Clustering for Processing Rate Optimization

Size: px
Start display at page:

Download "Clustering for Processing Rate Optimization"

Transcription

1 Clustring for Prossing Rt Optimiztion Chun Lin, Ji Wng, n Hi Zhou Eltril n Computr Enginring Northwstrn Univrsity Evnston, IL Astrt Clustring (or prtitioning) is ruil stp twn logi synthsis n physil sign in th lyout of lrg sl sign. A sign vrifi t th logi synthsis lvl my hv timing losur prolms t post-lyout stgs u to th mrgn of multipl-lok-prio intronnts. Consquntly, tr-off twn lok frquny n throughput my n to mt th sign rquirmnts. In this ppr, w fin tht th prossing rt, fin s th prout of frquny n throughput, of squntil systm is uppr oun y th riprol of its mximum yl rtio, whih is only pnnt on th lustring. W formult th prolm of prossing rt optimiztion s sking n optiml lustring with th miniml mximum-yl-rtio in gnrl grph, n prsnt n itrtiv lgorithm to solv it. Sin our lgorithm vois inry srh n is ssntilly inrmntl, it hs th potntil of ing omin with othr optimiztion thniqus. Exprimntl rsults vlit th ffiiny of our lgorithm. 1 Introution Ciruit lustring (or prtitioning) is oftn mploy twn logi synthsis n physil sign to ompos lrg iruit into prts. Eh prt will implmnt s sprt lustr tht stisfis rtin sign onstrints, suh s th siz of lustr. Clustring hlps to provi th first orr informtion out intronnt lys s it lssifis intronnts into two tgoris: intr-lustr ons r lol intronnts u to thir sptil proximity whil intr-lustr ons my om glol intronnts ftr floorpln/plmnt n routing (lso known s iruit lyout). Du to ggrssiv thnology sling n inrsing oprting frqunis, intronnt ly hs om th min prformn limiting ftor in lrg sl signs. Inustry t shows tht vn with intronnt optimiztion thniqus suh s uffr insrtion, th ly of glol intronnt my still longr thn on lok prio, n multipl lok prios r gnrlly rquir to ommunit suh glol signl. Sin glol intronnts r not visil t logi synthsis whn th funtionlity of th implmnttion is th mjor onrn, sign tht is orrt t th logi synthsis lvl my hv timing losur prolms ftr lyout u to th mrgn of multipl-lok-prio intronnts. This gp hs motivt rnt rsrh to tkl th prolm from iffrnt spts of viw. Som of thm rsort to rtiming [14], whih is tritionl squntil optimiztion thniqu tht movs flip-flops within iruit without stroying its funtionlity. It ws us in [21, 4, 17, 20, 16] to piplin glol intronnts so s to ru th lok prio. Although rtiming hlps to rliv th ritility of glol intronnts, thr is lowr oun of th lok prios tht n hiv us rtiming nnot hng th ltny of ithr (topologil) yl or n input-to-output pth in th iruit. In s tht th lowr oun os not mt th frquny rquirmnt, rsign n r-synthsis my hv to rri out. On wy to voi rsign is to insrt xtr wir-piplining units lik flip-flops to piplin long intronnts, s on within Intl [5] n IBM [13]. It n shown tht if th prio lowr oun is trmin y n input-to-output pth, piplining n ru th lowr oun without ffting th funtionlity. Howvr, if th prio lowr oun is givn y yl, insrting xtr flip-flops in it will hng its funtionlity. C-slow trnsformtion [14] is thniqu tht slows own th input issu rt 1 of th iruit to ommot highr frqunis. It ws thus us in [18] to rtin th funtionlity whn xtr flip-flops wr insrt in yls. In othr wors, throughput ws srifi (m 1/C) to mt th frquny rquirmnt. Inst of slowing own th throughput uniformly ovr th whol iruit, Ltny Insnsitiv Dsign (LID) [2, 1], on th othr hn, mploys protool tht slows own th throughput of prt of th iruit only whn it is n. As rsult, LID n gurnt miniml throughput rution whil stisfying th frquny rquirmnt. W show in Stion 2 tht th formntion thr pprohs (rtiming, piplining with C-slow, n piplining with LID) n unifi unr th sm ojtiv funtion of mximizing th prossing rt, fin s th prout of frquny n throughput, s illustrt in Figur 1. In ition, th prossing rt of squntil systm is uppr oun y th riprol of th mximum yl rtio of th systm, whih is only pnnt on th lustring. Thrfor, w propos n optiml lgorithm tht fins lustring with th miniml mximum-yl-rtio. Logi Synthsis Clustring Floorpln/ Plmnt & Routing Rtiming Piplining& C-slow Piplining& LID Figur 1: A logil n physil sign flow. Prossing Rt Th rst of this ppr is orgniz s follows. Stion 2 prsnts th prolm formultion. Two prvious works r rviw in Stion 3. Stion 4 fins th nottions n onstrints us in this ppr. Our lgorithm is lort in Stion 5, follow y th implmnttion tils in Stion 6. W prsnt som xprimntl rsults in Stion 7. Conlusions r givn in Stion 8. Du to sp limit, ll th proofs r omitt, whih n foun in [15]. 2 Prolm formultion W onsir lustring sujt to siz limit for lustrs. Mor spifilly, h gt hs spifi siz, s wll s This work ws support y th NSF unr CCR Th issu rt is fin s th numr of lok prios twn sussiv input hngs. An issu rt of 1 inits tht th inputs n hng vry lok prio.

