relatve sgns and relatve values of the dsplacements for dfferent atoms are more mportant than ther exact magntudes. For ths normal mode, the two hydrogen atoms undergo the vast maorty of the vbraton, n the negatve drecton. Although the values here suggest movement below the plane of the molecule, they are to be nterpreted as moton n the opposte drecton as well. Remember that the sgns are arbtrary (.e. all pluses could be changed to mnuses and mnuses to pluses - the atoms they are oscllatng bac and forth around ther equlbrum postons. What s mportant, however, once agan, are the relatve sgns of the modes wth respect to each other (.e. f one s plus and the other mnus - they have opposte sgns. Changng the sgns wll mae plus nto mnus and vce versa, but they wll stll reman opposte! In our dagram, the moton s llustrated by showng the paths of the nucle n both drectons. Thus, the hydrogens are oscllatng above and below the plane of the molecule n ths mode. 7

8 4.. sualzng spectra and normal modes n Gabedt Mang sense of the normal mode output gets overwhelmng pretty qucly (unless you can vsualze the structure and the vbratons n your head from a long set of x, y, z coordnates and dsplacements. The best way to fgure out what the vbratons loo le s to anmate them. Agan, start wth clcng on the Dsplay Geometry/Orbtals/Densty/braton con to open the wndow, then rght clc and n the menu select Anmaton (near the bottom and braton In the new wndow (called braton, select Fle/Read/Read a Gaussan output fle. You wll see the table of the normal modes on the rght and ther graphcal representaton n the molecule wndow n the left (you may want to rotate the molecule and zoom n: You can step through the ndvdual modes to vsualze them (arrows are the dsplacements and anmate them usng the Play button. The ampltude and speed can be changed usng the Scale factor, Tme step etc. To draw the spectra, clc on Tools button at the top of the rght wndow and select Draw IR spectrum or Draw Raman spectrum. 8

9 You can manpulate the plot n varous ways: rght clc on the plot to dsplay the Menu. For example, f you want to reverse the axes, rght clc, select Render/Drectons and unchec reflect and Yreflect. 9

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Molecular structure: Diatomic molecules in the rigid rotor and harmonic oscillator approximations Notes on Quantum Mechanics

Molecular structure: Diatomic molecules in the rigid rotor and harmonic oscillator approximations Notes on Quantum Mechanics Molecular structure: Datomc molecules n the rgd rotor and harmonc oscllator approxmatons Notes on Quantum Mechancs http://quantum.bu.edu/notes/quantummechancs/molecularstructuredatomc.pdf Last updated

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

The partition function is so important because everything else one ever wants (and can) know about the macroscopic system can be calculated from it:

The partition function is so important because everything else one ever wants (and can) know about the macroscopic system can be calculated from it: 5. Thermochemstry 5.. Molecular partton functon and thermodynamc quanttes One of the man goals of computatonal chemstry s to calculate macroscopc chemcal quanttes that we observe n the laboratory (e.g.

More information

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

5. Response properties in ab initio schemes

5. Response properties in ab initio schemes 5. Response propertes n ab nto schemes A number of mportant physcal observables s expressed va dervatves of total energy (or free energy) E. Examples are: E R 2 E R a R b forces on the nucle; crtcal ponts

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Lecture 14: Forces and Stresses

Lecture 14: Forces and Stresses The Nuts and Bolts of Frst-Prncples Smulaton Lecture 14: Forces and Stresses Durham, 6th-13th December 2001 CASTEP Developers Group wth support from the ESF ψ k Network Overvew of Lecture Why bother? Theoretcal

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Devce Applcatons Class 9 Group Theory For Crystals Dee Dagram Radatve Transton Probablty Wgner-Ecart Theorem Selecton Rule Dee Dagram Expermentally determned energy

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

EXAM INFORMATION. Harmonic Oscillator. Anharmonic Oscillator 1 ~ 1. Rigid Rotor

EXAM INFORMATION. Harmonic Oscillator. Anharmonic Oscillator 1 ~ 1. Rigid Rotor EXAM INFORMATION Harmonc Oscllator Hamltonan: H d dx 1 kx Energy Levels: 1 k mm 1 En n n 0,1,, c m m 1 Anharmonc Oscllator Energy Levels: E n 1 ~ 1 n hc n hcx ~ e n 0,1,,... Rgd Rotor Quantum Numbers:

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.

More information

THERMAL DISTRIBUTION IN THE HCL SPECTRUM OBJECTIVE

THERMAL DISTRIBUTION IN THE HCL SPECTRUM OBJECTIVE ame: THERMAL DISTRIBUTIO I THE HCL SPECTRUM OBJECTIVE To nvestgate a system s thermal dstrbuton n dscrete states; specfcally, determne HCl gas temperature from the relatve occupatons of ts rotatonal states.

