# Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Size: px
Start display at page:

Download "Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1"

Transcription

1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd with prt nd ttmpt to writ th dfinit intgrl. () ; thrfor, point P hs th coordints (, ). V d d c d ( ) ( ) Solution Ppr tp d [ ] Solution Ppr tp Notic tht w chngd vril into vril, nd tht Solvr ccpts ll of th fturs from th clcultor s mnu with onl on vril prmtr to rprsntd s function in tht vril. W could hv usd th grphicl mod, ut, sinc thr is no mor thn on solution, w wr stisfid using Solvr. At th nd, w cn chc whthr th numricl rsult is spcil vlu which w could hv rcognizd. '. At th point (, ) th slop of th tngnt is: m '( ). Th tngnt cn found using th formul for th tngnt: f ' ( ) ( )+, whr (, ) is prticulr point on th grph of th function. ( )+ + Sinc th linr function hs no -intrcpt, it mns tht it psss through th origin. If w input th coordints of th origin into th qution, w gt tru sttmnt:. For th first trm, w nd to ppl th product rul. ( ) ' + + c Th shdd rgion cn split into two. Th first rgion is tringl oundd th tngnt lin, -is nd th vrticl lin. Sinc tht is right-ngld tringl, th r is clcultd s: A Tringl. In ordr to find th r of th scond rgion, w nd to vlut th following intgrl:

2 d ( ) + + Now, th totl r is th sum of thos two rs; thrfor, A +. Solution Ppr tp 5 i st () 8 + t t s () m ii v() t s' () t v() t 8t v() m s iii v() t 8t 8t t 8 s iv s () m Firstl, w nd to find th tim t which th p stops ftr touchdown: 5 v() t 8t t. 5 s 8 Now, w nd to find th distnc th p will trvl ftr touchdown: 5 s 5 5 s () m Using prt iv, th rmining runw gth is 5 m; thrfor, thr is nough runw to stop th p if it ms touchdown for point P. Solution Ppr tp 5 i nd ii iii nd iv To drw th function, w input th function into th clcultor nd thn us Tl to plot th points (or, ltrntivl, us th trc ftur).

3 Not: Prts nd cnnot solvd without using clcultor. c ( sin ) d cos + c, c Ar ( sin ) cos d cos cos ( cos )., corrct to thr significnt figurs. Othrwis: 7 Mthod I: From th dirction of th -is W split th shdd rgion into two: R, th rctngl nclosd th lins,, nd ; nd R, th rgion nclosd, nd +. Th r of th first rgion is: A ( ). To find th r of th scond rgion, w nd to do two things: firstl, w hv to find th point of intrsction of th lin nd th curv +. B inspction, w s tht th point of intrsction is,. Now, to l to us th dfinit intgrl, w nd to trnslt th grph vrticll units down. A + d d ( ) + + A A A Mthod II: From th dirction of th -is W nd to prss in trms of nd clcult th intgrl with rspct to th -vril. + A d d ( ) [ ] ( ) 8 i nd ii To drw th function, w input th function into th clcultor nd thn us Tl to plot th points (or, ltrntivl, us th trc ftur)..5.5 (, ) (.,.55) (.57, ) (, -.7)

4 cos, > cos c i S th digrm in prt. ii cos d d cos d sin + cos sin + sin cos sin ()+ () sin cos Or: ( sin() ) 7. f ( + ) sin ( + ) cos ( + ) sin ( ) cos ( ) f ( ), so th fundmntl priod of f is. B looing t th grph, w stimt tht th rng would [.,.]. c i f '( ) ( sin cos) cos + sin ( sin ) sin cos sin. W cn lso continu to prss th whol drivtiv in trms of sin onl: sin cos sin sin ( sin ) sin sin sin ii In this prolm, w us th first form of th drivtiv: f ' ( ) sin cos sin sin( cos sin ) Sinc th vlu of sin cnnot qul to t A, w cn conclud tht: cos sin cos cos cos co ( ) ( ) ( ) iii f sin cos m m m d f ( ) sin or cos, i sin ( ) cos ( ) d ( sin) d ( sin ) + cc ii f ( ) d sin sin ( ) s or or, so th -coordint of point B is. sin, sin ( ) f f " ( ) cos 7cos cos cos 7. Sinc th -coordint of C is lss thn, th scond fctor must qul to cos 7 cos cos rccos.

