Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Size: px
Start display at page:

Download "Analyticity and Operation Transform on Generalized Fractional Hartley Transform"

Transcription

1 I Jourl of Mh Alyi, Vol, 008, o 0, Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi (MS), Idi Abrc I hi ppr w hv dicud h lyiciy horm d ivrio formul for h grlizd frciol rly rform d uig h w hv provd uiqu horm Alo w hv dicud frciol rly rform of lcd fucio d obid oprio rform formul for hi rform Kyword: Frciol Fourir rform, rly rform, Tig fucio pc, Grlizd fucio Iroducio: Now dy, frciol igrl rform ply impor rol i igl procig, img rcorucio, pr rcogiio, ccoic igl procig [8], [9] Fourir lyi i o of h mo frquly ud ool i igl procig d my ohr ciific dicipli Bid h Fourir rform for im frqucy rprio of igl, Wigr diribuio, h mbiguiy fucio, h hor im fourir rform d h pcrogrm r of ud g i pch procig rdr, quum phyic I mhmic lirur grlizio of h Fourir rform o h frciol Fourir rform i udr Nmi [0] iroducd h cocp of Fourir rform of frciol ordr, which dpd o coiuou prmr Th grlizio of ordiry fourir rform d i propri wr dicud i Criolro l [3] Zyd [] Drgom [4] c Frciol fourir rform i furhr grlizd o h igrl wih rpc o w mur dρ d w grlizd igrl rform w obid by Zyd [] Bhol d chudhry [] hd xdd frciol fourir rform o h diribuio of compc uppor Th frciol Fourir rform wih corrpod o h clicl Fourir rform d frcio l Fourir rform wih 0 corrpod o h idiy opror I [5] ohr igrl rform of Fourir cl, h i coi rform, i

2 978 P K So d A S Guddh rform d rly rform, r lo grlizd o h corrpodig frciol igrl rform d udid by diffr mhmici Th rly rform i rciv lriv d covi rl rplcm for h wll ow complx Fourir rform rly rform i gig grr imporc i vrl pplicio I [6] Brcwll ugg h h rly rform i f or fr h h Fourir rform d c b ud rplcm for h Fourir rform Uig h igvlu fucio, ud i frciol Fourir rform, diffr igrl rform i Fourir cl r grlizd o frciol rform by Pi [5] rly rform i lo grlizd o frciol rly rform by him hd how h for ll o giv igr m, m ( ) i h ig fucio of h rly rform d hd giv h formul for frciol rly rform, whr K K d, π [( i ) c(cc φ ) + ( + i ) c( ccφ ) ] I hi ppr fir w dfi grlizd frciol rly rform i cio d prov i lyiciy Th fucio f () i h rcovrd from by m of h ivrio formul i cio 3 Uig ivrio formul w hv provd h frciol rly rformbl grlizd fucio hvig h m rip of dfiiio d h m rform mu b idicl, which i md uiqu horm i cio 3 Frciol rly rform of om lcd fucio d oprio rform formul r obid i cio 4 d cio 5 rpcivly Lly cocluio i giv i cio 6 Alyiciy Of Frciol rly Trform : ' Th Grlizd Frciol rly Trform o E : R d S d 0 L S { R,, > 0 L, if icoφ i coφ i coφ K [( i ) c(ccφ ) + ( + i ) c( ccφ ) ], π whr π φ, h K E( R ) γ K up D K < if { < < r E ( R ) i h ig fucio pc ' Th grlizd frciol rly rform of E ( R ) i dfid,

3 Alyiciy d oprio rform 979, K, () ' whr E ( R ) i h dul pc of h ig fucio pc Alyiciy Thorm : ' Thorm : L ( ) f E R d i frciol rly rform i dfid () Th i lyic o Supp S { : R,, > 0 D R if h f h [ ](, D K Proof : L (, ) R, w fir prov h : i diffribl d [ { f ( )]( f ( ), K W prov h rul for, h grl rul follow by iducio For om 0, choo wo cocric circl C d C wih cr d rdii r d r rpcivly, uch h 0 < Δ < r 0 < r < r < L Δ b icrm, ifyig Coidr, ( + Δ ) Δ ( ) f ( ), K ) f ( ), ΨΔ ( ), ) Δ whr, ) [ K, ) K ] K ) ΨΔ For y fixd ( + Δ R, {( ccφ K + i coφ K ) D i coφ i coφ, φ d K C, φ, whr, C i coφ π K [i(ccφ ) + i co(ccφ )]

