A Graph-Based Synthesis Algorithm for AND/XOR Networks 1. Yibin Ye Kaushik Roy. a minimum ESOP of a function except for those with

Size: px
Start display at page:

Download "A Graph-Based Synthesis Algorithm for AND/XOR Networks 1. Yibin Ye Kaushik Roy. a minimum ESOP of a function except for those with"

Transcription

1 A Grph-Bs Synthsis Algorithm or AND/XOR Ntworks Yibin Y Kushik Roy Shool o Eltril n Computr Enginring Puru Univrsity, Wst Lytt, IN , USA Abstrt In this ppr, w introu Shr Multipl Root XORbs Domposition Digrm (XORDD) to rprsnt untions with multipl outputs. Bs on th XORDD rprsnttion, w vlop synthsis lgorithm or gnrl Elusiv Sum-o-Prout orms (ESOP). By itrtivly pplying trnsormtions n rutions, w obtin ompt XORDD whih givs minimiz ESOP. Our mtho n synthsiz lrgr iruits thn prviously possibl. Th ompt ESOP rprsnttion provis orm tht is sir to synthsiz or XOR hvy multi-lvl iruit, suh s rithmti untions. W hv ppli our synthsis thniqus to lrg st o bnhmrk iruits in both PLA n ombintionl ormts. Rsults o th minimiz ESOP orms obtin rom our synthsis lgorithm r lso ompr to th SOP orms gnrt by ESPRESSO. Among th 74 iruits whv primnt with, th minimiz ESOP's hv wr prout trms thn thos o SOP's in 39 iruits. INTRODUCTION In mny pplitions, th AND/XOR rliztions o igitl iruits r vry int. Whil powrul optimiztion tools or AND/OR bs synthsis hv bn vlop in th lst w yrs, (suh s ESPRESSO [], MIS [] n BOLD [6]), thr r w minimiztion n synthsis tools vilbl whih inlu AND/XOR rliztions. Thr r svrl lsss o th AND/XOR orms, o whih th Elusiv Sum-o-Prout (ESOP) prssion is th most gnrl 2-lvl orm. Th problm o ning th miniml SOP's o Booln untion is lssil problm in swithing thory whih hs bn stui or mny yrs. Th minimiztion o ESOP's is muh mor iult thn Th rsrh ws support in prt by NSF ( MIP) n by ARPA (F C-625), n IBM Corportion. Dsign Automtion Conrn R Copyright 997 by th Assoition or Computing Mhinry, In. Prmission to mk igitl or hr opis o prt or ll o this work or prsonl or lssroom us is grnt without provi tht opis r not m or istribut or prot or ommril vntg n tht opis br this noti n th ull ittion on th rst pg. Copyrights or omponnts o this work own by othrs thn ACM must b honor. Abstrting with rit is prmitt. To opy othrwis, to rpublish, to post on srvrs, or to ristribut to lists, rquirs prior spi prmission n/or. Rqust prmissions rom Publitions Dpt, ACM In., + (22) , or prmissions@m.org /97/6/$3.5 DAC 97-6/97 Anhim, CA, USA tht o SOP's. So r no int mtho is known to obtin minimum ESOP o untion pt or thos with vry smll numbr o vribls. Rntly, Sso [2] vlop huristi pproh whih ppli mthos similr to ESPRESSO by itrtivly ning smllr ovrs o prouts n by looking or prity-lik pttrns. Whil ESPRESSO sus in minimizing th SOP's o most prtil untions, similr mthoology is lss powrul whn ppli to minimiz th ESOP's. This is u to th t tht only prim implints n to b srh in th minimiztion o SOP's, whil th srh sp is rstilly lrgr in minimizing th ESOP's. In this ppr, w prsnt grph-bs minimiztion mtho or gnrl ESOP's. W strt rom ision igrm (.g. BDD [2]) o untion (multipl primry outputs in gnrl). By itrtivly pplying trnsormtions n rutions, w nlly obtin ompt Shr Multipl Root XOR-bs Domposition Digrm (XORDD) whih givs minimiz ESOP. Our mtho promiss to b int sin trnsormtions r prorm by ing n rmoving gs n byhnging g vlus rthr thn omputing nw sub-untions. Although our synthsis mtho is implmnt or optimizing two-lvl AND/XOR ntworks, it is possibl to b ppli to multi-lvl AND/XOR ntworks with som moitions. This is bus Shr Multipl Root XORDD is multi-lvl rprsnttion o untions. Th rst o th ppr is orgniz s ollows. Stion 2 introus th XOR-Bs Domposition Digrms. Stion 3 prsnts synthsis lgorithm bs on XORDD rprsnttion or minimizing ESOP's. Rsults o our synthsis lgorithm on bnhmrk iruits r til in St. 4. In St. 5, w giv th onlusions n isuss th urthr pnsion o our lgorithm to multilvl AND/XOR ntworks. 2 XOR-BASED DECOMPOSITION DIA- GRAM 2. Grph rprsnttions o Booln untions Brynt prsnt th Orr Binry Dision Digrm (OBDD) [2] s nonil orm or Booln untions. It is urrntly on o th most populr t struturs or th rprsnttion o Booln untions. OBDDs hv bn wily us in logi synthsis, vrition, n tsting. Whil OBDDs r MUX-bs rprsnttions, nothr typ o