5 5 5 + cos c In this prolm, if w us Solvr, w nd to us n stimtd vlu tht is furthr to th right of p, which w found s th first zro. Our stimt ws. So, th nswr is. 7. d S th digrm ov. Ar ( + cos ) d Ar ( + ) cos d [ + sin + cos ] ( + ) ( + + ) 78.. Or, using GDC, w gt: So, th nswr, corrct to si significnt figurs, is 7.8. ( ) + i p g( ) f ( ) ( + ) + 5 ii p' ( s.f.) i + ( ) ( ) ii f ( ) f () 5 5 ( ) c V + d Bonus: Evlut th intgrl in prt c: V ( + ) d + + d + + ( )

6 It is not possil to solv this qustion with GDC. ( ( ) ) ( (( ) ( ) + ) d + V ( + ) + d d ) u + u + d ( u) u du u u du du d d du u u c cc, dv ds dv ( s ) ( s + ) s + 7s v ds dt ds ( s ) s ( + ) ( s ) s 7 ( + ) 5 ( ) 7 5 V ( ) d d ( ) 5 5 Solution Ppr tp + + d ( + ) ( ) or, sinc >. Solution Ppr tp W will us Solvr on GDC. W could hv sil usd th grphing mnu too, in vr similr mnnr. Not: Th vlu of, shown in th finl scrn, is not rlvnt nd it cn n vlu. 7 W cn dduc tht () t t +, v(). So, w cn now procd with finding th distnc trvlld th trin. v() t t + dt t t c c + +, v() c v() t t + t + t d t t + t m

7 8 Firstl, w nd to find th zros of th prol. ( ) ( + ), Th r of th rctngl is A R h, whr h is th hight of th rctngl. Th r undr th prol is clcultd th following intgrl. AP ( ) d + Sinc th two rs must qul, w cn find th hight of th rctngl: h h So, th dimnsions of th rctngl r:. f ( ), > f '( ) +, > If th function is incrsing, th first drivtiv is positiv; thrfor: + > > >,, + Th qustion ss us to find th intrvl ovr which f() is incrsing; thrfor, th vlu of is nd th intrvl is: >,, +. c i f '( ) + ii f ( ) ( ) or So, th othr -intrcpt is: d Sinc th curv is low th -is, w nd to t th solut vlu of th intgrl. ( ) d To solv th first prt of th intgrl, w nd to us intgrtion prts. u du d d d d + c dv d v ( ) d ( ) So, th r nclosd th curv nd th -is is:. A (, ), m f '( ) + Eqution of tngnt: ( )+ f Th -intrcpt is, so th r of th tringl nclosd th tngnt nd th coordint s is: A ( ), which is twic th r nclosd th curv. g,,,,... To vrif th sttmnt, w r going to t two conscutiv -intrcpts, for nd + : + +. Th rtio is constnt nd thrfor th zros form gomtric squnc. 7

8 d d d + d d + c d + + rctn, rctn + c c rctn tn( ) mv dv d mv dv d mv dv m v + cc d,, v v m v mv + c c m v mv mv v ( ) + mv v m v v v m v ( ) ^() ^() c Givn tht th point of intrsction hs n -coordint qul to p, w notic tht th rctngl hs dimnsions p nd th tringl hs vrticl s of gth nd hight p. p ATRIANGLE < AREGION < ARECTANGLE p < AREGION < p AREGION p < < d A d REGION p ( ( )) p. 7 (corrct to four dciml plcs). In cs li this, it is dvisl to stor th coordints of th point of intrsction in th GDC s mmor nd thn wor with this mor ccurt vlu. So, th r of th rgion is.7 (corrct to thr significnt figurs). Notic tht th lst two prts of th qustion cnnot don without using clcultor. u du d cos d sin dv cos d v sin sin d sin cos + c sin + cos + c, c 8