4 980 P K So d A S Guddh Sic for y fixd R fixd igr d rgig from 0 o, D K ) i lyic iid d o C, w hv by Cuchy igrl formul, Δ M D i (, ) ΨΔ ( ) π z Δ z ( )( ) C dz, whr,, z, ) ( + Bu for ll z C d rricd o compc ub of R, 0, M D K i boudd by co K Thrfor w hv, K DΨΔ ( ) Δ ( r r) r ub of ' E Thu Δ 0, D ΨΔ ( ) d o zro uiformly o h compc R hrfor i follow h () ΨΔ covrg i E( R ) o zro Sic w coclud h () lo d o zro hrfor ( i S Bu hi i ru for ll, c ( diffribl wih rpc o i lyic d D [ ](, D K 3 Ivr Ad Uiqu Thorm : 3 Ivr Of Frciol rly Trform: Grlizd frciol rly rform dfid i () c b wri icoφ i coφ i coφ ( i ) c(ccφ ) + ( + i ) c( ccφ ) d π ( i π ) i co φ f ( ) (cc φ + ( + i ) f ( ) (cc φ,

5 Alyiciy d oprio rform 98 Pu (ccφ ) v v viφ ccφ Tig rly ivr of boh id which i m rly rform, iv i i coφ φcoφ ( vi φ ) cv d ( i ) f ( ) + ( + i ) f ( ) i ( ) co φ i ( ) co φ If f () i v h f ( ) h, w g i coφ g ( v) c v dv, iv i φco φ φ whr g( v) v i ) i coφ g( v) c v dv, wh f () i v Puig g (v) d olvig, w g d K(, ) ccφ i coφ i coφ whr K c(ccφ ) icoφ Now if f () i odd h f ( ) g( v) c v dv ( i i i( φ + coφ ) ), i coφ g( v) c v dv Agi puig g (v) d olvig, w g + ( + i ) i coφ ( )

6 98 P K So d A S Guddh d K(, ) ccφ i coφ i( φ ) i coφ whr, K c(ccφ ) i coφ π 3 Uiqu Thorm : Thorm : If d { g( ) r frciol rly rform of f () d g () rpcivly for o d upp f S : S { : R, d upp g S : S { : R, ( { g( ) h f g i h of quliy of D ' (I ) if { ) Proof : By ivrio horm, f g lim N π N N K [ { g( ) ]d Thu f g i D ' (I ) 4 Frciol rly Trform Of Slcd Fucio : Frciol rly Trform of lcd fucio r buld follow

7 Alyiciy d oprio rform 983 TABLE Sr No Sigl { Frciol rly rform ( (φ i) i φ δ ( ) { δ ( ) i coφ π i + co φ [ co(ccφ ) i i(ccφ ) ] 3 δ ( ) { δ ( ) i coφ π 4 i { ( + i ( ) ( ) ) φ φ i i( cφ ) i 5 co { ( + co ( ) ( ) ) φ φ i co( cφ ) i 5 Oprio Trform Formul : I hi cio w prov om oprio rform formul for frciol rly rform, for which followig wo lmm c b ily provd 5 Lmm : Frciol rly rform giv i cio, c lo b xprd i coφ i coφ i coφ π 5 Lmm : { f ( ) icoφ i coφ i coφ π [ co(ccφ ) i i(ccφ ) ] [ co(ccφ ) + i i(ccφ ) ] d d