2 Dision Digrm, th Orr Funtionl Dision Digrms (OFDD), hv bn introu [7, 3], whih r bs on AND/XOR rprsnttions. In th ollowing prgrph, w rst min th omposition qutions on whih th OBDDs n OFDDs r bs, thn w n our nw grph rprsnttions or Booln untions. Lt : B n! B b Booln untion ovr th vribl st X n. Lt i not th otor o with rspt to i = givn by i () =( ;i,;;i+; ;n). Similrly, i nots th otor o with rspt to i = givn by i () =( ;i,;;i+; ;n). W lso n i 2 s i 2 = i i. Not tht ll i, i n i 2 r inpnnt o i. Using th bov nottions, whv th ollowing ompositions: = i i + i i = i i i i () = i i 2 i (2) = i i 2 i (3) Whil th OBDD rprsnttion o Booln untion is bs on Eq. (), th OFDD is bs on Eq. (2) n (3). A mor gnrl ision igrm, th Orr Kronkr Funtionl Dision Digrm (OKFDD), hs bn introu rntly in [4]. All thr omposition typs r us in OKFDDs, n hn OKFDD is ombintion o OBDD n OFDD. Th siz o OKFDDs is, in gnrl, smllr thn tht o OBDDs n OFDDs. W now n Gnrl Domposition Digrms (GDD) n XOR-bs Domposition Digrms (XORDD) whih r us or rprsnttion n minimiztion o ESOP's. Dnition A Gnrl Domposition Digrm (GDD) ovr st o vribls X := null; ; 2;;ng isroot irt yli grph (DAG) G=(V,E) with two typs o vrtis, non-trminl n trminl. A non-trminl vrt v is ssoit with n oprtion (OR, XOR, t.) s wll s vribl 2 X, n hs on or mor hilrn vrtis 2 V. Egs rom non-trminl vrt o vribl i to its hilrn vrtis r lbl with ithr, or 2, whih giv th g vlu i, i, or, rsptivly. Egs rom non-trminl vrt ssoit with null vribl r not lbl n lwys hv th vlu o. A trminl vrt is lbl with ithr or n hs no hilrn vrtis. Eh vribl is nountr t most on whn trvrsing rom root to trminl vrt. Th GDD is simply gnri grph rprsnttion o Booln untions. Wht istinguishs GDD rom n rbitrry multi-lvl logi rprsnttion is th rstrition tht h vribl is nountr t most on whn trvrsing rom root to trminl vrt in GDD. This rstrition is u to th typ o ompositions to b impos on th grph. Dnition 2 An XOR Domposition Digrm (XORDD) ovr st o vribls X := null; ; 2;;ng is spil s o GDD, in whih only th XOR oprtion is ssoit with h non-trminl vrt. Not tht XORDD is omposition igrm rthr thn ision igrm. A non-trminl vrt in n XORDD n hv on, two, or mor hilrn vrtis. Outgoing gs rom vrt n hv th sm lbl (n hn, th sm vlu). Fig. illustrts how nxordd rlts to th untion it rprsnts. Assigning vlu to h g is n importnt tur in XORDD rprsnttions, bus hnging th typ o ompositions n b rliz by hnging 2 2 () = null (b) = Figur : Th XORDD rprsnttion o untions b b b b b () OBDD (b) OFDD () XORDD Figur 2: Th sm untion rprsnt by OBDD, OFDD n XORDD, rsptivly th g onntions n g vlus rthr thn omputing nw sub-untions. OBDD, OFDD n OKFDD r spil ss o XORDD bs on our nition o XORDD. W ssum th rrs r milir with th OBDD n OFDD rprsnttions o Booln untion. For th purposs o omprison, th ollowing mpl givs th thr grph rprsnttions givn by OBDD, OFDD n XORDD, rsptivly. Empl Lt us onsir th untion = b + + b. Fig. 2 shows ll thr typs o grph rprsnttions. Not tht in th OFDD, both omposition typs o Eq. (2) n (3) hv bn ppli, whr lbl nots i, nots i n 2 nots 2 i. Whil XORDD is multi-lvl rprsnttion, th twolvl AND/XOR orm n b sily onstrut rom th grph s ollows: A -pth is pth rom root to -lbl trminl vrt. Eh -pth ns prout trm whih is th prout o ll th g vlus in th pth. Th untion n thn b prss in orm o XOR sum o prout trms o ll -pths. Thror, th numbr o -pths is qul to th numbr o trms in th ESOP's. On n obsrv tht th -lbl trminl vrt is not usul in th XORDD rprsnttions. Unlss othrwis mntion, th XORDD's hv only on typ o trminl vrt with lbl. Lt us onsir Empl n Fig. 2 gin. Th twolvl prssions givn by OBDD, OFDD n XORDD r b b b, b n b, rsptivly. It is importnt to not tht n OFDD rprsnttion o untion lwys givs sub-lss o ESOP prssions, th nonil R-Mullr orm []. Th XORDD rprsnttion, howvr, givs gnrl ESOP orm. Convrsly, n ESOP prssion n lwys b rprsnt by nxordd, n only Fi Polrity R-Mullr [3, ] prssions n lwys b rprsnt by OFDDs. So r, only singl output untions (hn singl root XORDD's) hv bn isuss. For untions with multipl outputs, w onstrut Shr Multipl Root XORDD rprsnttions, in whih ommon intrnl vrtis r shr by svrl omponnt untions. Whil this tnsion is strightorwr, w n to not tht ommon -pth shoul b b