2 h intronnt. W rquir tht th siz of h lustr, fin s th sum of th sizs of th gts n th intronnts in th lustr, shoul no lrgr thn givn onstnt A. Rplition of gts is llow, i.., gt my ssign to mor thn on lustr in th lyout. Whn gt is rplit, its inint intronnts r lso rplit so tht th lustr iruit is logilly quivlnt to th originl iruit. Figur 2 (tkn from [19]) shows n xmpl of gt rplition in lustring. i () o Figur 2: () An xmpl iruit; () A lustring with 3 rplis of gt. Givn prtiulr lustring, w trt th rplis of gts n th originl ons istintly n not thm ll s V. W us E to not th st of intronnts mong V. Th lustr iruit is rprsnt s G = (V, E ). In orr for th iruit to oprt t spifi lok prio λ, itionl wir-piplining flip-flops r insrt. For ll yl o in G, lt (o ) not th yl ly, w(o ) n w λ (o ) not th numr of flip-flops in o for n ftr itionl piplining flip-flops r insrt, rsptivly. Assuming w(o ) > 0, th yl rtio of o is fin s φ(o ) = (o )/w(o ). Not tht φ(o ) is fin using w(o ), not w λ (o ). Th mximum yl rtio ovr ll th yls in G is not s φ = mx o G φ(o ). W fin prossing rt s follows. Dfinition 1 For squntil systm, prossing rt is fin s th lngth of pross input squn pr unit tim. In prtiulr, it is th prout of frquny n throughput in synhronous systm. Th lrgr th prossing rt, th ttr th squntil systm. Givn th ov finition, th pproh of rtiming tully mximizs th prossing rt y minimizing th prio whil kping th throughput. It is intrsting to noti tht th pproh of piplining with C-slow trnsformtion lso mximizs th prossing rt for spifi prio y omputing th lst slowown of th issu rt, whih is trnsform into throughput rution. As n ltrntiv, Ltny Insnsitiv Dsign (LID) hlps th lustr iruit rh th mximum throughput for spifi prio. Thrfor, ll th thr pprohs n unifi unr th sm ojtiv funtion of mximizing th prossing rt. It ws shown in [3] tht th mximum throughput ρ λ of n LID for spifi prio λ n omput s ρ λ = i o () w(o ) min yl o G w λ (o. ) On th othr hn, th ft tht th iruit n oprt t th spifi prio λ ftr th insrtion of itionl flipflops implis tht w λ (o )λ (o ), i.., 1 1 w λ (o ), (o )/λ yl o G. Sustitut this into th formul of ρ λ to gt w(o ) ρ λ min o G (o = min λ )/λ o G φ(o = λ. ) φ It follows tht th mximum prossing rt of n LID is uppr oun y 1 φ sin mx prossing rt = 1 λ ρ λ 1 λ λ φ = 1 φ. It is lso n uppr oun of th mximum prossing rt otin y th pproh of rtiming, s shown in [21]. In othr wors, ll th thr pprohs shr th sm uppr oun of thir ommon ojtiv. To mximiz th prossing rt, on n ithr mximiz th uppr oun or try to hiv th uppr oun. Thy r qully importnt. Howvr, sin hiving th uppr oun rquirs furthr knowlg on physil sign, suh s uffr n flip-flop llowl rgions [8, 21] whil th uppr oun itslf is only pnnt on th mximum yl rtio of th lustr iruit, w will onsir how to optimlly lustr th iruit suh tht th uppr oun is mximiz, or quivlntly, th mximum yl rtio is minimiz. In orr to omput th mximum yl rtio, w n to know how to omput th ly of yl uring lustring. Although lol intronnt lys n otin using som ly mols t synthsis, th lys of glol intronnts r not vill until lyout. Thrfor uring lustring, w ssum tht h glol intronnt inus n xtr onstnt ly D,.g., if intronnt (u, v) with ly (u, v) is ssign to intr-lustr, thn its ly oms (u, v) + D. Sin w wnt to minimiz th mximum yl rtio, th pth lys from primry inputs (PIs) to primry outputs (POs) n ignor s thy n mitigt y piplining. This motivts us to formult th prolm in strongly onnt grph s follows. Prolm 1 (Optiml Clustring Prolm) Givn irt, strongly onnt grph G = (V, E), whr h vrtx v V hs ly (v) n spifi siz, n h g (u, v) E hs ly (u, v), spifi siz n wight w(u, v) (rprsnting th numr of flip-flops on it), fin lustring of vrtis with possil vrtx rplition suh tht: 1. th siz of h lustr is no lrgr thn givn onstnt A; 2. h glol intronnt inus n xtr onstnt ly D; 3. th mximum yl rtio of th lustr iruit is minimiz. For simpliity, w ssum tht h gt hs unit siz n th siz of h intronnt is zro. Our propos lgorithm n sily xtn to hnl vrious siz snrios. 3 Prvious work Pn t l. [19] propos to optimlly lustr squntil iruit suh tht th lowr oun of th prio of th lustr iruit ws minimiz with rtiming. Howvr, th prio lowr oun my not om from yl rtio. In ition, thir lgorithm ns to strt from PIs, thus nnot us to solv our prolm in strongly onnt grph. In this sns, thy solv iffrnt prolm, vn though it looks similr to ours. Thir prolm ws solv y inry srh, using tst for fsiility s suroutin. For h trgt prio, thy us prour ll lling omputtion to hk th fsiility. Th prour strts with ll ssignmnt 0 for PIs n for th othr vrtis, n rptly inrss th ll vlus until thy ll onvrg or th ll vlu of som PO xs th trgt prio, for whih th trgt prio is onsir infsil. For h vrtx, th mount of inrs in its ll is omput using nothr inry srh tht silly slts th minimum from nit st. Bus of th nst inry srhs, thir lgorithm is rltivly slow. In ition,