9 i cos d sin + cos + sin cos + sin cos 8 A Th vlu of th intgrl is ngtiv, ut, s w nd to clcult th r, w simpl t th solut vlu of th intgrl, sinc th function is lws ngtiv for th givn intgrl. 5 5 ii cos d sin + cos sin cos 8 + sin cos 7 iii 5 cos d sin + cos sin cos sin cos 8 A Agin, th intgrl ws ngtiv, so, for th r, w t th solut vlu. c Th rs nclosd th givn oundris form n rithmtic squnc with first trm u nd common diffrnc d. Thrfor, th sum of th first n trms is givn : nn n n n n Sn n ( ) nn ( + ), n + v() t t t sin t t t or, Using th rstrictd domin, w cn clcult th vlus of t : t or t or t. i In ordr to void discussion of th positiv or ngtiv vlus of th prts of th intgrl, w will simpl us th solut vlus. Totldistnctrvlld t dt ii So, th totl distnc trvlld is.5 m (corrct to thr significnt figurs). Not: If not using clcultor, w should split th intgrl into two prts, from to nd from to, whr th lst on hs ngtiv vlu nd w t its opposit vlu. Th nti-drivtiv cn found using intgrtion prts. 5 Distnc trvlld v() t dt dt + t rctn t rctn rctn rctn. 5 m

10 dv t () dt t ( + t ) d d u + + d udu u + c + du d + ( ) + cc, c + ( + ) d ( + ) ( + ) This prt cn solvd dirctl using GDC. 5 ( ) Agin, th vlu of is irrlvnt for this clcultion. To corrct, w nd to s tht th vlu of must within th domin of th function. In our cs, th domin is th st of ll rl numrs., distnc ( ) ( ) 7 v() t t t t t tdt t t 8 dt + t t dt ( t t ) + ( t t ) ( )+ ( + ) m Th curv is prol which opns upwrds, with th zros t nd ; thrfor, th function is ngtiv from to nd positiv from to. Th totl distnc trvlld is.85 m (corrct to thr significnt figurs). dt dt dt dt ( T ) dt dt T T T t + c T t c t, c T + A, A + + To find th constnts A nd, w nd to solv th simultnous qutions formd from th givn informtion. i T () + A A 78 A 78 A 78 5 T ( 5) 7 + A A

11 d d 8 t 8 t 5 5 ii T t 5 t t 5 t 5 d d d + rctn ( ) + cc, d +, rctn() + c c rctn( ) rctn( ) tn ( + ) u + ( u ) u u + u 8 d du d du u du u + u 8 u 8 ( + ) 8 du u+ u + + c ( + )+ + + u u u + + c, c 5 f() g() 5 i Th logrithmic function g ( ) ( + ) hs vrticl smptot:. ii -intrcpt: g ( ) (). -intrcpt: ( + ) ( + ) +. c d i Rfr to th digrm in prt. ii 5. (( ( ) ) ( + ) ) d

12 iii So, th shdd rgion hs n r of. (corrct to thr significnt figurs). Not: W wr l to stor th -coordint of th intrsction in th GDC s mmor sinc tht ws th lst clcultion don for w found th intgrl. To find th mimum distnc, w nd to form nw function: h( ) f ( ) g ( ). So, th mimum distnc twn f() nd g() is. (corrct to thr significnt figurs). θ d d θ d d d + d d d + d θ θ, d θ θ ( + ) d d ( + ) d d c c + ( + )+, c ( ) + d d + ( )+ c θ ( θ + )+ c, c ( ) + θ, + c c θ θ ( + )+ θ θ +

### Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

### INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

### Instructions for Section 1

Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

### TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

### Section 3: Antiderivatives of Formulas

Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

### Limits Indeterminate Forms and L Hospital s Rule

Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

### MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

### Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

### CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

### SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

### Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

### CONTINUITY AND DIFFERENTIABILITY

MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

### CBSE 2015 FOREIGN EXAMINATION

CBSE 05 FOREIGN EXAMINATION (Sris SSO Cod No 65//F, 65//F, 65//F : Forign Rgion) Not tht ll th sts hv sm qustions Onl thir squnc of pprnc is diffrnt M Mrks : 00 Tim Allowd : Hours SECTION A Q0 Find th