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Programming Project 1: Molecular Geometry and Rotational Constants

Programming Project 1: Molecular Geometry and Rotational Constants Programmng Project 1: Molecular Geometry and Rotatonal Constants Center for Computatonal Chemstry Unversty of Georga Athens, Georga 30602 Summer 2012 1 Introducton Ths programmng project s desgned to provde

More information

Electron-Impact Double Ionization of the H 2

Electron-Impact Double Ionization of the H 2 I R A P 6(), Dec. 5, pp. 9- Electron-Impact Double Ionzaton of the H olecule Internatonal Scence Press ISSN: 9-59 Electron-Impact Double Ionzaton of the H olecule. S. PINDZOLA AND J. COLGAN Department

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

1 Rabi oscillations. Physical Chemistry V Solution II 8 March 2013

1 Rabi oscillations. Physical Chemistry V Solution II 8 March 2013 Physcal Chemstry V Soluton II 8 March 013 1 Rab oscllatons a The key to ths part of the exercse s correctly substtutng c = b e ωt. You wll need the followng equatons: b = c e ωt 1 db dc = dt dt ωc e ωt.

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Army Ants Tunneling for Classical Simulations

Army Ants Tunneling for Classical Simulations Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

APPENDIX 2 FITTING A STRAIGHT LINE TO OBSERVATIONS

APPENDIX 2 FITTING A STRAIGHT LINE TO OBSERVATIONS Unversty of Oulu Student Laboratory n Physcs Laboratory Exercses n Physcs 1 1 APPEDIX FITTIG A STRAIGHT LIE TO OBSERVATIOS In the physcal measurements we often make a seres of measurements of the dependent

More information

CHEMICAL REACTIONS AND DIFFUSION

CHEMICAL REACTIONS AND DIFFUSION CHEMICAL REACTIONS AND DIFFUSION A.K.A. NETWORK THERMODYNAMICS BACKGROUND Classcal thermodynamcs descrbes equlbrum states. Non-equlbrum thermodynamcs descrbes steady states. Network thermodynamcs descrbes

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

This column is a continuation of our previous column

This column is a continuation of our previous column Comparson of Goodness of Ft Statstcs for Lnear Regresson, Part II The authors contnue ther dscusson of the correlaton coeffcent n developng a calbraton for quanttatve analyss. Jerome Workman Jr. and Howard

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

Title: Radiative transitions and spectral broadening

Title: Radiative transitions and spectral broadening Lecture 6 Ttle: Radatve transtons and spectral broadenng Objectves The spectral lnes emtted by atomc vapors at moderate temperature and pressure show the wavelength spread around the central frequency.

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables

Linear Correlation. Many research issues are pursued with nonexperimental studies that seek to establish relationships among 2 or more variables Lnear Correlaton Many research ssues are pursued wth nonexpermental studes that seek to establsh relatonshps among or more varables E.g., correlates of ntellgence; relaton between SAT and GPA; relaton

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q For orthogonal curvlnear coordnates, eˆ grad a a= ( aˆ ˆ e). h q (98) Expandng the dervatve, we have, eˆ aˆ ˆ e a= ˆ ˆ a h e + q q 1 aˆ ˆ ˆ a e = ee ˆˆ ˆ + e. h q h q Now expandng eˆ / q (some of the detals

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors. SCALARS AND ECTORS All phscal uanttes n engneerng mechancs are measured usng ether scalars or vectors. Scalar. A scalar s an postve or negatve phscal uantt that can be completel specfed b ts magntude.

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Thermodynamics and Gases

Thermodynamics and Gases hermodynamcs and Gases Last tme Knetc heory o Gases or smple (monatomc) gases Atomc nature o matter Demonstrate deal gas law Atomc knetc energy nternal energy Mean ree path and velocty dstrbutons From

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

An Algorithm to Solve the Inverse Kinematics Problem of a Robotic Manipulator Based on Rotation Vectors

An Algorithm to Solve the Inverse Kinematics Problem of a Robotic Manipulator Based on Rotation Vectors An Algorthm to Solve the Inverse Knematcs Problem of a Robotc Manpulator Based on Rotaton Vectors Mohamad Z. Al-az*, Mazn Z. Othman**, and Baker B. Al-Bahr* *AL-Nahran Unversty, Computer Eng. Dep., Baghdad,

More information

An Interactive Optimisation Tool for Allocation Problems

An Interactive Optimisation Tool for Allocation Problems An Interactve Optmsaton ool for Allocaton Problems Fredr Bonäs, Joam Westerlund and apo Westerlund Process Desgn Laboratory, Faculty of echnology, Åbo Aadem Unversty, uru 20500, Fnland hs paper presents

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

CHAPTER 5: Lie Differentiation and Angular Momentum

CHAPTER 5: Lie Differentiation and Angular Momentum CHAPTER 5: Le Dfferentaton and Angular Momentum Jose G. Vargas 1 Le dfferentaton Kähler s theory of angular momentum s a specalzaton of hs approach to Le dfferentaton. We could deal wth the former drectly,

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

Chapter 6. Supplemental Text Material

Chapter 6. Supplemental Text Material Chapter 6. Supplemental Text Materal S6-. actor Effect Estmates are Least Squares Estmates We have gven heurstc or ntutve explanatons of how the estmates of the factor effects are obtaned n the textboo.

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information