3 th lgorithm rquirs O( V 2 ) sp to stor pr-omput ll-pir longst-pth mtrix, whih is imprtil for lrg signs. Cong t l. [9] improv th lgorithm y tightning th nit st to sp up th lling omputtion, n y ruing th sp omplxity to linr pnny. But th improv lgorithm still ns th nst inry srhs. Bsis th iffrn in prolm formultion, our lgorithm iffrs from thirs in two lgorithmi spts. Firstly, our lgorithm fouss on yls, thus n work on ny gnrl grph. Sonly, no inry srh is mploy in our lgorithm. As rsult, our lgorithm is ffiint n ssntilly inrmntl. Lik [9], our lgorithm os not n promput informtion on pths ithr. Expt for ths iffrns, [19] rvl som importnt rsults on lustring, whih w mploy hr to simplify our nottions. Eh lustr hs only on output, whih is ll th root of th lustr. If thr is lustr with mor thn on output, w n rplit th lustr so tht h opy of th lustr hs only on output. For h vrtx in V, thr is t most on lustr root t it n its rrivl tim (fin in Stion 4) is not lrgr thn th rrivl tims of its rplis. If u V is n input of th lustr root t v V, thn th lustr root t v must not ontin rpli of u. 4 Nottions n onstrints For prtiulr lustring n pth p = u v in G, w us w(p ) to rprsnt th numr of flip-flops on p, whih is th sum of th wights of p s onstitunt gs. Similrly, (p ) rprsnts th ly long p, whih is th sum of th lys of p s onstitunt gs n vrtis, xpt for (u). Not tht th ly of n intr-lustr g (u, v) G is (u, v) + D. W us φ(o ) to not th yl rtio of o, n φ to not th mximum yl rtio of G. Sin w only n to onsir lustrs root t th vrtis in V, t most on for h vrtx, w us v to rfr to th st of vrtis tht r inlu in th lustr root t v V. Lt i v V th st of inputs of v n r v V V th st of rplis of v V. In th rminr of this ppr, whn w sy u v (u v), w mn tht th lustr root t v V ontins rpli of u V. For xmpl, Figur 3() shows iruit for lustring. Thr r fiv vrtis (-) n svn gs. Figur 3() illustrts lustring of th iruit with siz limit A = 3, whr sh irls rprsnt lustrs. For h lustr, th vrtx whos inx is outsi th lustr inits th root. For xmpl, ontins rplis of vrtis n with th input st i = {}. () Figur 3: An xmpl of lustring rprsnttion W us ll t : V R to not th rrivl tim of th vrtx. To s th prsnttion, w will xtn th omin of t to V to rprsnt th rrivl tims of th rplis of th vrtis. Bs on this, lustring tht stisfis th lustr siz rquirmnt n hs mximum yl rtio not lrgr thn givn vlu φ n hrtriz s follows. () t(v) 0, v V (1) t(v) t(v ), v r v, v V (2) t(v) t(u) + (u, v) + (v) w(u, v)φ, (3) (u, v) E, u, v x, x V t(v) t(u) + (u, v) + D + (v) w(u, v)φ, (4) (u, v) E, u i x, v x, x V v A, v V (5) whr (1)-(4) gurnt tht th rrivl tims r ll hivl, n (5) is th lustr siz rquirmnt. In prtiulr, (2) nsurs tht th rrivl tim of v V is no lrgr thn th rrivl tims of its rplis. Following th onvntion, (u, v) E is ritil g unr φ iff it is intr-lustr with t(v) = t(u)+(u, v)+(v) w(u, v)φ, or it is intr-lustr with t(v) = t(u) + (u, v) + D + (v) w(u, v)φ. A ritil pth unr φ rfrs to pth whos onstitunt gs r ll ritil unr φ. Vrtx u is ritil input of v unr φ iff u i v n v n rh y u through ritil pth p = u x v unr φ whr th su-pth x v is in v. Whn ritil pth tully forms yl, it is thn ll ritil yl. Cyl o is ritil unr φ iff (o ) = w(o )φ. A lgl lustring must stisfy (5). Whn th rrivl tims of lgl lustring stisfy (1)-(4) unr φ, it is ll fsil lustring unr φ. Whn ritil yl is prsnt in fsil lustring unr φ, it is ll ritil lustring unr φ. A givn φ is fsil iff thr xists fsil lustring unr φ. W must not tht for lgl lustring, its mximum yl rtio is fsil. In ft, ny vlu lrgr thn th mximum yl rtio of lgl lustring is lso fsil. Consir fsil lustring unr φ. For ll (u, v) E, it is ithr in E with u i v, or thr is n g (u, v) suh tht u r u. In ithr s, th following inqulity is tru y (2)-(4). t(v) t(u) + (u, v) + (v) w(u, v)φ, (u, v) E (6) Th following lmm provis lowr oun for φ. Lmm 1 A fsil φ is no smllr thn th mximum yl rtio of G, not s φ l. Dfin (u, v, φ) = ( ) mx (p) w(p)φ, u, v V p u v in G Lmm 1 nsurs tht (u, v, φ) is wll-fin on fsil φ s. 5 Algorithm 5.1 Ovrviw Th optiml lustring prolm sks for lgl lustring with th miniml mximum-yl-rtio. Sin A > 0, th lustring with h vrtx ing lustr is rtinly lgl. Strting from it, w will itrtivly improv th lustring y ruing its mximum yl rtio until th optimlity is rtifi. First of ll, th mximum yl rtio of lgl lustring is fsil n n ffiintly omput using Howr s lgorithm [6, 11]. Givn fsil φ, w show tht, unlss φ is lry th optiml solution, prtiulr lgl lustring n onstrut whos mximum yl rtio is smllr thn φ. Th smllr φ n otin y pplying Howr s lgorithm on th onstrut lustring. Thrfor, w ltrnt twn pplying Howr s lgorithm n onstruting ttr lustring until th optiml φ is rh.