3 Rutions Trnsormtions () () () ( ) ( ) () Chng th omposition typ () (b) () 2 Figur 3: Thr bsi rution ruls o XORDD (b) Mov () Split b ount only on in trmining th numbr o prout trms o ESOP's. Sin in most ss w l with multiploutput iruits, unlss othrwis mntion, th XORDD is shr multipl root grph. 2.2 Rutions on XORDD For givn XORDD, th ollowing rution ruls n b ppli to ru th siz o XORDD.. Dlt trminl vrtis lbl with. 2. I two gs btwn two vrtis hv th sm vlu, thn thy r rmov (Fig. 3() n 3(b)). 3. I two gs rom vrt v to v r lbl with n rsptivly, w rmov thm n rirt gs pointing to v to point tov (Fig. 3()). 4. Dlt non-trminl vrtis tht o not hv sussors. 5. Dlt non-trminl vrtis (pt root vrtis) tht o not hv prssors. Rution rul () is nssry bus th initil XORDD w strt with is Dision Digrm (OBDD, OFDD or OKFDD) whih hs two trminl vrtis lbl with n rsptivly. Rution rul (2) n (3) r illustrt in Fig. 3, whih r bs on th ollowing ts: igj igj = igj igj = (4) igj igj = gj(i i) =gj (5) 2.3 Trnsormtions on XORDD Bsis th rutions givn bov, th ollowing trnsormtions on n XORDD will b ppli on n XORDD. Chng o omposition: Th thr typs o omposition srib in Eq.s () { (3) n b rwrittn s ollows: i i i i = i i( i i )= i i( i i); 2 () Mrg () Etrt 2 Figur 4: Bsi trnsormtion stps o XORDD whr i i = i 2, whih ws n in St. 2. Th hng rom on typ o omposition to nothr n b rliz by hnging th vlu o n g n ing nothr g. This is illustrt in Fig. 4(), whr th lbl 2;;2g. Mov: An g with lbl 2 (or vlu ) n mov to onnt to prnt nos, s shown in Fig. 4(b) Split: Avrt with multipl inoming or outgoing gs n b split into two or mor vrtis, s illustrt in Fig. 4(). Mrg: I two or mor outgoing (inoming) gs o vrt hv th sm vlu n go to (om rom) vrtis o th sm vribl, thn thy n b mrg s shown in Fig. 4(). Etrt: I two or mor inoming (outgoing) gs o vrt hv th sm vlu, thy my b trt in wy s illustrt in Fig. 4(). Etrt is ssntilly ompoun oprtion onsisting o split n mrg. 3 SYNTHESIS ALGORITHM FOR ESOP Our synthsis strtgy o minimizing ESOP's is s ollows: Strting rom n initil XORDD rprsnttion o multipl output untion (n b OBDD, OFDD or OKFDD), w itrtivly pply trnsormtions n rutions to -