8 984 P K So d A S Guddh 53 Lmm : icoφ i coφ i i coφ φ [ i(ccφ ) + i co(ccφ ) ] d π i coφ iφ { f ( ) 54 Formul : If FrT h d ( i coφ [ { ] { f ( ) d Proof : Sic i coφ i coφ i coφ π co φ d i Cφ d Solvig w g ico [ co(ccφ ) i i(ccφ ) ] d ' [ co(cc φ ) i i(cc φ ) ] d [ { ] { f ( ) φ 55 Formul: If FrT { h + i φ d { f ( ) + i φ { d ' ( icoφ { { f ( Proof : { ) Q [ ] ) { 56 Formul: + c) (c+ c ) i coφ { co(ccφ c) + iφ i(ccφ c) f ( ) { Proof : w ow h, + c) ( + c) i coφ i coφ i coφ π (c+ c ) d + i φ { f ( ) + i φ d (c+ c ) i coφ i coφ { i(cc φ c) { co(ccφ( + c) ) i i(ccφ( + c) ) d (c+ c ) i coφ i coφ { co(ccφ c) i coφ { i(ccφ c) + iφ { i(ccφ c) f ( ) d 57 Formul : i coφ { f ( Proof : Coidr, d d d d d i coφ π ) { co(ccφ ) i i(ccφ ) d

9 Alyiciy d oprio rform 985 i coφ iφ iφ iφ i {coφ + coφ { f ( ) i coφ { f ( ) { f ( ) + i coφ 58 Formul : L b fixd rl umbrth mppig f ( ) i coiuou lir mppig o S o S d { f ( ) Whr i rl umbr i coφ i coφ [ co(ccφ ) i i(ccφ ) ] { Proof : By h dfiiio of frciol rly rform, { f ( ), i coφ i coφ i coφ [ co(ccφ ) i i(ccφ ) ] π Puig x d olvig w g { f ( ) f ( ) d i coφ i coφ [ co(ccφ ) i i(ccφ ) ] { 59 Formul: If FrT f ( ) ( h i i( ) co φ ( ) co φ Proof : By h dfiiio of frciol rly rform, i( ) coφ f ( ) ( i coφ i coφ i coφ [ co(ccφ ) i i(ccφ ) ] i( ) coφ Puig i π T d olvig w g f ( ) ( i ( ) co φ ( ) co φ f ( ) d

10 986 P K So d A S Guddh 6 Cocluio : Th grlizd frciol rly rform i dvlopd i hi ppr Th oprio rform formul provd i hi ppr c b ud, wh hi rform i ud o olv ordiry or pril diffril quio REFERENCES Ahmd I Zyd, A Covoluio d produc horm for h rciol Fourir rform, IEEE Sigl procig lr, Vol 5, No 4, April 998 B N Bhol d Chudhry M S, Frciol Fourir rform of Diribuio of compc uppor Bull cl Mh Soc, 94 (5), P , 00 3 Criolro,l, Mulipliciy of frciol Fourir rform d hir rliohip IEEE Tr o igl proc Vol48, No, J 000, P D Drgom Frciol Fourir rld fucio, Opic Commuicio, Vol 8, P 9-98, July Pi Soo-Chg, Ji-Jiu Dig, Frciol coi, i d rly rform, IEEE, Vol 50, No 7, July 00 6 R N Brcwll, Th rly Trform, Oxford U K Oxford Uiv Pr, R Scilr, Ergiv S d Ciiz N, Th u of h rly rform i gophyicl pplicio Gophyic, Vol 55, No, (Nov 990), P Ti Aliv d Bi Mri J, O Frciol Fourir rform mom, IEEE Sigl procig Lr, Vol 7, No, Nov Ti Aliv d Bi Mri J, Wigr diribuio d frciol Fourir rform for -dimiol ymmric bm, JOSA A, Vol 7, No, Dc 000, p Vicor Nmi, Th frciol ordr Fourir rform d i Applicio o quum mchic, J I Mh Appic, (998), 5, 4-65 Rcivd: Fbrury 4, 008