4 5.2 Clustring unr fsil φ > φ l Givn fsil φ > φ l, w show in this stion how to onstrut fsil lustring unr φ, i.., lustring stisfying (1)-(6) unr φ, whos mximum yl rtio is no lrgr thn φ. Th onstrut lustring hs spil proprtis, s on whih w xplin in Stion 5.3 how to onstrut fsil lustring unr φ whos mximum yl rtio is stritly smllr thn φ, if φ is not th optiml. W hoos to first stisfy (1) n (6) us thy r inpnnt on lustring, n itrtivly upt t(v) n v to stisfy (2)-(5) whil kping (1) n (6). Lt T not th rrivl tim vtor, i.., T = ( t(1), t(2),..., t( V ) ). A prtil orr ( ) n fin twn two rrivl tim vtors T n T s follows. T T = t(v) t (v), v V. Aoring to th ltti thory [12], if w trt ssignmnt t(v) = 0, v V s th ottom lmnt ( ) n ssignmnt t(v) =, v V s th top lmnt ( ), thn th rrivl tim vtor sp R V oms omplt prtilly orr st, tht is, for ll T R V, T. To stisfy (1), w st t(v) = 0, v V. Thn w pply Bllmn-For s lgorithm [10], not s BF, on E to stisfy (6) unr φ. Bllmn-For s lgorithm is gurnt to work s long s φ φ l. Th rsulting rrivl tim vtor is not s T 0 = BF (, φ). In ft, T 0 is th lst vtor stisfying (1) n (6), s stt in th following lmm. Lmm 2 T 0 T, for ll T stisfying (1) n (6). In orr to stisfy (2)-(5) whil kping (1) n (6), w fin trnsformtion L : (R V, R) R V s follows. For ll v V, w will onstrut nw lustr v root t v. Th prour strts with v = {v} n grows v progrssivly y inluing on ritil input t tim. Not tht whn vrtx is put in v, its pring vrtx tht is outsi v oms n input of v. Lt t(v) n t (v) not th rrivl tim of v for n ftr v is rpl y v, rsptivly. Th prour will stop only whn ithr v = A or t (v) t(v). If t (v) < t(v), w kp t(v) n v unhng; othrwis w upt t(v) n v with t (v) n v rsptivly. B wr tht th onstrut v my not uniqu sin th inlusion of ritil input is ritrry if thr r multipl of thm. Th rsulting rrivl tim of v is not s L v(t, φ). Th nxt lmm hlps to intify th ritil input to inlu t h tim. Lmm 3 For ll x / v, t (v) t(x) + D + (x, v, φ). In prtiulr, if u is ritil input of v, thn t (v) = t(u) + D + (u, v, φ). Dfin L(T, φ) s th rrivl tim vtor whn ll th L v(t, φ) s, v V, r ppli on, follow y Bllmn- For s lgorithm to nsur (6), xprss s ( (L1(T, L(T, φ) = BF φ), L 2(T, φ),..., L V (T, φ) ) ), φ. Th following lmm shows tht L is n orr-prsrving trnsformtion. Lmm 4 For ny T n T stisfying (1) n (6), if T T, thn L(T, φ) L( T, φ). W sy tht T is fixpoint of L unr φ if n only if T = L(T, φ). Th following thorm rigs th xistn of fixpoint n th fsiility of φ. Thorm 1 φ is fsil if n only if L hs fixpoint unr φ. In ft, oring to th ltti thory [12], if L, fin on omplt prtilly orr st, hs fixpoint unr φ, thn it hs lst fixpoint T φ, fin s ( T φ = L(T φ, φ) ) ( T : T = L(T, φ) : T φ T ). W us φ to not th lustring onstrut y L(T φ, φ). Not tht φ my not uniqu sin v my not uniqu, v V. To rh fixpoint, itrtiv mtho n us on L. It strts with T 0 s th initil vtor, itrtivly omputs nw vtors from prvious ons T 1 = L(T 0, φ), T 2 = L(T 1, φ),... until it fins T n suh tht T n = T n 1. Th following lmm stts tht pplying itrtiv mtho on L will onvrg to its lst fixpoint in V 1 itrtions. Lmm 5 If T φ xists unr φ, pplying itrtiv mtho on L will onvrg to it in t most V 1 itrtions. 5.3 Non-ritil lustring unr fsil φ > φ l Figur 4 shows two lustrings of th iruit in Figur 3() unr φ = 20. Thir rrivl tim vtors r oth th lst fixpoint unr φ = 20, tht is, t φ () = 0, t φ () = 10, t φ () = 0, t φ () = 10 n t φ () = 0, givn tht D = 10 n othr lys r 0. Howvr, th lustring in Figur 4() is ritil unr φ = 20 whil th on in Figur 4() is not. As rsult, φ nnot furthr ru in Figur 4(), ut n ru to 15 in Figur 4(). () Figur 4: Two lustrings whos rrivl tim vtors r oth qul to T φ unr φ = 20 hv iffrnt mximum yl rtios. This xmpl onfirms tht φ is not uniqu. Our gol is to fin non-ritil on. To this im, w fin nothr ll θ : V Z, for ny lustring tht hs no ritil yl unr φ, suh tht θ(v) rprsnts th mximum numr of flip-flops on ny ritil pth in E trminting t v. Lik ll t, w lso xtn th omin of θ to V for th s of th prsnttion. For ll v V n ll (u, v) E, rursivly fin { 0, ll (u, v) s r non-ritil unr φ θ(v) = mx ( θ(u) + w(u, v) ), (u, v) is ritil unr φ (7) Th ft tht hs no ritil yl unr φ nsurs tht θ is wll-fin. Lt Θ not th vtor Θ = (θ(1), θ(2),..., θ( V )). ()

