Ordinary Differential Equations

Size: px
Start display at page:

Download "Ordinary Differential Equations"

Transcription

1 Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid cotat by uig claical olutio ad aplac traform tchiqu. Itroductio A quatio that coit of drivativ i calld a diffrtial quatio. Diffrtial quatio hav applicatio i all ara of cic ad girig. Mathmatical formulatio of mot of th phyical ad girig problm lad to diffrtial quatio. So, it i importat for gir ad citit to kow how to t up diffrtial quatio ad olv thm. Diffrtial quatio ar of two typ A) ordiary diffrtial quatio ODE) A ordiary diffrtial quatio i that i which all th drivativ ar with rpct to a igl idpdt variabl. Eampl of ordiary diffrtial quatio iclud d y y 0, 0), y0) 4, d d d d y d y d y 5 y i, 0), 0), y 0) 4 d d d d d Ordiary diffrtial quatio ar claifid i trm of ordr ad dgr. Ordr of a ordiary diffrtial quatio i th am a th hight drivativ ad th dgr of a ordiary diffrtial quatio i th powr of hight drivativ. Thu th diffrtial quatio, d y d y y d d d i of ordr ad dgr, whra th diffrtial quatio i i of ordr ad dgr. d d A gir approach to diffrtial quatio i diffrt from a mathmaticia. Whil, th lattr i itrtd i th mathmatical olutio, a gir hould b abl to itrprt th rult phyically. So, a gir approach ca b dividd ito thr pha: a) formulatio of a diffrtial quatio from a giv phyical ituatio, b) olvig th diffrtial quatio ad valuatig th cotat, uig giv coditio, ad c) Itrprtig th rult phyically for implmtatio

2 08.0. Chaptr 08.0 Formulatio of diffrtial quatio A dicud abov, th formulatio of a diffrtial quatio i bad o a giv phyical ituatio. Thi ca b illutratd by a prig-ma-dampr ytm. K b M Figur Sprig-ma dampr ytm. Abov i th chmatic diagram of a prig-ma-dampr ytm. A block i updd frly uig a prig. A mot phyical ytm ivolv om kid of dampig - vicou dampig, dry dampig, magtic dampig, tc., a dampr or dahpot i attachd to accout for vicou dampig. t th ma of th block b M, th prig cotat b K, ad th dampr cofficit b b. If w maur diplacmt from th tatic quilibrium poitio w d ot coidr gravitatioal forc a it i balacd by tio i th prig at quilibrium. Blow i th fr bo diagram of th block at tatic ad amic quilibrium. So, th quatio of motio i giv by Ma F S F D ) whr F S i th rtorig forc du to prig. F D i th dampig forc du to th dampr. a i th acclratio. Th rtorig forc i th prig i giv by F S K ) a th rtorig forc i proportioal to diplacmt ad it i gativ a it oppo th motio. Th dampig forc i th dampr i giv by F D bv ) a th dampig forc i dirctly proportioal to vlocity ad alo oppo motio. Thrfor, th quatio of motio ca b writt a Ma K bv 4)

3 Primr for Ordiary Diffrtial Equatio Static Dyamic T F S F D Mg Ma Figur Fr bo diagram of prig-ma-dampr ytm. Sic d d a ad v dt dt from Equatio 4), w gt d d M K b dt dt d d M b K 0 5) dt dt Thi i a ordiary diffrtial quatio of cod ordr ad of dgr o. Solutio to liar ordiary diffrtial quatio I thi ctio w dicu two tchiqu ud to olv ordiary diffrtial quatio A) Claical tchiqu B) aplac traform tchiqu Claical Tchiqu Th gral form of a liar ordiary diffrtial quatio with cotat cofficit i giv by d y d y d y k... k k k y F ) 6) d d d d Th gral olutio cotai two part

4 Chaptr 08.0 y y H y P 7) whr y H i th homogou part of th olutio ad y P i th particular part of th olutio. Th homogou part of th olutio y H i that part of th olutio that giv zro wh ubtitutd i th lft had id of th quatio. So, y H i olutio of th quatio d y d y d y k... k k k y 0 d d d d 8) Th abov quatio ca b ymbolically writt a D y kd y... kdy k y 0 9) D kd... kd k) y 0 0) whr, d D d ) d D d... opratig o y i th am a D r), D r ), D r ) opratig o aftr th othr i ay ordr, whr D r ), D r ),..., D r ) ar factor of D kd kd k 0 ) To illutrat D D ) y 0 i am a D ) D ) y 0 D ) D ) y 0 Thrfor, D kd... kd k) y 0 ) i am a D r ) D r )... D r ) y 0 4) opratig o aftr th othr i ay ordr.