### , between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

### The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

Th Ntrl Logrithmic n Eponntil Fnctions: : Diffrntition n Intgrtion Objctiv: Fin rivtivs of fnctions involving th ntrl logrithmic fnction. Th Drivtiv of th Ntrl Logrithmic Fnction Lt b iffrntibl fnction

### Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

### HIGHER ORDER DIFFERENTIAL EQUATIONS

Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

### Multi-Section Coupled Line Couplers

/0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

### 1997 AP Calculus AB: Section I, Part A

997 AP Calculus AB: Sction I, Part A 50 Minuts No Calculator Not: Unlss othrwis spcifid, th domain of a function f is assumd to b th st of all ral numbrs for which f () is a ral numbr.. (4 6 ) d= 4 6 6

### Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

### This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

### UNIT # 08 (PART - I)

. r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

### Elliptical motion, gravity, etc

FW Physics 130 G:\130 lctur\ch 13 Elliticl motion.docx g 1 of 7 11/3/010; 6:40 PM; Lst rintd 11/3/010 6:40:00 PM Fig. 1 Elliticl motion, grvity, tc minor xis mjor xis F 1 =A F =B C - D, mjor nd minor xs

### CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

Conic Sctions 16 MODULE-IV Co-ordint CONIC SECTIONS Whil cutting crrot ou might hv noticd diffrnt shps shown th dgs of th cut. Anlticll ou m cut it in thr diffrnt ws, nml (i) (ii) (iii) Cut is prlll to

### Lecture 4. Conic section

Lctur 4 Conic sction Conic sctions r locus of points whr distncs from fixd point nd fixd lin r in constnt rtio. Conic sctions in D r curvs which r locus of points whor position vctor r stisfis r r. whr

### CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

### FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

### Continuous Random Variables: Basics

Continuous Rndom Vrils: Bsics Brlin Chn Dprtmnt o Computr Scinc & Inormtion Enginring Ntionl Tiwn Norml Univrsit Rrnc: - D.. Brtss, J. N. Tsitsilis, Introduction to roilit, Sctions 3.-3.3 Continuous Rndom

### SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

### ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

### this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

hl sidd r L Hospitl s Rul 11/7/18 Pronouncd Loh mtims splld Non p t mtims w wnt vlut limit ii m itn ) but irst indtrnintmori?lltns indtrmint t inn gl in which cs th clld n i 9kt ti not ncssrily snsign

### 1997 AP Calculus AB: Section I, Part A

997 AP Calculus AB: Sction I, Part A 50 Minuts No Calculator Not: Unlss othrwis spcifid, th domain of a function f is assumd to b th st of all ral numbrs x for which f (x) is a ral numbr.. (4x 6 x) dx=

### PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

### COMP108 Algorithmic Foundations

Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

### Total Score Maximum

Lst Nme: Mth 8: Honours Clculus II Dr. J. Bowmn 9: : April 5, 7 Finl Em First Nme: Student ID: Question 4 5 6 7 Totl Score Mimum 6 4 8 9 4 No clcultors or formul sheets. Check tht you hve 6 pges.. Find

### National Quali cations

PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

### Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

### 6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS

6. CONCEPTS FOR ADVANCED MATHEMATICS, C (475) AS Objectives To introduce students to number of topics which re fundmentl to the dvnced study of mthemtics. Assessment Emintion (7 mrks) 1 hour 30 minutes.