5 Anothr trnsformtion H : (Z V, R) Z V is fin s follows. On T φ is otin, w st θ(v) = 0, v V, n not th vtor s θ. Thn, for ll (u, v) E with t φ (v) = t φ (u) + (u, v) + (v) w(u, v)φ, w st θ(v) = mx ( θ(u) + w(u, v) ) (8) Lt BF θ not th ov prour of upting θ y (8). Thn th rsulting vtor n rprsnt s Θ 0 = BF θ ( θ, φ). Aftr tht, for ll v V, w strt with v = {v} n grow v progrssivly y inluing on ritil input t tim. If thr r multipl ritil inputs, w hoos th on tht givs th mximum θ(v) y (7). Th prour will stop only whn ithr t (v) = t φ (v) n θ (v) θ(v), or v = A. In ithr s, w hv t (v) = t φ (v) sin w strt with th lst fixpoint T φ. If θ (v) < θ(v), w kp θ(v), v unhng; othrwis, w upt θ(v) n v with θ (v) n v rsptivly. Th rsulting θ(v) is not s H v(θ, φ). Dfin H(Θ, φ) s th vtor whn ll th H v(θ, φ) s, v V, r ppli on, follow y BF θ to nsur (8), xprss s ( (H1(Θ, H(Θ, φ) = BF θ φ), H 2(Θ, φ),..., H V (Θ, φ) ) ), φ. W hv th following thorm for H. Thorm 2 H is n orr-prsrving trnsformtion. A fsil φ is not optiml if n only if th lst fixpoint Θ φ of H unr φ xists. Applying itrtiv mtho on H will onvrg to Θ φ with fsil n non-ritil lustring φ unr φ in t most V 1 itrtions. Th nxt orollry provis ritrion to rtify th optimlity of φ. Corollry 2.1 If H os not onvrg ftr V 1 itrtions, thn th urrnt fsil φ is optiml. W thn prsnt our lgorithm in Figur 5 to fin th optiml φ. It first omputs fsil φ y trting h vrtx s lustr, n omputs lowr oun φ l of φ y Lmm 1. Aftr tht, it itrtivly pushs φ own y onstruting non-ritil lustring φ unr φ n ruing φ to th mximum yl rtio of φ y Howr s lgorithm. Th filur of H to onvrg in V 1 itrtions or th ft tht φ is ru to its lowr oun immitly rtifis th optimlity of th urrnt fsil φ. Th orrtnss of th lgorithm is stt in th following thorm. Thorm 3 Th lgorithm in Figur 5 trmints with th optiml φ. 5.4 Sp-up thniqus In our implmnttion, w fin tht H onvrgs to th lst fixpoint vry quikly if it hs on. Howvr, if H hs no fixpoint, th tim for V 1 numr of itrtions to omplt is rltivly long. W n othr ritri to tt th optimlity ffiintly. Th following lmm provis on. Lmm 6 ( ) v V : θ(v) > V N ff implis tht th urrnt fsil φ is optiml, whr N ff is th mximum numr of flip-flops on ny yli pth in G. Algorithm Optiml lustring Input: A irt grph G = (V, E), A, D. Output: A lustring opt with φ opt. opt v v {v}, v V ; φ opt φ mximum yl rtio of G ; φ l mximum yl rtio of G; Do SUCCESS 1; If (φ > φ l ) thn T T 0 BF (, φ); Whil ( T L(T, φ) ) o T L(T, φ); Θ 0 BF θ ( θ, φ); itr = 0; Whil (itr V 1) o Θ itr+1 H(Θ itr, φ); itr itr + 1; If (H onvrg) thn φ mximum yl rtio of G φ; opt φ ; φ opt φ; SUCCESS 0; Whil ( (SUCCESS) ) ; Rturn opt n φ opt ; Figur 5: Psuoo of optiml lustring lgorithm In ition, w mintin vrtx pointr m : V V {Ø}, whr Ø is th rst ssignmnt, n fin it s follows. m is rst h tim th itrtiv mtho is ppli on H for prtiulr φ. Aftr tht, for ll v V, w ssign m(v) = u if θ(v) is inrs y (8) on (u, v) E, or y (7) whr u will lwys ritil input of v unr φ. Intuitivly, m pturs th ft tht ny inrs of θ ( m(v) ) will propgt to θ(v), for ll v V with m(v) Ø. It nls us to onlu th following rsult. Lmm 7 If m pointrs form yl, thn th urrnt fsil φ is optiml. 6 Implmnttion tils 6.1 Implmnttion of L v n H v Our implmnttion of L v is similr to Cong t l. [9]. To hrtriz ritil inputs, w introu nothr ll δ : V R n fin it s follows. Bfor th onstrution of v, w ssign δ(u) with for ll u v in V n δ(v) with 0. At h tim, th vrtx u i v with th lrgst t(u) + δ(u) is intifi. If t(u) + D + δ(u) t(v), th onstrution is omplt. Othrwis, w put it in v n upt δ(x) with mx ( δ(x), δ(u) + (u) + (x, u) w(x, u)φ ), for h fnin x of u tht oms n input of v. This prour will itrt until ithr v = A or ll input u i v hs t(u) + D + δ(u) t(v). To vlit th ov prour, w n to show tht it is quivlnt to L v(t, φ), or quivlntly, to show tht it n lwys intify th ritil input of v. This is fulfill y th nxt lmm n orollry. Lmm 8 For ll u v, δ(u) = (u, v, φ). Corollry 8.1 Th vrtx u i v with th lrgst t(u) + D + δ(u) t(v) is th ritil input of v. Th psuoo for omputing L v(t, φ) is givn in Figur 6. It mploys hp Q for ookkping th vrtis u i v