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series I Jorl of Mh Alysis, Vol 4, 2, o 2, 4-47 Approximio of Fcios Blogig o Lipschiz Clss by Triglr Mrix Mhod of Forir Sris Shym Ll Dprm of Mhmics Brs Hid Uivrsiy, Brs, Idi shym _ll@rdiffmilcom Biod Prsd Dhl

More information

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University Ovrviw Phy. : Mhmicl Phyic Phyic Dprm Yrmouk Uivriy Chpr Igrl Trorm Dr. Nidl M. Erhid. Igrl Trorm - Fourir. Dvlopm o h Fourir Igrl. Fourir Trorm Ivr Thorm. Fourir Trorm o Driviv 5. Covoluio Thorm. Momum

More information

www.vidrhipu.com TRANSFORMS & PDE MA65 Quio Bk wih Awr UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Oi pri diffri quio imiig rirr co d from z A.U M/Ju Souio: Giv z ----- Diff Pri w.r. d p > - p/ q > q/

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

Available online at ScienceDirect. Physics Procedia 73 (2015 )

Available online at  ScienceDirect. Physics Procedia 73 (2015 ) Avilbl oli www.cicdi.co ScicDi Pic Procdi 73 (015 ) 69 73 4 riol Cofrc Pooic d forio Oic POO 015 8-30 Jur 015 Forl drivio of digil ig or odl K.A. Grbuk* iol Rrc Srov S Uivri 83 Arkk. Srov 41001 RuiR Fdrio

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

Generalized Half Linear Canonical Transform And Its Properties

Generalized Half Linear Canonical Transform And Its Properties Gnrlz Hl Lnr Cnoncl Trnorm An I Propr A S Guh # A V Joh* # Gov Vrh Inu o Scnc n Humn, Amrv M S * Shnkrll Khnlwl Collg, Akol - 444 M S Arc: A gnrlzon o h Frconl Fourr rnorm FRFT, h lnr cnoncl rnorm LCT

More information

15. Numerical Methods

15. Numerical Methods S K Modal' 5. Numrical Mhod. Th quaio + 4 4 i o b olvd uig h Nwo-Rapho mhod. If i ak a h iiial approimaio of h oluio, h h approimaio uig hi mhod will b [EC: GATE-7].(a (a (b 4 Nwo-Rapho iraio chm i f(

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

FOURIER ANALYSIS Signals and System Analysis

FOURIER ANALYSIS Signals and System Analysis FOURIER ANALYSIS Isc Nwo Whi ligh cosiss of sv compos J Bpis Josph Fourir Bor: Mrch 768 i Auxrr, Bourgog, Frc Did: 6 My 83 i Pris, Frc Fourir Sris A priodic sigl of priod T sisfis ft f for ll f f for ll

More information

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here UNIT VIII INVERSE APACE TRANSFORMS Sppo } { h i clld h ivr plc rorm o d i wri } {. Hr do h ivr plc rorm. Th ivr plc rorm giv blow ollow oc rom h rl o plc rorm, did rlir. i co 6 ih 7 coh 8...,,! 9! b b

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

A Bessel polynomial framework to prove the RH

A Bessel polynomial framework to prove the RH A Bl poloil frwork o prov h RH Dr lu Bru Friburg i Br wwwri-hpohid Jur Abrc Th Gu-Wirr di fucio f : bl rprio of Ri duli quio i h for f d f d Th odifid Bl-Hkl fucio : rc Y / J J Y co d dd ih coh : coh r

More information

S.E. Sem. III [EXTC] Applied Mathematics - III

S.E. Sem. III [EXTC] Applied Mathematics - III S.E. Sem. III [EXTC] Applied Mhemic - III Time : 3 Hr.] Prelim Pper Soluio [Mrk : 8 Q.() Fid Lplce rform of e 3 co. [5] A.: L{co }, L{ co } d ( ) d () L{ co } y F.S.T. 3 ( 3) Le co 3 Q.() Prove h : f (

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

On the Existence and uniqueness for solution of system Fractional Differential Equations

