Boolean Function Representation Based on Disjoint-Support Decompositions.

Size: px
Start display at page:

Download "Boolean Function Representation Based on Disjoint-Support Decompositions."

Transcription

1 Booln Funtion Rprsnttion Bs on Disjoint-Support Dompositions. Vlri Brto n Murizio Dmini Diprtimnto i Elttroni Informti Univrsit i Pov, Vi Grnigo 6/A, 353 Pov, ITALY Astrt Th Multi-Lvl Domposition Digrms (s) of this ppr r nonil rprsnttion of Booln funtions pliiting isjoint-support ompositions. s llow th rution of mmory ouption with rspt to tritionl ROBDDs y omposing logi funtions rursivly into simplr - n mor shrl - loks. Th rprsnttion is lss snsitiv to vril orring, n us of this proprty, nlysis of th grphs llows t tims th intifition of ttr vril orrings. Th intifition of mor trminl ss y Booln lgr thniqus mks it possil to ompnst th itionl - smll- CPU tim rquir to intify th isjoint-support omposition. W pt th proprtis of s to usful in svrl ontts, most notly logi synthsis, thnology mpping, n squntil hrwr vrifition. Introution Ru, Orr Binry Dision Digrms (ROBDDs) [] r proly th most powrful t strutur known so fr for th mnipultion of lrg logi funtions, n for this rson thy hv om prvsiv in logi synthsis n vrifition nvironmnts [2, 3, 4, 5]. Ongoing rsrh is ttmpting to tn thir ppliility to othr omins, suh s wor-lvl vrifition [6], th solution of grph prolms n intgr-linr progrmming [7, 8]. Still, som ky inffiinis (n ponntil lowup for som lsss of funtions, th unpritility of th ROBDD siz n shp with rspt to th vril orring hosn, t...) motivt n inrsing rsrh tivity in this r, inluing: Effiint implmnttions [9, ], vlopmnt of orring huristis [, 2, 3], n ltrntiv rprsnttions ltogthr [4, 5, 6, 7, 8, 6, 9]. ROBDDs r losly rlt to trministi utomt: input its r vlut squntilly, on t tim, long th grph [9]. In this ppr, w to th si ROBDD rprsnttion th pility of omposing funtion into n ritrry, multipl-lvl tr of isjoint-support su-funtions. Unlik ROBDDs, nos rprsnt not only two-input MUXs, ut lso unlimit-fnin OR / AND (or NAND-only, NOR-only) trs of gts. Th novl rprsnttion rtins most of th proprtis of ROBDDs, nmly, noniity, irt-yli grph Rsrh prtilly fun y th EC ESPRIT III Bsi Rsrh Progrmm ontrt No. 972 (Projt GEPPCOM) n y CNR grnt # CT7. Currntly with Synopsys, In. 7 Est Milfil Ro, Mtn.Viw, CA 9443 strutur, rursiv onstrution thniqu, n onstnttim omplmnttion. Tr omposition rings svrl vntgs. First, th rprsnttion is signifintly lss orr-snsitiv thn ROBDDs. For instn, fully omposl funtions r rprsnt y miniml tr iruits, of siz linr in th numr of vrils, rgrlss of vril orring. whil ROBDD siz n rng from linr to ponntil. Morovr, for this lss of funtions, som iffiult prolms (lik, Booln NPN mthing [2]) n solv in linr tim y tr mthing thniqus. Son, th nw rprsnttion is usully mor ompt thn ROBDDs, us funtions r ompos in simplr, mor shrl loks. Mor intrstingly, th nw rprsnttion givs us mor systmti n t insight on th rol of th input vrils of logi funtion, othrwis frr to spil-purpos huristis suh s ynmi rorring. Evntully, w show tht th itionl CPU tim for omposition is provly smll. Morovr, th nw rprsnttion llows us to intify mor trminl ss, n thrfor to otin fstr n shllow rursions. For instn, th omputtion of f + g n rri out in onstnt tim if f n g shr no vrils, n th siz of th rsult is jfj + jgj +, rgrlss of vril orr. Othr simplifitions ris from th rognition of ommon trms in th omposition of th oprns. In prti, w foun th CPU tim lwys to los n oftn ttr thn tht of rfrn ROBDD pkgs. For rsons of sp, thorm proofs r not inlu. Thy will vill upon rqust. 2 Disjoint support omposition W onsir th omposition of funtions into th NOR (NAND, OR, AND) of isjoint-supportsufuntions, whnvr possil. This notion will l to rursiv (.g. tr) omposition styl n to th finition of s. Dfinition. Lt f : B n! B not Booln funtion of n vrils n. W sy tht f pns on i i is not intilly. W ll support of f (init y S(f)) th st of Booln vrils f pns on. A st of non-onstnt funtions ff f k g, k, with rsptiv supports S(f i ) is ll isjoint-support NOR omposition of f if: f + + f k = f; S(f i ) \ S(f j )= i 6= j () A isjoint support NOR omposition is miml if no funtion f i is furthr omposl in th OR of othr funtions with isjoint support. W fin isjoint support OR, AND, NAND ompositions in similr fshion. W init y D NOR (f) ny suh miml omposition. 2