6 whos t(u) + D + δ(u) > t(v). At h itrtion, it puts in v th input u Q with th lrgst t(u) + D + δ(u) n upts δ(x) for h fnin of u tht oms n input of v. In our implmnttion, w hoos Fioni hp [10] for Q. Likwis, th psuoo for H v(t, φ) n similrly riv. Input: G = (V, E), A, D, T, φ, v V. Output: t (v), v. δ(u), u V ; δ(v) 0; Q {v}; v ; t (v) t(v); Whil ( (Q ) ( v < A) ) o u xtrt from Q with mx t(u) + δ(u); v v {u}; For = (x, u) E with x / v o δ(x) mx ( δ(x), δ(u) + (u) + (x, u) w(x, u)φ ) ( ; If (x / Q) ( t(x) + D + δ(x) > t(v) )) thn Q Q {x}; t (v) mx t(u) + D + δ(u) in Q, if Q ; Rturn t (v) n v; Figur 6: Psuoo of L v(t, φ) 6.2 Vritions of L n H In Stion 5.2, L(T, φ) is otin y pplying ll th L v s, v V, on follow y Bllmn-For s lgorithm. In our implmnttion, ll th L v(t, φ) s r not omput t th sm tim. Intuitivly, if prviously omput L v s n tkn into ount in ltr omputtions of othrs, th onvrgn rt my lrt. This motivts our stuy on vrition of L, in whih ltr omputtions of L v s r s on prviously omput ons, n h omputtion of L v is follow y Bllmn- For s lgorithm. Lt J v(t, φ) not th vtor ftr t(v) is upt with L v(t, φ), tht is, J v(t, φ) = ( t(1),..., t(v 1), L v(t, φ), t(v + 1),..., t( V ) ). Dfin L(T, φ) = BF ( ( ( J i V...BF Ji1 (T, φ), φ ),..., φ ) ), φ, whr i 1,..., i V V. It n sn tht iffrnt vlution orrs of V giv iffrnt L s. Howvr, thy ll stisfy th following rltion. Lmm 9 For ny T T φ stisfying (1) n (6) unr fsil φ n ny vlution orr of V, L(T, φ) L(T, φ) L(T φ, φ) = T φ. As orollry, th nxt rsult nsurs tht w n pply itrtiv mtho on L to rh T φ. Corollry 9.1 If T φ xists unr φ, pplying itrtiv mtho on L will onvrg to T φ in t most V 1 itrtions, inpnnt of th vlution orr of V t h itrtion. Likwis, vrition of H n similrly fin. 6.3 Ru lustring rprsnttion It ws shown in [11] tht Howr s lgorithm ws y fr th fstst lgorithm for mximum yl rtio omputtion. Givn lustr iruit G = (V, E ) with g lys n wights spifi, Howr s lgorithm fins th mximum yl rtio in O(N E ) tim, whr N is th prout of th out-grs of ll th vrtis in V. Sin vrtx rplition is llow, N n E oul V N n V E rsptivly, whr N is th prout of th out-grs of th vrtis in V. To ru th omplxity, w propos ru lustring rprsnttion. For h lustr, w us gs from its inputs to its output (root) to rprsnt th pths twn thm suh tht th ly n wight of n g orrspon to th ly n wight of n yli input-to-output pth. Figur 7 shows th ru rprsnttion of th lustr iruit in Figur 3(). Th ru lustring rprsnttion of Fig- Figur 7: ur 3(). Lt φ r not th mximum yl rtio of th ru rprsnttion for lustring. Th following lmm formults th rltion mong φ, φ r n th lowr oun φ l fin in Lmm 1. Lmm 10 For ny lustring, φ = mx(φ r, φ l ). On nfit of th ru lustring rprsnttion is tht w n now rprsnt th lustr iruit without xpliit vrtx rplition, tht is, using V inst of V. Lt G r = (V, E r ) not th ru rprsnttion for lustring. W ll n g in G r runnt if its rmovl will not fft th mximum yl rtio of G r. Th following lmm provis ritrion to prun th runnt gs so tht Howr s lgorithm n fin th mximum yl rtio of G r mor ffiintly. Lmm 11 Lt not fsil lustring unr φ, E r not its ru rprsnttion, 1 n 2 not two gs from u V to v V in E r, ( 1) n ( 2) not thir lys rsptivly, n w( 1) n w( 2) not thir wights rsptivly. If w( 1) w( 2) n ( 1) w( 1)φ ( 2) w( 2)φ, thn 2 n prun. In our implmnttion, w mploy nothr two prmtrs p : V {R} n pw : V {Z} to ror th pth lys n wights from th inputs of lustr to its output, rsptivly. Mor spifilly, w st pw(u) = p(u) =, u V, for L v(t, φ) is out to rri out for som v V. Aftr tht, whnvr vrtx u is put in v, w omput th p n pw vlus of its pring vrtis s on p(u) n pw(u), follow y pruning. 7 Exprimntl rsults W implmnt th lgorithm in PC with 2.4 GHz Xon CPU, 512 KB 2n lvl h mmory n 1GB RAM. To ompr with th lgorithm in [19], w us th sm tst fils, whih wr gnrt from th ISCAS-89 nhmrk suit. For h tst s, w introu flip-flop with irt gs from h PO to it n from it to h PI so tht vry PI-to-PO pth m yl. As in [19], th siz n ly of h gt ws st to 1, intr-lustr lys wr 0, n intr-lustr intronnts h lys D = 2. For h iruit, w tst thr siz ouns: A is 5%, 10% n 20% of th numr of gts. Th rsults r shown in Tl 1. Sin w pproh th miniml mximum-ylrtio y grul rution in th lgorithm, w lso rport