5 Primr for Ordiary Diffrtial Equatio Ca : Root ar ral ad ditict Th tir lft had id bcom zro if D r y 0. Thrfor, th olutio to D r y 0 i a olutio to a homogou quatio. D r y 0 i calld ibitz liar diffrtial quatio of firt ordr ad it olutio i D r y 0 5) r y d 6) r d y 7) Itgratig both id w gt l y r c 8) r y c 9) Sic ay of th factor ca b placd bfor y, thr ar diffrt olutio corrpodig to diffrt factor giv by r r r r C, C,..., C, C whr r, r,....., r, r ar th root of Equatio ) ad C, C,..., C, C ar cotat. W gt th gral olutio for a homogou quatio by uprimpoig th idividual ibitz olutio. Thrfor r r r r yh C C C C 0) Ca : Root ar ral ad idtical If two root of a homogou quatio ar qual, ay r r, th D r ) D r )... D r ) D r ) y 0 ) t work at D r ) D r ) y 0 ) If D r ) y z ) th D r ) z 0 r z C 4) Now ubtitutig th olutio from Equatio 4) i Equatio ) r D r ) y C r r y C d r r r C y d

6 Chaptr 08.0 r d y) C d d r y) Cd 5) Itgratig both id of Equatio 5), w gt r y C C r y C C ) 6) Thrfor th fial homogou olutio i giv by r r r yh C C C... C 7) Similarly, if m root ar qual th olutio i giv by m rm rm r yh C C C... Cm Cm... C 8) Ca : Root ar compl If o pair of root i compl, ay r i ad r i, whr i th i i r r yh C C C... C 9) Sic i co ii, ad 0a) i co ii 0b) th r r yh C co ii C co ii C... C r r C C co i C C i C... C r r Aco Bi C... C ) whr A C C ad B i C C) ) Now, lt u look at how th particular part of th olutio i foud. Coidr th gral form of th ordiary diffrtial quatio D k D k D... k y ) X Th particular part of th olutio y P i that part of olutio that giv X wh ubtitutd for y i th abov quatio, that i, D k D k D k y X... 4) Sampl Ca a a Wh X, th particular part of th olutio i of th form A. W ca fid A by a ubtitutig y A i th lft had id of th diffrtial quatio ad quatig cofficit. P

7 Primr for Ordiary Diffrtial Equatio Eampl Solv d Solutio y, y 0) 5 Th homogou olutio for th abov quatio i giv by D y 0 Th charactritic quatio for th abov quatio i giv by r 0 Th olutio to th quatio i r y H C Th particular part of th olutio i of th form A da A d A A A A Hc th particular part of th olutio i y P Th complt olutio i giv by y y H y P C Th cotat C ca b obtaid by uig th iitial coditio y 0) C 5 y C 5 C 6 Th complt olutio i y 6 Eampl Solv. y 5, y 0) 5 d Solutio Th homogou olutio for th abov quatio i giv by D y 0 Th charactritic quatio for th abov quatio i giv by r 0 Th olutio to th quatio i r.5