2 ) ) Figur. A rursivly omposl funtion. Empl. Th funtion f =( + )( + ) hs th following miml isjoint-support ompositions: AND: ff =( + ); f 2 =( + )g; NOR: ff =( + ) ; f 2 =( + ) g; NAND n OR: ffg. 2 In th rst of th ppr, miml isjoint-support ompositions r rfrr to s ompositions, for short. Morovr, w fous only on NOR omposition, s th rsults for th othr ompositions n otin rily y stnr Booln lgr. By omposing rursivly logi funtion, w otin NOR-tr rprsnttion of F : Empl 2. Th funtion F =( + )( + ) is rursivly NOR omposl. From th first omposition w otin f = ( + ) n f 2 =[ +( + ) ]. Ths funtions r thn gin omposl until rhing th input vrils, s in Fig. (). 2 Dfinition 2. A tr omposition of logi funtion f is omposition of f into NOR-only tr of sufuntions, whr th funtions t th inputs of h NOR r mimlly ompos. W inity TD NOR th ompositiontr. Similrly w n fin TD NAND n TD AND/OR. 2 Thorm () low stts rlvnt intuitiv rsult: Thorm. For givn funtion f, ) thr is uniqu D NOR ; n 2) thr is uniqu TD NOR. 2 3 Multi-Lvl Domposition Digrms W ploit tr ompositions to riv hyri rprsnttion styl. Th mol is s on pplying tr omposition whnvr possil, n thn Shnnon pnsion until rhing primry input vrils or thir omplmnts. Empl 3. Th funtion f = ( + + f ) hs TD NOR s in Fig. (2.). Not tht w oul not ompos + us of th isjoint support onstrint. Applying Shnnon pnsion, in Fig. (2.) w otin TD NOR for h input of MUX. 2 Dfinition 3. A is irt yli grph, with lf vrtis ll y Booln onstnt or vril n ) ) + f f Figur 2. ) Tr omposition of th funtion in Empl (3). ) Th sm funtion with th ition of BDD nos. Figur 3. Son rution rul. ) Mu vrtis. ) NOR vrtis two kins of intrnl vrtis: NOR vrtis hv nonmpty st of outgoing gs, h pointing to ; MUX vrtis hv two outgoing gs, ll n n h pointing to. MUX vrtis r ll y Booln vril. A fins rursivly logi funtion with th following ruls: A trminl vrt ll y vril or onstnt nots th funtion. A MUX m ll y fins: F m = F (m) +F (m) (2) A NOR vrt n with k outgoing gs fins th funtion: F n = f + + f k (3) whr f i, i = ::: k is th funtion fin y th point y g i. 2 In, whil MUX vrtis orrspon to ROBDD nos, NOR vrtis init funtion omposition. Just lik ROBDDs, w impos rution n orring ruls to otin mor ompt n nonil rprsnttion: Thr r no two intil sugrphs; For h vrt, no two pointrs point to th sm ; Eh pth from root to trminl must trvrs susqunt MUX nos in rspt of th vril orring n h vril is vlut t most on on h pth. Th of funtion mths multi-lvl logi iruit in th ovious wy. In th susqunt rwings, irls rprsnt MUXs, whil rrys of squrs rprsnt NORs. It is worth noting tht, unlik ROBBDs, son rution rul rs iffrnt onsquns on th two kins of intrnl vrtis. As skth in Fig. (3), rution of NOR vrt os not us its ltion. In ition to ROBDD-lik ruls, in orr to grnt noniity w must impos omposition ruls: th funtions point y NOR vrt must rprsnt miml omposition. funtion is rprsnt y MUX iff it is not omposl, nor its omplmnt. Th following rsult is irt onsqun of th noniity of tr ompositions n rution ruls: Thorm 2. Ru Orr Dompos s r nonil. 2 Th following rsults on D NOR s r usful in th onstrution of th or prours: Thorm 3. Suppos ff f k g is D of som funtion. Thn, y rsing lmnts from th st, th nw st is lso D. 2