4 nlly obtin shr multipl root XORDD whih givs minimiz ESOP. 3. Algorithms or minimiztion Our gol is to obtin ompt XORDD rom th initil lrg XORDD by itrtivly pplying trnsormtions n rutions. Th numbr o prout trms n litrls shoul b simultnously minimiz. W onlu in th prvious stion tht th numbr o prout trms is qul to th numbr o -pths in n XORDD n tht h -pth - ns prout trm whih is th prout o ll g vlus in th pth. On ption is tht ommon -pth shr by multipl roots shoul b ount only on. By mining th rutions n trnsormtions introu in St. 2.3, on n obsrv tht rutions lwys ru th objtiv untions (# o prout trms n litrls). Howvr, trnsormtions o not irtly rsult in mor ompt grph. Whil mrg, split, n trt o not t th objtiv untions, hng o omposition tully inrss th vlu o objtiv untions. Th purpos o prorming trnsormtions on n XORDD is to rt opportunitis or mor rutions. Thus, w n to intiy whih typs o trnsormtions shoul b prorm on prtiulr no or g. In our synthsis thniqus, lol loop ttion is us in trmining trnsormtions n rutions. Lol loop ttion: Dttion o thr bsi loops r prorm in our synthsis thniqu. Ths r illustrt in Fig. 5. In loop typ (Fig. 5()), w n rst mrg two nos n thn pply rution rul (3). In loop typ 2 (Fig. 5(b)), n g lbl is hng rst. W thn mrg two nos ollow by rution. In loop typ 3(Fig. 5()), tr hnging n g lbl, rution n b ppli. An lgorithm to minimiz th objtiv untions o th XORDD is givn blow: Stp : Crt Multipl Root Shr OBDD (or OFDD, OKFDD) s th initil XORDD rom th originl two-lvl or multi-lvl iruit sriptions. Stp 2.: Strt rom th lowst lvl vrtis. Emin h no to trmin i rutions n b irtly ppli. Stp 2.2: Dtt thr ruibl loops isuss in St. 2.3 (lso shown in Fig. 5). Chng th lbl o som inoming gs (i.., hng ompositions), thn pply rutions on prnt no(s). Stp 3: For vry vrt in th nt lowst lvl, rpt th sm trnsormtions n rutions givn in stps 2. n 2.2. Stp 4: Lvl by lvl rom th bottom up to th root vrtis, rpt th sm oprtions givn in stps 2. n 2.2. Stp 5: For h no, min th inoming gs, o mrg n trt s shown in Fig. 4 to hng th topology o th grph. Thn rpt stp 2 { Globl trnsormtions Not tht only smll loops r tt in stp 2.2. Similr opportunitis or rution ist in lrgr loops. Howvr, it is usully iult to tt lrgr loops n urthr intiy () loop typ (b) loop typ 2 () loop typ 3 Figur 5: Thr typs o loops r inti, on whih rutions n b ppli tr prorming rtin trnsormtions. whih prtiulr trnsormtions shoul b ppli. Potntil rutions will b miss i only ths smll loops shown in Fig. 5 r onsir. As n mpl, lt us onsir th loop shown in Fig. 6. Th originl loop in Fig. 6() will not b tt in th lgorithm shown bov. I w hng th orr o vribl b n, s shown in Fig. 6(b), w n mrg two nos o vribl b. Now th loop shrinks n will b tt or rution, s shown in Fig. 6(). Thror, i w llow vribls mov rom on lvl to nothr, thr r hns tht lrg ruibl loops will shrink, n bom ttbl. W rr ths trnsormtions tht llow vribls mov s to \globl trnsormtions". Stp 6 { Globl trnsormtions Stp 6.: Rnomly slt vribl, mov ll th nos o this vribl to th bottom. Stp 6.2: Rpt stp 6. n tims, whr n pns on th numbr o primry inputs (in our implmnttion, n= # o primry inputs). Thn pply lol trnsormtions (stp 3{5) gin. Stp 6.3: Rpt globl trnsormtions stp 6.2 until vry w rutions n b oun. Lt us onsir untion = b + b + b + b s n mpl. Th miniml SOP rprsnttion hs 4 prout trms n 2 litrls, n th miniml ESOP rprsnttion is = b b, whih hs 4 prout trms n 8 litrls Th initil OBDD tr rmoving th -trminl is shown in Fig. 7(). First, onsir gs o th -trminl. Mrg or trt n not b irtly ppli. Atr hnging n g lbl rom!, th two nos o vribl n b mrg n rution n b ppli. Thus w obtin th grph o Fig. 7(b). W now onsir th nt lowst lvl vribl. By mining th our inoming gs o no,