On the Existence and uniqueness for solution of system Fractional Differential Equations OSR Jourl o Mhms OSR-JM SSN: 78-578. Volum 4 ssu 3 Nov. - D. PP -5 www.osrjourls.org O h Es d uquss or soluo o ssm rol Drl Equos Mh Ad Al-Wh Dprm o Appld S Uvrs o holog Bghdd- rq Asr: hs ppr w d horm o

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

3.2. Derivation of Laplace Transforms of Simple Functions

3.2. Derivation of Laplace Transforms of Simple Functions 3. aplac Tarform 3. PE TRNSFORM wid rag of girig ym ar modld mahmaically by uig diffrial quaio. I gral, h diffrial quaio of h ordr ym i wri: d y( a d d d y( dy( a a y( f( (3. d Which i alo ow a a liar

More information

Data Structures Lecture 3

Data Structures Lecture 3 Rviw: Rdix sor vo Rdix::SorMgr(isr& i, osr& o) 1. Dclr lis L 2. Rd h ifirs i sr i io lis L. Us br fucio TilIsr o pu h ifirs i h lis. 3. Dclr igr p. Vribl p is h chrcr posiio h is usd o slc h buck whr ifir

More information

CS 688 Pattern Recognition. Linear Models for Classification

CS 688 Pattern Recognition. Linear Models for Classification //6 S 688 Pr Rcogiio Lir Modls for lssificio Ø Probbilisic griv modls Ø Probbilisic discrimiiv modls Probbilisic Griv Modls Ø W o ur o robbilisic roch o clssificio Ø W ll s ho modls ih lir dcisio boudris

More information

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems BoDiPrima 9 h d Ch 7.9: Nohomogou Liar Sm Elmar Diffrial Equaio ad Boudar Valu Prolm 9 h diio William E. Bo ad Rihard C. DiPrima 9 Joh Wil & So I. Th gral hor of a ohomogou m of quaio g g aralll ha of

More information

From Fourier Series towards Fourier Transform

From Fourier Series towards Fourier Transform From Fourir Sris owards Fourir rasform D D d D, d wh lim Dparm of Elcrical ad Compur Eiri D, d wh lim L s Cosidr a fucio G d W ca xprss D i rms of Gw D G Dparm of Elcrical ad Compur Eiri D G G 3 Dparm

More information

AN INTEGRO-DIFFERENTIAL EQUATION OF VOLTERRA TYPE WITH SUMUDU TRANSFORM

AN INTEGRO-DIFFERENTIAL EQUATION OF VOLTERRA TYPE WITH SUMUDU TRANSFORM Mmic A Vol. 2 22 o. 6 54-547 AN INTGRO-IRNTIAL QUATION O VOLTRRA TYP WITH UMUU TRANORM R Ji cool o Mmic d Allid cic Jiwji Uiviy Gwlio-474 Idi mil - ji3@dimil.com i ig pm o Applid Mmic Ii o Tcology d Mgm

More information

Inverse Thermoelastic Problem of Semi-Infinite Circular Beam

Inverse Thermoelastic Problem of Semi-Infinite Circular Beam iol oul o L choloy i Eii M & Alid Scic LEMAS Volu V u Fbuy 8 SSN 78-54 v holic Pobl o Si-ii Cicul B Shlu D Bi M. S. Wbh d N. W. Khobd 3 D o Mhic Godw Uiviy Gdchioli M.S di D o Mhic Svody Mhvidyly Sidwhi

More information

Globl Jourl of Pur d Applid hics. ISSN 97-768 Volu, Nubr (7), pp. 94-956 Rsrch Idi Publicios hp://www.ripublicio.co Th o Grig Fucio of h Four- Prr Grlizd F Disribuio d Rld Grlizd Disribuios Wrsoo, Di Kurisri,

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

1. Introduction and notations.

1. Introduction and notations. Alyi Ar om plii orml or q o ory mr Rol Gro Lyé olyl Roièr, r i lir ill, B 5 837 Tolo Fr Emil : rolgro@orgr W y hr q o ory mr, o ll h o ory polyomil o gi rm om orhogol or h mr Th mi rl i orml mig plii h

More information

What Is the Difference between Gamma and Gaussian Distributions?