8 Chaptr y H C Bad o th forcig fuctio of th ordiary diffrtial quatio, th particular part of th olutio i of th form A. 5, but ic that i part of th form of th homogou part of th olutio, w d to choo th t idpdt olutio, that i,.5 y P A To fid A, w ubtitut thi olutio i th ordiary diffrtial quatio a.5 A.5. d 5 A d A A A.5.5 A A 0.5 Hc th particular part of th olutio i.5 y P 0.5 Th complt olutio i giv by y y H y P.5.5 C 0.5 Th cotat C i obtaid by uig th iitial coditio y 0) 5..50).50) 0 C 0.50) 5 y C 0 5 C 5 Th complt olutio i.5 y Sampl Ca Wh X ia) or coa ), th particular part of th olutio i of th form Ai a) Bco a). W ca gt A ad B by ubtitutig y Ai a) Bco a) i th lft had id of th diffrtial quatio ad quatig cofficit. Eampl Solv d y.5y i, y 0) 5, 0) d d d Solutio Th homogou quatio i giv by D D.5) y 0 Th charactritic quatio i r r.5 0 Th root of th charactritic quatio ar

9 Primr for Ordiary Diffrtial Equatio r i i Thrfor th homogou part of th olutio i giv by 0.75 yh K co K i ) Th particular part of th olutio i of th form Ai Bco y P d d d d d Aco Bi Aco Bi ).5 Ai Bco ) i d Ai Bco ) Aco Bi ).5 Ai Bco ) i.5a B)i.5B A)co i Equatig cofficit of i ad co o both id, w gt.5a B.5B A 0 Solvig th abov two imultaou liar quatio w gt A B 0.97 Hc y P i 0.97co Th complt olutio i giv by 0.75 y K co K i ) i 0.97co ) To fid K ad K w u th iitial coditio y 0) 5, 0) d From y 0) 5 w gt Ai B co Ai B co.5 Ai B co ) i 0.750) 5 K co0) K i0)) i0) 0.97co0)) 5 K 0.97 K K co K i ) K i K co ) d co 0.97i From

10 Chaptr ), d w gt 0.750) 0.750) 0.75 K co0) K i0)) K i0) K co0)) co0) 0.97i0) 0.75K K ) K K Th complt olutio i 0.75 y 5.97co i ) i 0.97co Eampl 4 Solv d y 6.5y co ), y 0) 5, 0) d d d Solutio Th homogou part of th quatio i giv by D 6D.5) y 0 Th charactritic quatio i giv by r 6r r 6 ) 4).5) ,.956 Thrfor, th homogou olutio y H i giv by yh K K Th particular part of th olutio i of th form y P Ai Bco Subtitutig th particular part of th olutio i th diffrtial quatio, d d Ai Bco ) 6 Ai Bco ) d d.5 Ai Bco ) co d Aco Bi ) 6 Aco Bi ) d.5 Ai Bco ) co

11 Primr for Ordiary Diffrtial Equatio Ai Bco ) 6 Aco Bi ).5 Ai Bco ) co.5a 6B)i.5B 6A)co co Equatig cofficit of co ad i w gt.5b 6A.5A 6B 0 Th olutio to th abov two imultaou liar quatio ar A B Hc th particular part of th olutio i y P i co Thrfor th complt olutio i y y H y P y K K ) i co Cotat K ad K ca b dtrmid uig iitial coditio. From y 0) 5, y 0) K K K K Now ).956) K.956K d co i From 0) d K.956K K.956K K.956K W hav two liar quatio with two ukow K K K.956K Solvig th abov two imultaou liar quatio, w gt K K.744 Th complt olutio i y ) i co. Sampl Ca Wh X a i b or a co b, th particular part of th olutio i of th form

12 08.0. Chaptr 08.0 a Ai b Bco b), w ca gt A ad B by ubtitutig a y Ai b Bco b) i th lft had id of diffrtial quatio ad quatig cofficit. Eampl 5 Solv d y y 5.5 i, y 0) 5, 0) d d d Solutio Th homogou quatio i giv by D 5D.5) y 0 Th charactritic quatio i giv by r 5r r 5 ) 4).5) ,.5 Sic root ar rpatd, th homogou olutio y H i giv by.5) yh K K) Th particular part of th olutio i of th form yp Ai Bco ) Subtitutig th particular part of th olutio i th ordiary diffrtial quatio d d { Ai B co )} 5 { Ai B co )} d d.5{ Ai B co )} i d { Ai B co ) Aco B i )} d 5{ Ai B co ) Aco B i )}.5 Ai B co ) { Ai B co ) 5{ Ai B co ) Aco B i ) Aco B i ) Aco B i )} Ai B co ) Aco B i ) i.875 Ai B co ) Aco B i ) i.875a B) i A.875B) co i Equatig cofficit of co ad i o both id w gt A.875B 0.875A B Ai B co ) Ai B co )} i i