7 Tl 1: Exprimntl Rsults Ciruit A = 5% V A = 10% V A = 20% V tim/stp (s) φ opt #stp tim(s) φ opt #stp tim(s) φ opt #stp tim(s) [19] prsnt s s s s s s s s s s s n/ 1.26 s n/ s n/ rith X 1 go 6.33 X 1 th numr of rutions for h snrio of A in olumn #stp. Column tim(s) lists th running tim in sons. Th otin φ opt mths th rsult in [19] for ll th snrios of A. Th only running tim informtion givn in [19] is th lrgst running tim pr stp mong th thr snrios, whih w list in olumn tim/stp (s) unr [19]. W thn omput ours in olumn prsnt. Row rith ( go ) givs th rithmti (gomtri) mn of th first 10 iruits. W must not tht th running tims list r lry sl to tk into ount th iffrn in CPU frqunis twn thir mhin n ours. It n sn tht our lgorithm tks muh lss tim pr stp thn th lgorithm in [19]. Th improvmnts r grtr for lrgr iruits. Th only xption is s1423, whr th lgorithm trmints whn θ(v) > V N ff for som v V. Th vrg sp-up is roun on orr of mgnitu. In ition, for most of th iruits, our lgorithm fins th optiml solution in just fw stps, whih is gnrlly lss thn th numr of itrtions onut in inry srh, whih r not givn in [19]. 8 Conlusion [12] B. A. Dvy n H. A. Pristly. Introution to Lttis n Prossing rt, fin s th prout of frquny n throughput, is intifi s n importnt mtri for squntil iruits. W show tht th prossing rt of squntil iruit Orr. Cmrig, [13] S. Hssoun n C. J. Alprt. Optiml pth routing in singl n multipl lok omin systms. In ICCAD, pgs , is uppr oun y th riprol of its mximum yl rtio, [14] C. E. Lisrson, F. M. Ros, n J. B. Sx. Optimizing Synhronous whih is only pnnt on th lustring of th iruit. Th Ciruitry y Rtiming. In Avn Rsrh in VLSI: prolm of prossing rt optimiztion is formult s sking n optiml lustring with miniml mximum-yl-rtio Pro. of th Thir Clth Conf., pgs Computr Sin Prss, in gnrl grph. An itrtiv lgorithm is propos tht [15] C. Lin, J. Wng, n H. Zhou. Clustring for prossing rt fins th miniml mximum-yl-rtio. Sin our lgorithm optimiztion. Thnil Rport TR-NUCAD , ECE Dprtmnt, Northwstrn Univrsity, vois inry srh n is ssntilly inrmntl, it hs th potntil to omin with othr optimiztion thniqus, suh s gt sizing, ugting, t., thus n us in inrmntl sign mthoologis [7]. In ition, sin mximum yl rtio is funmntl mtri, th propos lgorithm [16] C. Lin n H. Zhou. Optiml wir rtiming without inry srh. In ICCAD, pgs , [17] C. Lin n H. Zhou. Wir rtiming for systm-on-hip y fixpoint omputtion. In DATE, pgs , n pt to suit othr tritionl signs. [18] V. Nookl n S. S. Sptnkr. A mtho for orrting th Rfrns funtionlity of wir-piplin iruit. In DAC, pgs , [1] L. P. Crloni, K. L. MMilln, A. Slnh, n A. L. Sngiovnni- Vinntlli. A mthoology for orrt-y-onstrution ltny [19] P. Pn, A. K. Krnikr, n C. L. Liu. Optiml lok prio insnsitiv sign. In ICCAD, lustring for squntil iruits with rtiming. IEEE TCAD, [2] L. P. Crloni, K. L. MMilln, n A. L. Sngiovnni-Vinntlli. Ltny insnsitiv protools. In CAV, [3] M. R. Csu n L. Mhirulo. A nw pproh to ltny insnsitiv sign. In DAC, [4] C. Chu, E. F. Y. Young, D. K. Y. Tong, n S. Dhu. Rtiming with intronnt n gt ly. In ICCAD, pgs , [5] P. Cohini. Conurrnt flip-flop n rptr insrtion for high prformn intgrt iruits. In ICCAD, pgs , [6] J. Coht-Trrsson, G. Cohn, S. Gurt, M. MGttrik, n J.-P. Qurt. Numril omputtion of sptrl lmnts in mx-plus lgr. In Pro. IFAC Conf. on Syst. Strutur n Control, Nnts, Frn, [7] J. Cong, O. Court, n M. Srrfzh. Inrmntl CAD. In ICCAD, [8] J. Cong, T. Kong, n D. Z. Pn. Buffr lok plnning for intronnt-rivn floorplnning. In ICCAD, pgs , [9] J. Cong, H. Li, n C. Wu. Simultnous iruit prtitioning/lustring with rtiming for prformn optimiztion. In DAC, pgs , [10] T. H. Cormn, C. E. Lisrson, n R. H. Rivst. Introution to Algorithms. MIT Prss, [11] A. Dsn, S. S. Irni, n R. K. Gupt. Effiint lgorithms for optimum yl mn n optimum ost to tim rtio. In DAC, pgs 37 42, (6): , Jun [20] D. K. Y. Tong n E. F. Y. Young. Prformn-rivn rgistr insrtion in plmnt. In ISPD, pgs 53 60, [21] H. Zhou n C. Lin. Rtiming for wir piplining in systm-onhip. IEEE TCAD, 23(9): , Sptmr 2004.