3 ; NOR (ml op, ml op2, int i) f if (trminl s) rturn (trminl vlu); 2 D(op) = D(op) \ D(op2); 3 D(op) = D(op) n D(op); 4 D(op2) = D(op2) n D(op); 5 if (trminl s) rturn (D(op) [ trminl vlu); 6 rs = omp lookup(op, op2); 7 if (rs!= NULL) rturn (D(op) [ rs); 8 = top vr(op, op2); 9 l=nor (op., op2., i-);ri=nor (op., op2., i-); rs = ml fin (l, ri, ); omp insrt (op, op2, rs); 2 rturn (D(op) [ rs); g Figur 4. Psuoo of NOR() Thorm 4. If D NOR (f ) =ff f k g[fp p h g n D NOR (g) =fg g l g[fp p h g, whr g i 6= f j i = l j = k, thn:. D NOR (f + g) =(fp p h g[ [ D NOR ([(f + ::: + f k ) +(g + ::: + g l ) ] )) 2. Lt not vril, n suppos f = ( + g). Thn, D NOR (f )=fg[d NOR (g ) 3. Lt not vril not in th support of f or g. Thn: D NOR ( f + g) =fp p h g[ D NOR ([ (f + ::: + f k ) + (g + + g l ) ] ) 2 4 mnipultion routins W tst two istint implmnttions of s. In th first implmnttion, vrtis r rliz uniformly with n-tupls, th first lmnt ing n intgr, ll th othrs ing pointrs to othr s. In th first lmnt w no th typ of no (i.., MUX or NOR vrt), th numr of lmnts in th n-tupl (2 for MUX vrtis) n th top vril of th funtion rprsnt. In th son implmnttion, NOR vrtis r implmnt y link lists. Although th mmory ouption of singl list is twi thn tht of th orrsponing rry, this implmnttion llows th shring of list lmnts. In prti, w foun littl iffrn in trms of CPU tim or mmory ouption twn th two lists. In ithr s, w mintin th strutur in strong nonil form, (i.., no two opis of th sm grph ist), y th usul hshing. W implmnt Booln oprtion routins. Fig. (4) rports th psuo-o for th NOR of two funtions. NOR is invok y th ntlist prsr. For h ll, th prsr knows th support of th two funtions n it trmins n uppr oun i on th rursion pth, nmly, th pth of th lst vril in ommon twn op, op2. Th rursion is strutur s follows. First, trminl ss r intifi. Som trminl ss r inu y th omposition. Thy r rport in lins 4-6 of Tl (). In lin 4, w rogniz whthr op, op2 r of typ op = f + g::; op2 = f + h + :::: In this s, op', op2' ontin f f n w rturn. This is mor gnrl thn just hking op = op2'. W lso hk whthr on oprn pprs s omponnt of th othr. Sin snning th two lists t h rursion stp is pnsiv, only th first list lmnts r tully ompr, ftr th two top vrils hv n trmin. trminl s rturn vlu op=orop2= 2 op = n op2 = op2, op 3 op = op2 op DSD(op'); 2 DSD(op2') 5 6 S(op) \ S(op2) = op = f ( : : :), op2 = fop, op2g ff, g Tl. Trminl ss for NOR() In lin 5, w tt if op, op2 hv isjoint support. In this s, w rt n rturn 2-input NOR, with inputs pointing to op, op2, rsptivly. Sin this rus to tst to th input prmtr i, it tks onstnt tim, rgrlss of th vril orring. In lin 6, w onstrut f (in tim linr to th siz of f, in th worst s) n rturn NOR gt rprsnting (f + ). Rows 2, 3 n 4 of NOR r th pplition of Thorm 4, s. D(op) inits th st of lmnts of th omposition of op. In NOR vrt op, it is th st of ll outgoing pointrs (n inits st iffrn oprtion). W sk ommon lmnts in th oprns n rmov thm from th rursion. This rmovl n rsult in fstr ution, s th nw oprns hv fwr vrils. In prti, only th first lmnt of th two lists is hk, for rsons of sp. Aftr this rmovl, w hk th oprtion to s if it rus gin to trminl s. A omput tl mintins prtil rsults. It is look up in Lin 6. Th rmovl of ommon sufuntions rus tl ovrwrits, s w ploit th ntry F + G = H for rtriving rsults of vry oprtion of typ Ff + Gf = Hf. If th srh fils, rursion strts. ; vltop (ml op, ooln vlu) f if (op is MUX no) rturn (op.vlu); 2 i = lmnt of op suh tht op.topvr = op.i.topvr; 3 opr = vltop(op.i, vlu); 4 D(op) = D(op) n op.i; 5 D(rs) = D(opr) [ D(op); 6 rturn (rs); g Figur 5. Psuoo of vltop() Unlik ROBDDs, oftoring my nontrivil. Prour vltop(f, vlu) rturns th oftor f =vlu ssuming is th top vril of f. Aftr rursion, ml fin() rts from top vr n its oftors. W now nlyz in mor til oftoring n rtion. Figur 6. An mpl of vltop() pplition Th psuo-o of vltop is in Fig. (5), n Fig. (6) illustrts its oprtion. vltop() rursivly gos own