5 b () (b) () (b) Figur 6: An mpl o globl trnsormtion. Mor ruibl loops n b oun by prorming globl trnsormtions. th our nos o vribl n b mrg into two nos, s shown in Fig. 7(). From no, two typ 2ruibl loops (both r!! b!! ) n b tt. By hnging th lbl (rom to ) o th g btwn no n, w n mrg th two nos o vribl to obtin Fig. 7(). W now onsir vribl. A numbr o rutions r vilbl on no. Atr rutions, w hv th grph in Fig. 7(). Thr is nw rution vilbl btwn no n no. W n lso mrg two nos o b. Atr nl rution stp, w obtin th XORDD o Fig. 7(), whih givs th minimum ESOP prssion. 4 EXPERIMENTAL RESULTS Th XORDD-bs synthsis mtho is ppli to lrg st o bnhmrk iruits in both PLA n ombintionl ormts. Rsults r summriz in tbl. In th rst olumn, iruits with n strisk r in PLA ormt. in n out rprsnt th numbr o inputs n outputs o th iruits. pu nots th pu tim in sons on SPARC 5worksttion. Unlik mny prvious work [9, ], w synthsiz multipl outputs simultnously to plor th ommon prout trms shr by multipl outputs. Minimiz SOP's obtin rom ESPRESSO r lso inlu in th tbls. For mny untions,.g. 5p, p5, r53, r73, r84, t48, or5 t., th ESOP's hv onsirbly wr prout trms thn th SOP's. On th othr hn, or untions suh sp, p3, ps, spl, t., th SOP's r signintly mor ompt. On vrg, th omptnss o ths two orms r omprbl. Among th 74 iruits whv primnt with, th minimiz ESOP's hv wr prout trms thn thos o SOP's in 39 iruits. For som prtiulr typs o untions, on rprsnttion is bttr thn th othr. On vrg, th XORDD-bs synthsis lgorithm onsums omprbl pu tim with tht o ESPRESSO. Howvr, or mny lrgr iruits w min, th XORDD-bs lgorithm onsums signintly lss pu tim. Not tht most o th pu tim onsum in XORDD-bs synthsis is or th initil BDD rtion. Th synthsis lgorithm usully onsums lss thn 5% o th totl pu tim rport in th tbl. For som ombintionl iruits, no ompt two-lvl orms in ithr ESOP or SOP oul b obtin. W primnt with iruits suh si3, i4, rot, pir, C432, n C98. Th numbr o prout trms r mor thn tns o thousns or suh iruits. W hv not list ths iruits in Tbl. As long s th initil ision igrm r sussully rt, th XORDD-bs mtho n lwys gnrt rsults. Tbl 2 list svrl iruits or whih () () () b = b b b Figur 7: An mpl showing how th lgorithm is prorm on untion -rom initil BDD to th nl ompt XORDD, whih givs minimiz ESOP orm ESPRESSO i not prou ny rsult in 3 minuts on SUN SPARC worksttion. Th lst olumn no in Tbl 2 rprsnts th numbr o nos in n XORDD. It shoul b not tht th siz o XORDD's is still smll vn though th iruits hv lrg numbr o prout trms n litrls. Th shr multi-lvl strutur o XORDD's givs ompt rprsnttion o ths untions. Morovr, th pu tim pns on th siz o th grph. For som vn lrgr iruits, suh sc267, C354, n C755, w rt XORDDs, howvr, th numbr o prout trms n litrls r ssivly lrg. W l tht ths iruits r inhrntly not suitbl or two-lvl rliztions. 5 CONCLUSIONS AND FUTURE WORK W hv n nw Shr Multipl Root XOR-bs Domposition Digrm to rprsnt multipl output untions. Bs on this typ o grph, w prsnt n int lgorithm to minimiz th ESOP's. Th mtho sussully minimiz lrg untions with multipl outputs. In this ppr, only two-lvl AND/XOR minimiztion hs bn implmnt. With som moitions, our lgorithm n b tn to optimiz multi-lvl AND/XOR ntworks. This is bus Shr Multipl Root XORDD is multi-lvl rprsnttion o untions. An lgorithm is urrntly bing vlop to minimiz multi-lvl AND/XOR ntworks. This n b omplish by using th numbr o litrls s th objtiv untion(not to b onus with th litrl ounts in two lvl ESOP's) n by rling th rstrition tht h vribl n only b nountr on in pth rom root vrt to th trminl vrt in XORDD. () ()