What Is the Difference between Gamma and Gaussian Distributions? Applid Mahmaics,,, 85-89 hp://ddoiorg/6/am Publishd Oli Fbruary (hp://wwwscirporg/joural/am) Wha Is h Diffrc bw Gamma ad Gaussia Disribuios? iao-li Hu chool of Elcrical Egirig ad Compur cic, Uivrsiy of

More information

Parameter Estimation and Determination of Sample Size in Logistic Regression

Parameter Estimation and Determination of Sample Size in Logistic Regression Jourl of Mhmic d Siic 8 (4): 48-488, ISSN 549-3644 Scic Publicio doi:.3844/mp..48.488 Publihd Oli 8 (4) (hp://www.hcipub.com/m.oc) Prmr Eimio d Drmiio of Smpl Siz i Logiic Rgrio Adlk Kzm Addyo d Dwud Adbyo

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform Aalyi o No-Siuoidal Wavorm Par Laplac raorm I h arlir cio, w lar ha h Fourir Sri may b wri i complx orm a ( ) C jω whr h Fourir coici C i giv by o o jωo C ( ) d o I h ymmrical orm, h Fourir ri i wri wih

More information

Mixing time with Coupling

Mixing time with Coupling Mixig im wih Couplig Jihui Li Mig Zhg Saisics Dparm May 7 Goal Iroducio o boudig h mixig im for MCMC wih couplig ad pah couplig Prsig a simpl xampl o illusra h basic ida Noaio M is a Markov chai o fii

More information

On commutative and non-commutative quantum stochastic diffusion flows

On commutative and non-commutative quantum stochastic diffusion flows Jorl of Applid hmic & Bioiformic, vol.5, o.3, 5, 97- ISSN: 79-66 pri, 79-6939 oli Scipr Ld, 5 O commiv d o-commiv qm ochic diffio flow Pgioi N. Komo, Olivr R. Kik, Evgli S. Ahido 3 d Pioi K. Pvlko 4 Arc

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp O hour h by Sf Trpp How o g rich Th Dl! offr you: liflog, vry dy Kr for o-i py ow of oly 5 Kr. d irs r of % bu oly o h oy you hv i.. h oy gv you ius h oy you pid bc for h irs No d o py bc yhig ls! s h

More information

Opening. Monster Guard. Grades 1-3. Teacher s Guide

Opening. Monster Guard. Grades 1-3. Teacher s Guide Tcr Gi 2017 Amric R Cr PLEASE NOTE: S m cml Iiii ci f Mr Gr bfr y bgi i civiy, i rr gi cc Vlc riig mii. Oig Ifrm y r gig lr b vlc y f vlc r. Exli r r vlc ll vr rl, i Ui S, r, iclig Alk Hii, v m civ vlc.

More information

Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS hpr 7 INTERAL EQUATIONS hpr 7 INTERAL EQUATIONS hpr 7 Igrl Eqios 7. Normd Vcor Spcs. Eclidi vcor spc. Vcor spc o coios cios ( ) 3. Vcor Spc L ( ) 4. chy-byowsi iqliy 5. iowsi iqliy 7. Lir Oprors - coios

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations, Shiraz Uivrsiy of Tchology From h SlcdWorks of Habibolla Laifizadh Th Dvlopm of Suiabl ad Wll-foudd Numrical Mhods o Solv Sysms of Igro- Diffrial Equaios, Habibolla Laifizadh, Shiraz Uivrsiy of Tchology

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Special Curves of 4D Galilean Space

Special Curves of 4D Galilean Space Irol Jourl of Mhml Egrg d S ISSN : 77-698 Volum Issu Mrh hp://www.jms.om/ hps://ss.googl.om/s/jmsjourl/ Spl Curvs of D ll Sp Mhm Bkş Mhmu Ergü Alpr Osm Öğrmş Fır Uvrsy Fuly of S Dprm of Mhms 9 Elzığ Türky