4 ; ml fin(ml lft, ml right, top vr ) f if (lft == right) rturn (lft); 2 if (right == ) f 3 nw vrt = fin or rt(,, ); 4 D(rs) = nw vrt [ D(right); 5 rturn(rs); g 6 if (right == ) f similrly g 7 if (lft == or lft == ) f symmtri s g 8 D(op) = D(lft) \ D(right); 9 if ( D(op) = ) rturn( fin or rt(lft, right, ) ); D(lft) = D(lft) n D(op); D(right) = D(right) n D(op); 2 nw vrt = ml fin(lft, right, ); 3 D(rs) = D(op) [ nw vrt ; 4 rturn(rs); g Figur 7. Psuoo of ml fin() th omposition tr (Lin 3) until it rhs th MUX no ll with th top vril of th (Lin ). Sin h gt ontins th inition of th ritil input with th top vril, only on pth of th tr is trvrs. Rturning from rursion, it tks th oftor of th rh MUX n sustituts NOR vrtis with nwly gnrt ons, (ott in Fig. (6.)) whil mintining noniity. In prti, sin oftn th grph of f =vlu ws rt y prvious omputtion, nw gts r rrly gnrt. Morovr, th rursion is typilly vry shllow (on or two lvls in most nhmrk mpls). ) ml H ml I ml J ml H ml I ml J Figur 9. Intition of D uring trvrsl - gnrl s To this rgr, w osrv tht is oun y th numr of vrils n it is rthr smll in prti. Constnt-tim omplmnttion Complmnt gs (i..not gts) in ROBDDs llow us to rprsnt f n f with th sm strutur, n onstnt-tim hking of qulity f = g sps up ution. NOT gts giv ris to noniity prolms, s on my hv rprsnttion of g s NOT(f) n nothr rprsnttion root t ROBDD no. this prolm is solv in ROBDDs y pplying pproprit ruls whn rturning from rursion [9]. Tht pproh is tn to s with th hlp of th following rsult: Thorm 5. If logi funtion F is NOR-omposl, thn its omplmnt F is not. 2 From Thorm (5), w group funtions in thr lsss: omposl, with omposl omplmnt, n not omposl. Our gol is to lwys rprsnt funtions of th son lss s th NOT of funtion of th first lss. From Thorm (4), howvr, if F is in th son lss, thn its oftors must in tht lss s wll. Hn, th sitution prior to th ll to ml fin must s in Fig. (), n th stnr omplmnt g rution ruls pply. ) Figur 8. Intition of D uring trvrsl - trminl ss Prour ml fin() is rsponsil for isovring ompositions. Its psuo-o is in Fig. (7). It uils isovring vry possil ommon trm from th two oftors. It prforms two istint oprtions. First, it onsirs ss (rows 2 to 7) in whih on of th two oftors is onstnt. For instn, rows 2 to 5 min th s right =, i.., th funtion to gnrt is f = lft =( + l + + l n ), whr l i r th omponnts of lft. Fig. (8) shows ths trminl ss. Lins 8-3 l with th gnrl s. Common lmnts twn lft n right r ftor out (Fig. (9)). This pplis s 2 of Thorm 4. As mntion, vltop() n ml fin() rpl oftoring n fin or rt() in ROBDDs. Whil ths oprtions r onstnt-tim in ROBDDs, thy my tk O() tim in s, whr nots th tr pth. Figur. Equivlnt s 5 s vs. ROBDDs In this stion w prsnt som omprisons in rprsnting funtions with s n ROBDDs. Eponntil growth s r lss snsitiv to vril orring. Consir th funtions: F n =( + 2 )( ) ( 2n; + 2n ) (4) An impropr orring of th vrils (for mpl, pling th o-ll vrils up top) rsults in ROBDD for F n with ovr 2 n nos []. Morovr, in spit of th simpliity of th funtion, most vril orringsfor F n n prov. Th of th funtion, inst, orrspons to th nturl, 2-lvl NOR rliztion with n+ NOR gts, n is of siz linr in th numr of vrils, rgrlss of th vril orr.