6 Tbl : Minimiz ESOP's or bnhmrk iruits (in both PLA n ombintionl ormts) n thir omprison with SOP's rom ESPRESSO Ciruit ESPRESSO XORDD-bs synthsis in out trms litrls pu trms litrls pu 5p* sym* p* p3* p5* b2* ps* * * * r53* r73* r84* spl* t48* or5* p p ALU ALU b b mb ount lu rg rg ** ** ** i i i i prity 6 ** ** ** 6 7. ttt v * iruits in PLA ormt ** not vilbl tr 5 minuts o pu tim Tbl 2: Som ombintionl iruits with lrg numbr o prout trms n litrls Ciruit XORDD bs synthsis in out trms litrls pu nos s i i my r C REFERENCES [] R.Bryton, R.Rull, A.Sngiovnni-Vinntlli, n A.Wng, \MIS: A Multi-lvl Logi Optimiztion Systm," IEEE Trnstions on CAD/ICAS, Vol. CAD-6, No. 6, Novmbr 987, pp [2] R.E. Brynt, \Grph-Bs Algorithms or Booln Funtion Mnipultion," IEEE Trns. on Computrs, Vol. C-35, No. 8, August 986, pp [3] R.Drhslr, M.Thobl, n B.Bkr, \Fst OFDD bs Minimiztion o Fi Polrity R-Mullr Eprssions," Pro. Europn Dsign Automtion Con., 994, pp [4] R.Drhslr, A.Srbi, M.Thobl, B.Bkr, M.A.Prkowski, \Eint Rprsnttion n Mnipultion o Swithing Funtions bs on Orr Kronkr Funtionl Dision Digrms," DAC, Proings o th Dsign Automtion Conrn, 994, pp [5] H.Flishr, M.Tvl, n J.Ygr, \A Computr Algorithm or Minimizing R-Mullr Cnonil Forms," IEEE Trns. on Computrs, Vol. C-36, No.2, 987, pp [6] G. Hhtl, M.Lightnr, R.Joby, C.Morrison, P.Moyuns, n D. Bostik, \Bol: Th Boul optiml Logi Dsign Systm," Hwii Int. Symp. on Systms Sins, 988. [7] U.Kbshull, E.Shubrt, n W.Rosnstil, \Multilvl Logi Bs on Funtionl Dision Digrms," Pro. Europn Dsign Automtion Con., 992, pp [8] S. Mlik, A.R.Wng, R.K. Bryton, n A. Sngiovnni- Vinntlli, \Logi Vrition using Binry Dision Digrms," Pro. Intl. Conrn on Computr-Ai Dsign., 988, pp [9] A.Sbbi, n M.A.Prkowski, \ Fst Et n Qusi-Miniml Minimiztion o Highly Tstbl Fi-Polrity AND/XOR Cnonil Ntworks," Pro. 29th ACM/IEEE Dsign Automtion Conrn, 992, pp [] M.A.Prkowski, L.Csnky, A. Srbi, n I.Shr, \Fst Minimiztion o Mi-Polrity AND/XOR Cnonil Ntworks," Pro. Intl. Conrn on Computr Dsign, 992, pp [] R.Rull n A. Sngiovnni-Vinntlli, \Multipl-vlu Minimiztion or PLA Optimiztion," IEEE trnstions on CAD/ICAS, Vol. CAD-6, No. 5, Sptmbr 987, pp [2] T.Sso, \EXMIN2: A Simplition Algorithm or Elusiv- OR-SUM-o Prouts Eprssions or Multipl-Vlu-Input Two-Vlu-Output Funtions," IEEE Trns. on Computr- Ai Dsign, Vol. 2, No. 5, My 993, pp