### ASSERTION AND REASON

ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

### COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

### Chapter 1: Logarithmic functions and indices

Chpter : Logrithmic functions nd indices. You cn simplify epressions y using rules of indices m n m n m n m n ( m ) n mn m m m m n m m n Emple Simplify these epressions: 5 r r c 4 4 d 6 5 e ( ) f ( ) 4

### 1 1 1 p q p q. 2ln x x. in simplest form. in simplest form in terms of x and h.

NAME SUMMER ASSIGNMENT DUE SEPTEMBER 5 (FIRST DAY OF SCHOOL) AP CALC AB Dirctions: Answr all of th following qustions on a sparat sht of papr. All work must b shown. You will b tstd on this matrial somtim

### Floating Point Number System -(1.3)

Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

### Minimum Spanning Trees

Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

### TO: Next Year s AP Calculus Students

TO: Net Yer s AP Clculus Students As you probbly know, the students who tke AP Clculus AB nd pss the Advnced Plcement Test will plce out of one semester of college Clculus; those who tke AP Clculus BC

### Floating Point Number System -(1.3)

Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igits in th bs xnsion

### Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

### QUESTIONS BEGIN HERE!

Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

### 2008 AP Calculus BC Multiple Choice Exam

008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

### b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

VSRT MEMO #05 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 Fbrury 3, 009 Tlphon: 781-981-507 Fx: 781-981-0590 To: VSRT Group From: Aln E.E. Rogrs Subjct: Simplifid

### Chem 104A, Fall 2016, Midterm 1 Key

hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

### ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

### ( ) Geometric Operations and Morphing. Geometric Transformation. Forward v.s. Inverse Mapping. I (x,y ) Image Processing - Lesson 4 IDC-CG 1

Img Procssing - Lsson 4 Gomtric Oprtions nd Morphing Gomtric Trnsformtion Oprtions dpnd on Pil s Coordints. Contt fr. Indpndnt of pil vlus. f f (, ) (, ) ( f (, ), f ( ) ) I(, ) I', (,) (, ) I(,) I (,

### Linear Algebra Existence of the determinant. Expansion according to a row.

Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

### Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

### Polygons POLYGONS.

Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

### R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of

Higher Mthemtics Ojective Test Prctice ook The digrm shows sketch of prt of the grph of f ( ). The digrm shows sketch of the cuic f ( ). R(, 8) f ( ) f ( ) P(, ) Q(, ) S(, ) Wht re the domin nd rnge of

### Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

### S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

### 4. (5a + b) 7 & x 1 = (3x 1)log 10 4 = log (M1) [4] d = 3 [4] T 2 = 5 + = 16 or or 16.

. 7 7 7... 7 7 (n )0 7 (M) 0(n ) 00 n (A) S ((7) 0(0)) (M) (7 00) 8897 (A). (5a b) 7 7... (5a)... (M) 7 5 5 (a b ) 5 5 a b (M)(A) So th cofficint is 75 (A) (C) [] S (7 7) (M) () 8897 (A) (C) [] 5. x.55

### Binomials and Pascal s Triangle

Binomils n Psl s Tringl Binomils n Psl s Tringl Curriulum R AC: 0, 0, 08 ACS: 00 www.mthltis.om Binomils n Psl s Tringl Bsis 0. Intif th prts of th polnomil: 8. (i) Th gr. Th gr is. (Sin is th highst

### Decimals DECIMALS.

Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

### The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

### # 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

### Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Chaptr Binomial Epansion Chaptr 0 Furthr Probability Chaptr Limits and Drivativs Chaptr Discrt Random Variabls Chaptr Diffrntiation Chaptr Discrt Probability Distributions Chaptr Applications of Diffrntiation

### a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

### 12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

### 10.2 The Ellipse and the Hyperbola

CHAPTER 0 Conic Sections Solve. 97. Two surveors need to find the distnce cross lke. The plce reference pole t point A in the digrm. Point B is meters est nd meter north of the reference point A. Point

### 5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

### u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

### How much air is required by the people in this lecture theatre during this lecture?

3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

### The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton

Journl of Modrn hysics, 014, 5, 154-157 ublishd Onlin August 014 in SciRs. htt://www.scir.org/journl/jm htt://dx.doi.org/.436/jm.014.51415 Th Angulr Momnt Diol Momnts nd Gyromgntic Rtios of th Elctron

### A LEVEL TOPIC REVIEW. factor and remainder theorems

A LEVEL TOPIC REVIEW unit C fctor nd reminder theorems. Use the Fctor Theorem to show tht: ) ( ) is fctor of +. ( mrks) ( + ) is fctor of ( ) is fctor of + 7+. ( mrks) +. ( mrks). Use lgebric division