5 ) A B A A ) A B A B Figur. ) ROBDD strutur for th funtion of Empl (4). ) for th sm funtion. Empl 4. Consir th funtion f =( + A)( + B) + ( + )(A + B), with n orring of vrils pling on top. Sin f = 6= f =, ny ROBDD hs th spt shown in Fig. (.). In gnrl, w my think of s whr th two oftors look lik funtion f n of Eq. (4), ut with iffrnt omintion of prouts. Any orring of A B whih optimizs on rnh is oun to su-optiml for th othr rnh of th ROBDD. Fig. (.) illustrts th for th sm funtion. Both rnhs r utomtilly ompos optimlly. 2 Shring of logi. Domposition mks it possil to shr loks of logi tht oul not shr with ROBDDs: Empl 5. Fig. (2.) shows ROBDDs of funtions: F = ( +y )(p+q), G =( +y )(+), H =(p+q)(+). If w hv to rprsnt thos thr simultnously, whihvr orr w hoos, w n shr t most two sugrphs, ithr ( + ) or (p + q) or ( + y ). This is us ROBDDs rprsnt th AND of two isjoint-support funtions putting on ov th othr. Th rprsnttion, inst, n ploit miml shring. 2. F q p y G y y ) n shr ) H q p F G H Figur 2. ) ROBDDs for Empl (5). ) quivlnt s 5. Eprimntl rsults W ompr s ginst ROBDDs on numr of nhmrk iruits. Bnhmrks r ivi in thr stions: multi-lvl iruits, two-lvl n th omintionl prt of synhronous iruits [2]. For th first st of tsts, w us th Brkly vril orring [3], n no ynmi rorring took pl in ithr pkg. W ssum ron implmnttions, in whih in prtiulr h ROBDD no tks thr mhin wors. Morovr ROBDDs hv omplmnt gs. For vrtis w ssum n implmnttion whr h no onsists of n rry. Th first p q lmnt stors no informtion, whil othrs r pointrs. Complmnt gs r us for NOT gts. CPU-tim ws tkn on HP Vtr 5/33 with 48Myts of RAM. From Tl (2), s turn out to mor ompt on vrg of 8%. Som nhmrks giv prtiulrly goo rsults. For mpl, omp n pir r ompos vry fftivly. For omposl funtions, s oftn rsult lso in ttr CPU tim, us trm shring n us fftivly. Th lrgst nhmrks, howvr, rsistnt to omposition, n in ths ss s rsult in lrgr CPU tim pnitur without signifint mmory sving. W implmnt ynmi rorring in our mol with sifting-s lgorithm [3]. Ovr ROBDDs, w hv th vntg to know mor out goo vril orr irtly from th t strutur. In Tl (2) w mk omprisons using for h nhmrk th orr givn y our sifting (intrstingly, th finl orring iffrs from tht givn for ROBDDs.) Vril orring took pl only t th n of ution. Rsults show tht, ftr sifting, s improv slightly furthr ovr ROBDDs. This is us uring sifting w ploit our ttr knowlg of th funtion s strutur n n voi to go through orrings tht giv smll vntg ut lok furthr improvmnts. 6 Conlusions n futur work s hv prov thmslvs ffiint in mking pliit th Ds of logi funtions. This proprty llows us to rh mor ompt, flil n roust grph-s rprsnttion. Morovr, this rprsnttion is mor informtiv on th rol of th support vrils of funtion. W pt ths proprtis to usful in ivrs pplitions, most notly thnology mpping for omintionl iruits n spilly Booln mthing /rhility nlysis for vrifition / ATPG in squntil iruits, whr th ility of omposing funtions in simplr loks is usful for rwing implitions mong nt-stt funtions. Rfrns [] R. E. Brynt. Grph-s lgorithms for ooln funtion mnipultion. IEEE Trns. on Computrs, 35(8):677 69, August 986. [2] O. Court n J.C. Mr. A unifi frmwork for th forml vrifition of squntil iruits. In Pro. ICCAD, pgs 26 29, Novmr 99. [3] S. Mlik, A. R. Wng, R. K. Bryton, n A. Sngiovnni- Vinntlli. Logi vrifition using inry ision igrms in logi synthsis nvironmnt. In Pro. ICCAD, pgs 6 9, Novmr 988. [4] Y. Mtsung n M. Fujit. Multi-lvl logi optimiztion using inry ision igrms. In Pro. ICCAD, pgs , Novmr 989. [5] H. Touti, H. Svoj, B. Lin, R.K. Bryton, n A. Sngiovnni-Vinntlli. Impliit stt numrtion of finit stt mhins using BDD s. In Pro. ICCAD, pgs 3 33, Novmr 99. [6] R. E. Brynt. Binry ision igrms n yon: nling thnologis for forml vrifition. In Pro. ICCAD, pgs , 995.