More information

Chapter 5 Transient Analysis

Chapter 5 Transient Analysis hpr 5 rs Alyss Jsug Jg ompl rspos rs rspos y-s rspos m os rs orr co orr Dffrl Equo. rs Alyss h ffrc of lyss of crcus wh rgy sorg lms (ucors or cpcors) & m-ryg sgls wh rss crcus s h h quos rsulg from r

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

ENJOY ALL OF YOUR SWEET MOMENTS NATURALLY

ENJOY ALL OF YOUR SWEET MOMENTS NATURALLY ENJOY ALL OF YOUR SWEET MOMENTS NATURALLY I T R Fily S U Wi Av I T R Mkr f Sr I T R L L All-Nrl Sr N Yrk, NY (Mr 202) Crl Pki Cr., kr f Sr I T R Svi I T R v x ll-rl I T R fily f r il Av I T R, 00% ri v

More information

ON H-TRICHOTOMY IN BANACH SPACES

ON H-TRICHOTOMY IN BANACH SPACES CODRUTA STOICA IHAIL EGA O H-TRICHOTOY I BAACH SPACES Absrac: I his papr w mphasiz h oio of skw-oluio smiflows cosidrd a gralizaio of smigroups oluio opraors ad skw-produc smiflows which aris i h sabiliy

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 3 EE4555 Fudmls of Smicoducor vics Fll cur 8: PN ucio iod hr 8 Forwrd & rvrs bis Moriy crrir diffusio Brrir lowrd blcd by iffusio rducd iffusio icrsd mioriy crrir drif rif hcd 3 EE 4555. E. Morris 3 3

More information

IMPROVED ESTIMATOR OF FINITE POPULATION MEAN USING AUXILIARY ATTRIBUTE IN STRATIFIED RANDOM SAMPLING

IMPROVED ESTIMATOR OF FINITE POPULATION MEAN USING AUXILIARY ATTRIBUTE IN STRATIFIED RANDOM SAMPLING Jourl of ciific Rrc Vol. 58 04 : 99-05 Br Hidu Uivriy Vri I : 0447-948 IMPROVED ETIMATOR OF FIITE POPUATIO MEA UIG AUXIIARY ATTRIBUTE I TRATIFIED RADOM AMPIG Hm K. Vrm Pry rm d Rj ig Dprm of iic Br Hidu

More information

Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations

Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Boy/DiPrim/Md h d Ch 7.: Iroduio o Sysms of Firs Ordr Lir Equios Elmry Diffril Equios d Boudry Vlu Problms h diio by Willim E. Boy Rihrd C. DiPrim d Doug Md 7 by Joh Wily & Sos I. A sysm of simulous firs

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics) Mh Lr # In-l Workh Vor n Mri (Bi) h n o hi lr, o hol l o: r mri n or in Mh i mri prorm i mri mh oprion ol m o linr qion ing mri mh. Cring Mri Thr r rl o r mri. Th "Inr Mri" Wino (M) B K Poin Rr o

More information

Signals & Systems - Chapter 3

Signals & Systems - Chapter 3 .EgrCS.cm, i Sigls d Sysms pg 9 Sigls & Sysms - Chpr S. Ciuus-im pridic sigl is rl vlud d hs fudml prid 8. h zr Furir sris cfficis r -, - *. Eprss i h m. cs A φ Slui: 8cs cs 8 8si cs si cs Eulrs Apply

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

MM1. Introduction to State-Space Method

MM1. Introduction to State-Space Method MM Itroductio to Stt-Spc Mthod Wht tt-pc thod? How to gt th tt-pc dcriptio? 3 Proprty Alyi Bd o SS Modl Rdig Mtril: FC: p469-49 C: p- /4/8 Modr Cotrol Wht th SttS tt-spc Mthod? I th tt-pc thod th dyic