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s Ciruit Prtitioning for Dynmilly Rongurl FPGAs Huiqun Liu n D. F. Wong Dprtmnt of Computr Sins Unirsity of Txs t Austin Austin, T 787 Emil: fhqliu, wongg@s.utxs.u Astrt Dynmilly rongurl FPGAs h th potntil

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Multi-Way VLSI Circuit Partitioning Based on Dual Net Representation

Multi-Way VLSI Circuit Partitioning Based on Dual Net Representation Multi-Wy VLSI Ciruit Prtitioning Bs on Dul Nt Rprsnttion Json Cong Dprtmnt of Computr Sin Univrsity of Cliforni, Los Angls, CA 90024 Wilurt Lio n Nrynn Shivkumr Dprtmnt of Computr Sin Stnfor Univrsity,

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Design Optimization Based on Diagnosis Techniques

Design Optimization Based on Diagnosis Techniques Dsign Optimiztion Bs on Dignosis Thniqus Anrs Vnris Mgy S. Air Irhim N. Hjj Univrsity of Toronto Motorol Univrsity of Illinois ECE Dprtmnt 77 W. Prmr ECE Dprtmnt n CSL Toronto, ON M5S 34 Austin, T 78729

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Reducing the Depth of Quantum Circuits Using Additional Circuit Lines

Reducing the Depth of Quantum Circuits Using Additional Circuit Lines Ruing th Dpth of Quntum Ciruits Using Aitionl Ciruit Lins Nil Assi 1, Rort Will 1,2, Mthis Sokn 1,2, n Rolf Drhslr 1,2 1 Institut of Computr Sin, Univrsity of Brmn Group of Computr Arhittur, D-28359 Brmn,

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Partitioning Algorithms. UCLA Department of Computer Science, Los Angeles, CA y Cadence Design Systems, Inc., San Jose, CA 95134

Partitioning Algorithms. UCLA Department of Computer Science, Los Angeles, CA y Cadence Design Systems, Inc., San Jose, CA 95134 On Implmnttion Chois for Itrtiv Improvmnt Prtitioning Algorithms Lrs W. Hgn y, Dnnis J.-H. Hung n Anrw B. Khng UCLA Dprtmnt of Computr Sin, Los Angls, CA 90024-1596 y Cn Dsign Systms, In., Sn Jos, CA 95134

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b)

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b) Outlin MULTIPLE-LEVEL LOGIC OPTIMIZATION Gionni D Mihli Stnfor Unirsit Rprsnttions. Tonom of optimition mthos: { Gols: r/l. { Algorithms: lgri/booln. { Rul-s mthos. Empls of trnsformtions. Booln n lgri

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Constructing Minimal Spanning/Steiner Trees. with Bounded Path Length. Department of EE-Systems

Constructing Minimal Spanning/Steiner Trees. with Bounded Path Length. Department of EE-Systems Construting Miniml pnning/tinr Trs with Boun Pth Lngth Iksoo Pyo Jwon Oh n Mssou Prm JF1-61 Dprtmnt o EE-ystms Intl Corporttion Univrsity o outhrn Cliorni Hillsoro, OR 9714 Los Angls, CA 90089 Astrt This

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

Layout Decomposition for Quadruple Patterning Lithography and Beyond

Layout Decomposition for Quadruple Patterning Lithography and Beyond Lyout Domposition for Qurupl Pttrning Lithogrphy n Byon Bi Yu ECE Dprtmnt Univrsity of Txs t Austin, Austin, TX i@r.utxs.u Dvi Z. Pn ECE Dprtmnt Univrsity of Txs t Austin, Austin, TX pn@.utxs.u ABSTRACT

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

35 th Design Automation Conference Copyright 1998 ACM

35 th Design Automation Conference Copyright 1998 ACM Eint Booln ivision n Sustitution Shih-Chih Chng vi Ihsin Chng pt. o CS n IE Ntionl Chung Chng Univrsit Ultim Intronnt Th. Chi-Yi, TAIWAN, ROC Sunnvl, CA 94086 Astrt Booln ivision, n hn Booln sustitution,

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE Y.Fujit 1*, T. Kurshii 1, H.Ymtsu 1, M. Zo 2 1 Dpt. o Mngmnt

More information

C-201 Sheet Bar Measures 1 inch

C-201 Sheet Bar Measures 1 inch Janine M. lexander, P.. P.. No. 9, L 0 N. PRK RO, SUIT 0 HOLLYWOO, LORI 0 PHON: (9) - X: (9) 08- No.: 9 I ST SRIPTION Y GT VLVS SHLL RSILINT ST, MNUTUR TO MT OR X TH RQUIRMNTS O WW 09 (LTST RVISION) N

More information