6 Brkly orring Aftr ynmi rorring Bnhmrk ROBDDs s ROBDDs s no mm CPU no mm CPU no mm CPU no mm CPU MULTILEVEL p C355.iss C432.iss C499.iss C88.iss omp DES mpl2.lif k pir rot too lrg v TWOLEVEL p5.pl pl mis3.pl mis3.pl so2.pl vg2.pl FSM s s s s s s s s s Tl 2. ROBDD vs. in siz n prformn [7] F. Corno, P. Printto, n M. Sonz Ror. Using symoli thniqus to fin th mimum liqu in vry lrg sprs grphs. In Pro. EDAC, pgs , Mrh 995. [8] Y-T. Li n S. Sstry. Eg-vluinry ision igrms for multi-lvl hirrhil vrifition. In Pro. DAC, pgs , Jun 992. [9] K. S. Br, R. L. Rull, n R. E. Brynt. Effiint implmnttion of BDD pkg. In Pro. DAC, pgs 4 45, Jun 99. [] H. Ohi, K. Ysuok, n S. Yjim. Brth-first mnipultion of vry lrg inry ision igrms. In Pro. DAC, pgs 48 55, Novmr 993. [] K. M. Butlr, D. E. Ross, R. Kpur, n M. R. Mrr. Huristis to omput vril orrings for th ffiint mnipultion of inry ision igrms. In Pro. DAC, pgs 47 42, Jun 99. [2] S. J. Frimn n K. J. Supowit. Fining th optiml vril orring for inry ision igrms. IEEE Trns. on Computrs, 39:7 73, 99. [3] R. Rull. Dynmi vril orring for orr inry ision igrms. In Pro. ICCAD, pgs 42 47, Novmr 993. [4] U. Kshull, E. Shurt, n W. Rosntil. Multilvl logi s on funtionl ision igrms. In EuroDAC, Proings of th Europn Confrn on Dsign Automtion, pgs 43 47, Sptmr 992. [5] R. Drhslr, A. Sri, M. Thol, B. Bkr, n M. A. Prkowski. Effiint rprsnttion n mnipultion of of swithing funtions s on orr kronkr funtionl ision igrms. In Pro. DAC, pgs 45 49, Jun 994. [6] Kvin Krplus. Rprsnting ooln funtions with if-thnls gs. Thnil Rport UCSC-CRL-88-28, Bskin Cntr for ComputrEnginring & Informtion Sins, 988. [7] S.-I. Minto. Zro-supprss s for st mnipultion in omintoril prolms. In Pro. DAC, pgs , Jun 993. [8] Y.-T.Li, M. Prm, n S. B. K. Vruhul. Ev-s lgorithms for ilp, sptrl trnsform n funtion omposition. IEEE Trns. on CAD/ICAS, 3(8): , August 994. [9] V. Brto n M. Dmini. Booln funtion rprsnttion using prlll-ss igrms. In Sith Grt Lks Symposium on VLSI, Mrh 996. [2] F. Milhot n G. DMihli. Algorithms for thnology mpping s on inry ision igrms n on ooln oprtions. IEEE Trns. on CAD/ICAS, pgs , My 993. [2] S. Yng. Logi synthsis n optimiztion nhmrk usr gui, vrsion 3.. MCNC, Jnury 99.