### Thomas Whitham Sixth Form

Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos

### 1 Introduction to Modulo 7 Arithmetic

1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

### Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

### CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

### Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

### Chapter 3 Fourier Series Representation of Periodic Signals

Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

### EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

### Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks

Edexcel GCE Core Mthemtics (C) Required Knowledge Informtion Sheet C Formule Given in Mthemticl Formule nd Sttisticl Tles Booklet Cosine Rule o = + c c cosine (A) Binomil Series o ( + ) n = n + n 1 n 1

### MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

MATHEMATICS PAPER IB COORDINATE GEOMETRY(D &D) AND CALCULUS. TIME : hrs Ma. Marks.75 Not: This qustion papr consists of thr sctions A,B and C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS. 0X =0.If th portion

### Practice Final Exam. 3.) What is the 61st term of the sequence 7, 11, 15, 19,...?

Discrt mth Prctic Fl Em.) Fd 4 (i ) i=.) Fd i= 6 i.) Wht is th 6st trm th squnc 7,, 5, 9,...? 4.) Wht s th 57th trm, 6,, 4,...? 5.) Wht s th sum th first 60 trms th squnc, 5, 7, 9,...? 6.) Suppos st A

### 5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd

1. First you chck th domain of g x. For this function, x cannot qual zro. Thn w find th D domain of f g x D 3; D 3 0; x Q x x 1 3, x 0 2. Any cosin graph is going to b symmtric with th y-axis as long as

### A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

### Massachusetts Institute of Technology Department of Mechanical Engineering

Massachustts Institut of Tchnolog Dpartmnt of Mchanical Enginring. Introduction to Robotics Mid-Trm Eamination Novmbr, 005 :0 pm 4:0 pm Clos-Book. Two shts of nots ar allowd. Show how ou arrivd at our

### Errata for Second Edition, First Printing

Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

### If C = 60 and = P, find the value of P. c 2 = a 2 + b 2 2abcos 60 = a 2 + b 2 ab a 2 + b 2 = c 2 + ab. c a

Answers: (000-0 HKMO Finl Events) Creted : Mr. Frncis Hung Lst updted: 0 June 08 Individul Events I P I P I P I P 5 7 0 0 S S S S Group Events G G G G 80 00 0 c 8 c c c d d 6 d 5 d 85 Individul Event I.,

### Nat 5 USAP 3(b) This booklet contains : Questions on Topics covered in RHS USAP 3(b) Exam Type Questions Answers. Sourced from PEGASYS

Nt USAP This ooklet contins : Questions on Topics covered in RHS USAP Em Tpe Questions Answers Sourced from PEGASYS USAP EF. Reducing n lgeric epression to its simplest form / where nd re of the form (

### Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well

7 nd ntrntionl Confrnc on Softwr, Multimdi nd Communiction Enginring (SMCE 7) SBN: 978--6595-458-5 Thorticl Study on th Whil Drilling Elctromgntic Signl Trnsmission of Horizontl Wll Y-huo FAN,,*, Zi-ping

### Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

### The Theory of Small Reflections

Jim Stils Th Univ. of Knss Dt. of EECS 4//9 Th Thory of Smll Rflctions /9 Th Thory of Smll Rflctions Rcll tht w nlyzd qurtr-wv trnsformr usg th multil rflction viw ot. V ( z) = + β ( z + ) V ( z) = = R

### Precalculus Due Tuesday/Wednesday, Sept. 12/13th Mr. Zawolo with questions.

Preclculus Due Tuesd/Wednesd, Sept. /th Emil Mr. Zwolo (isc.zwolo@psv.us) with questions. 6 Sketch the grph of f : 7! nd its inverse function f (). FUNCTIONS (Chpter ) 6 7 Show tht f : 7! hs n inverse

### Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

### Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

### KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a

KEY CONCEPTS THINGS TO REMEMBER :. The re ounded y the curve y = f(), the -is nd the ordintes t = & = is given y, A = f () d = y d.. If the re is elow the is then A is negtive. The convention is to consider