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23 BIO53 Bosascs Lcur 04: Cral Lm Thorm ad Thr Dsrbuos Drvd from h Normal Dsrbuo Dr. Juchao a Cr of Bophyscs ad Compuaoal Bology Fall 06 906 3 Iroduco I hs lcur w wll alk abou ma cocps as lsd blow, pcd valu

More information

New Product-Type and Ratio-Type Exponential Estimators of the Population Mean Using Auxiliary Information in Sample Surveys

New Product-Type and Ratio-Type Exponential Estimators of the Population Mean Using Auxiliary Information in Sample Surveys ISSN 68-8 Jourl of Sisics olum, 6. pp. 67-85 Absrc Nw roduc-tp d io-tp Epoil Esimors of h opulio M Usig Auilir Iformio i Smpl Survs Housil. Sigh, r Lshkri d Sur K. l This ppr ddrsss h problm of simig h

More information

Why would precipitation patterns vary from place to place? Why might some land areas have dramatic changes. in seasonal water storage?

Why would precipitation patterns vary from place to place? Why might some land areas have dramatic changes. in seasonal water storage? Bu Mb Nx Gi Cud-f img, hwig Eh ufc i u c, hv b cd + Bhymy d Tpgphy fm y f mhy d. G d p, bw i xpd d ufc, bu i c, whi i w. Ocb 2004. Wh fm f w c yu idify Eh ufc? Why wud h c ufc hv high iiy i m, d w iiy

More information

REACHABILITY OF FRACTIONAL CONTINUOUS-TIME LINEAR SYSTEMS USING THE CAPUTO-FABRIZIO DERIVATIVE

REACHABILITY OF FRACTIONAL CONTINUOUS-TIME LINEAR SYSTEMS USING THE CAPUTO-FABRIZIO DERIVATIVE ECHLY OF FCONL CONNUOUS-ME LNE SYSEMS USNG HE CPUO-FZO DEVVE usz Kczor iłyso Uivrsiy o chology Fculy o Elcricl Egirig Wijs 45D, 5-5 iłyso E-il: czor@isppwupl KEYWODS Frciol, coiuous-i, lir, sys, Cpuo-

More information

NEWBERRY FOREST MGT UNIT Stand Level Information Compartment: 10 Entry Year: 2001

NEWBERRY FOREST MGT UNIT Stand Level Information Compartment: 10 Entry Year: 2001 iz oy- kg vg. To. 1 M 6 M 10 11 100 60 oh hwoo uvg N o hul 0 Mix bg. woo, moly low quliy. Coif ompo houghou - WP/hmlok/pu/blm/. vy o whi pi o h ouh fig of. iffiul o. Th o hi i o PVT l wh h g o wll big

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals ELECTOMAGNETIC COMPATIBILITY HANDBOOK Chapr : Spcra of Priodic ad Apriodic Sigals. Drmi whhr ach of h followig fucios ar priodic. If hy ar priodic, provid hir fudamal frqucy ad priod. a) x 4cos( 5 ) si(

More information

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = = L's rvs codol rol whr h v M s rssd rs o h rdo vrl. L { M } rrr v such h { M } Assu. { } { A M} { A { } } M < { } { } A u { } { } { A} { A} ( A) ( A) { A} A A { A } hs llows us o cosdr h cs wh M { } [ (

More information

A FAMILY OF GOODNESS-OF-FIT TESTS FOR THE CAUCHY DISTRIBUTION RODZINA TESTÓW ZGODNOŚCI Z ROZKŁADEM CAUCHY EGO

A FAMILY OF GOODNESS-OF-FIT TESTS FOR THE CAUCHY DISTRIBUTION RODZINA TESTÓW ZGODNOŚCI Z ROZKŁADEM CAUCHY EGO JAN PUDEŁKO A FAMILY OF GOODNESS-OF-FIT TESTS FO THE CAUCHY DISTIBUTION ODZINA TESTÓW ZGODNOŚCI Z OZKŁADEM CAUCHY EGO Abrac A w family of good-of-fi for h Cauchy diribuio i propod i h papr. Evry mmbr of

More information