13 Primr for Ordiary Diffrtial Equatio Solvig th abov two imultaou liar quatio w gt A ad B 0.45 Hc, yp 0.454i 0.45co ) Thrfor complt olutio i giv by y y H y P.5 y K K ) 0.454i 0.45co Cotat K ad K ca b dtrmid uig iitial coditio, From y 0) 5, w gt Now K K 5.45 d.5k.5.5k.5 K co 0.45i ) From 0), w gt d.50).50).50).5k.5k 0) K.5 ) 0.454i 0.45co ) co0) 0.45i0)) 0.454i0) 0.45co0).5K K K K ) K.977 K Subtitutig K 5.45 ad K i th olutio, w gt.5 y ) 0.454i 0.45co ) Th form of th particular part of th olutio for diffrt right had id of ordiary diffrtial quatio ar giv blow a X 0 a a a b y P 0 b b a A ib ) Ai b) Bco b) a ib) a Ai b) Bco b)

14 Chaptr 08.0 aplac Traform cob ) Ai b) Bco b) a cob) a Ai b) Bco b) If y f ) i dfid at all poitiv valu of, th aplac traform dotd by Y ) i giv by 0 Y ) { f )} f ) d 5) whr i a paramtr, which ca b a ral or compl umbr. W ca gt back f ) by takig th ivr aplac traform of Y ). { Y )} f ) 6) aplac traform ar vry uful i olvig diffrtial quatio. Thy giv th olutio dirctly without th city of valuatig arbitrary cotat paratly. Th followig ar aplac traform of om lmtary fuctio )! ), whr 0,,,... a ) a a i a) a co a) a a ih a) a coh a) 7) a Th followig ar th ivr aplac traform of om commo fuctio a a, whr,,...! a a!

15 Primr for Ordiary Diffrtial Equatio i a a a co a a ih a a a coh at a b a a i b b a b a a co b i a a a 8) Proprti of aplac traform iar proprty If a, b, c ar cotat ad f ), g ), ad h ) ar fuctio of th [ af ) bg ) ch )] a f )) b g )) c h )) 9) Shiftig proprty If { f )} Y ) 40) th { f )} Y a) 4) Uig hiftig proprty w gt a! a, 0 b a i b a b a a co b a b b a ih b a b a a coh b a b 4) Scalig proprty If { f )} Y ) 4)

16 Chaptr 08.0 th { f a)} Y 44) a a aplac traform of drivativ If th firt drivativ of f ) ar cotiuou th { f )} f ) d 0 Uig itgratio by part w gt 0 f f ) ) f ) ) d ) f )... ) ) ) 0 f ) d ) f ) 0 45) f 0) f 0) f 0)... f 0) f ) d Y ) f 0) f 0) f 0)... f 0) 46) aplac traform tchiqu to olv ordiary diffrtial quatio Th followig ar tp to olv ordiary diffrtial quatio uig th aplac traform mthod A) Tak th aplac traform of both id of ordiary diffrtial quatio. B) Epr Y ) a a fuctio of. C) Tak th ivr aplac traform o both id to gt th olutio. t u olv Eampl through 4 uig th aplac traform mthod. Eampl 6 Solv d Solutio y, y 0) 5 Takig th aplac traform of both id, w gt y d [ Y ) y0)] Y ) Uig th iitial coditio, y 0) 5 w gt [ Y ) 5] Y ) 0