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b)

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b) Outlin MULTIPLE-LEVEL LOGIC OPTIMIZATION Gionni D Mihli Stnfor Unirsit Rprsnttions. Tonom of optimition mthos: { Gols: r/l. { Algorithms: lgri/booln. { Rul-s mthos. Empls of trnsformtions. Booln n lgri

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Lecture 11 Binary Decision Diagrams (BDDs)

Lecture 11 Binary Decision Diagrams (BDDs) C 474A/57A Computer-Aie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, K-mp, iruit, et

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Clustering Techniques for Coarse-grained, Antifuse-based FPGAs

Clustering Techniques for Coarse-grained, Antifuse-based FPGAs Clustring Thniqus or Cors-grin, Antius-s FPGAs Chng-woo Kng n Mssou Prm Astrt In this ppr, w prsnt r n prormn-rivn lustring thniqus or ors-grin, ntius-s FPGAs. A mro logi ll in this lss o FPGAs hs multipl

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Partitioning Algorithms. UCLA Department of Computer Science, Los Angeles, CA y Cadence Design Systems, Inc., San Jose, CA 95134

Partitioning Algorithms. UCLA Department of Computer Science, Los Angeles, CA y Cadence Design Systems, Inc., San Jose, CA 95134 On Implmnttion Chois for Itrtiv Improvmnt Prtitioning Algorithms Lrs W. Hgn y, Dnnis J.-H. Hung n Anrw B. Khng UCLA Dprtmnt of Computr Sin, Los Angls, CA 90024-1596 y Cn Dsign Systms, In., Sn Jos, CA 95134

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

35 th Design Automation Conference Copyright 1998 ACM

35 th Design Automation Conference Copyright 1998 ACM Eint Booln ivision n Sustitution Shih-Chih Chng vi Ihsin Chng pt. o CS n IE Ntionl Chung Chng Univrsit Ultim Intronnt Th. Chi-Yi, TAIWAN, ROC Sunnvl, CA 94086 Astrt Booln ivision, n hn Booln sustitution,

More information

Reducing the Depth of Quantum Circuits Using Additional Circuit Lines

Reducing the Depth of Quantum Circuits Using Additional Circuit Lines Ruing th Dpth of Quntum Ciruits Using Aitionl Ciruit Lins Nil Assi 1, Rort Will 1,2, Mthis Sokn 1,2, n Rolf Drhslr 1,2 1 Institut of Computr Sin, Univrsity of Brmn Group of Computr Arhittur, D-28359 Brmn,

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii - Nming frtions Chptr Frtions Eh shp rprsnts ONE whol. i ii Wht frtion is shdd? Writ s frtion nd in words. Wht frtion is not shdd? Writ s frtion nd in words. i ii i ii Writ s mny diffrnt frtions s you

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Design Optimization Based on Diagnosis Techniques

Design Optimization Based on Diagnosis Techniques Dsign Optimiztion Bs on Dignosis Thniqus Anrs Vnris Mgy S. Air Irhim N. Hjj Univrsity of Toronto Motorol Univrsity of Illinois ECE Dprtmnt 77 W. Prmr ECE Dprtmnt n CSL Toronto, ON M5S 34 Austin, T 78729

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13 4//3 RAM Mol 5-853: Algorithms in th Rl Worl Lolity I: Ch-wr lgorithms Introution Sorting List rnking B-trs Bur trs Stnr thortil mol or nlyzing lgorithms: Ininit mmory siz Uniorm ss ost Evlut n lgorithm

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Decimals DECIMALS.

Decimals DECIMALS. Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

More information