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Boolean Function Representation based on disjoint-support decompositions. Λ

Boolean Function Representation based on disjoint-support decompositions. Λ Booln Funtion Rprsnttion s on isjoint-support ompositions. Λ Vlri Brto n Murizio Dmini Diprtimnto i Elttroni Inormti Univrsitá i Pov, Vi Grnio 6/A, 353 Pov, ITALY -mil: rin@i.unip.it mini@i.unip.it Tl:

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

A Graph-Based Synthesis Algorithm for AND/XOR Networks 1. Yibin Ye Kaushik Roy. a minimum ESOP of a function except for those with

A Graph-Based Synthesis Algorithm for AND/XOR Networks 1. Yibin Ye Kaushik Roy. a minimum ESOP of a function except for those with A Grph-Bs Synthsis Algorithm or AND/XOR Ntworks Yibin Y Kushik Roy Shool o Eltril n Computr Enginring Puru Univrsity, Wst Lytt, IN 4797-285, USA Abstrt In this ppr, w introu Shr Multipl Root XORbs Domposition

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW Smll Pth Quiz ML n Dtss Cn you giv n xprssion tht rturns th lst / irst ourrn o h istint pri lmnt? Ltur 8 Strming Evlution: how muh mmory o you n? Sstin Mnth NICTA n UNSW

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b)

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b) Outlin MULTIPLE-LEVEL LOGIC OPTIMIZATION Gionni D Mihli Stnfor Unirsit Rprsnttions. Tonom of optimition mthos: { Gols: r/l. { Algorithms: lgri/booln. { Rul-s mthos. Empls of trnsformtions. Booln n lgri

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Reducing the Depth of Quantum Circuits Using Additional Circuit Lines

Reducing the Depth of Quantum Circuits Using Additional Circuit Lines Ruing th Dpth of Quntum Ciruits Using Aitionl Ciruit Lins Nil Assi 1, Rort Will 1,2, Mthis Sokn 1,2, n Rolf Drhslr 1,2 1 Institut of Computr Sin, Univrsity of Brmn Group of Computr Arhittur, D-28359 Brmn,

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

Design Optimization Based on Diagnosis Techniques

Design Optimization Based on Diagnosis Techniques Dsign Optimiztion Bs on Dignosis Thniqus Anrs Vnris Mgy S. Air Irhim N. Hjj Univrsity of Toronto Motorol Univrsity of Illinois ECE Dprtmnt 77 W. Prmr ECE Dprtmnt n CSL Toronto, ON M5S 34 Austin, T 78729

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13 4//3 RAM Mol 5-853: Algorithms in th Rl Worl Lolity I: Ch-wr lgorithms Introution Sorting List rnking B-trs Bur trs Stnr thortil mol or nlyzing lgorithms: Ininit mmory siz Uniorm ss ost Evlut n lgorithm

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Efficient Broadcast in MANETs Using Network Coding and Directional Antennas

Efficient Broadcast in MANETs Using Network Coding and Directional Antennas Effiint Brost in MANETs Using Ntwork Coing n Dirtionl Antnns Shuhui Yng Dprtmnt of Computr Sin Rnsslr Polythni Institut Troy, NY 28 Ji Wu n Mihl Cri Dprtmnt of Computr Sin n Enginring Flori Atlnti Univrsity

More information

Clustering for Processing Rate Optimization

Clustering for Processing Rate Optimization Clustring for Prossing Rt Optimiztion Chun Lin, Ji Wng, n Hi Zhou Eltril n Computr Enginring Northwstrn Univrsity Evnston, IL 60208 Astrt Clustring (or prtitioning) is ruil stp twn logi synthsis n physil

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

CS553 Lecture Register Allocation I 3

CS553 Lecture Register Allocation I 3 Low-Lvl Issus Last ltur Intrproural analysis Toay Start low-lvl issus Rgistr alloation Latr Mor rgistr alloation Instrution shuling CS553 Ltur Rgistr Alloation I 2 Rgistr Alloation Prolm Assign an unoun

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information