17 Primr for Ordiary Diffrtial Equatio ) Y ) ) Y ) 5 6 Y ) ) ) Writig th prio for Y ) i trm of partial fractio 5 6 A B ) ) 5 6 A A B B ) ) ) ) 5 6 A A B B 0 Equatig cofficit of ad giv A B 5 A B 6 Th olutio to th abov two imultaou liar quatio i A B 8 8 Y ) Takig th ivr aplac traform o both id 6 { Y )} Sic at a Th olutio i giv by y ) 6 Eampl 7 Solv. y 5, y 0) 5 d Solutio Takig th aplac traform of both id, w gt.5 y d [ Y ) y0)] Y ).5

18 Chaptr 08.0 Uig th iitial coditio y 0) 5, w gt [ Y ) 5] Y ).5 ) Y ) ) Y ) Y ).5) ) 0 6.5).5) 0 6.5) 5 8.5) Writig th prio for Y ) i trm of partial fractio 5 8 A B.5).5.5) 5 8 A.5A B.5).5) 5 8 A. 5A B 0 Equatig cofficit of ad giv A 5.5A B 8 Th olutio to th abov two imultaou liar quatio i A 5 B Y ).5.5) Takig th ivr aplac traform o both id { Y )}.5.5) Sic a ad a a ) Th olutio i giv by.5.5 y ) a

19 Primr for Ordiary Diffrtial Equatio Eampl 8 Solv d y.5y i, y 0) 5, 0) d d d Solutio Takig th aplac traform of both id d y.5y i d d ad kowig d y Y y0 0 d d Y y0 d i ) w gt Y ) y0) 0) Y ) y0).5y ) d Y ) 5 Y ) 5.5Y ).5Y ) 0.5Y ) Y ) ) 0 Y ) 0.5 Writig th prio for Y ) i trm of partial fractio A B C D A A B 0 B C C C D D.5D

20 Chaptr 08.0 A C B C D A.5C D B.5D Equatig trm of,, 0 ad giv A C 0 B C D A.5C D 0 B.5D Th olutio to th abov four imultaou liar quatio i A B C 0.97 D Hc Y ).5.5 { ) } { 0.75) } ) Y ) { 0.75) } ) { 0.75) } { 0.75) } ) ) Takig th ivr aplac traform of both id ) { Y )} { 0.75) } { 0.75) { Y )} { 0.75) } { 0.75) Sic a b a a co b b b a a i b i a a

21 Primr for Ordiary Diffrtial Equatio co a a Th complt olutio i Eampl 9 y ) co co i co i i 0.97co i Solv d y 6.5y co, y 0) 5, 0) d d d Solutio Takig th aplac traform of both id d y 6.5y co d d ad kowig d y Y y0 0 d d Y y0 d co ) w gt Y ) y0) 0) 6Y ) y0).5y ) d Y ) 5 6Y ) 5.5Y ) 6).5Y ) Y ) Y ) 6.5 Writig th prio for Y ) i trm of partial fractio A B C D

22 08.0. Chaptr 08.0 A A B 0 B C 6 6C C D 6D.5D A C B 6C D A.5C 6D B.5D Equatig trm of,, 0 ad giv A C 0 B 6C D 6 A.5C 6D B.5D 6 Th olutio to th abov four imultaou liar quatio i A B C D Th Y ) {.5) } {.5) ) Y ) {.5) } ) 0.97 {.5) } {.5) } } Takig th ivr aplac traform o both id ) 0.97 { Y )} {.5) } {.5) ) ) ) ) ) Sic

23 Primr for Ordiary Diffrtial Equatio a b a a coh b b a a ih b b i a a a co a a Th complt olutio i y ) coh0.8956) ih0.8956) co i co i Eampl i Solv d y y 5.5 i, y 0) 5, 0) d d d Solutio Takig th aplac traform of both id d y 5.5y i d d kowig d y Y y0 0 d d Y y0 d i ) ) w gt co

24 Chaptr 08.0 Y ) y0) 0) 5Y ) y0).5y ) d ) Y ) 5 5Y ) 5.5Y ) ) 5.5Y ) 0 ) ) 5).5Y ) Y ) Y ) 5.5 Writig th prio for Y ) i trm of partial fractio C A B C D 5.5 5C.5C D D.5D A A A B B B C A 5C D A B.5C 5D A B.5D B Equatig trm of,, 0 ad giv four imultaou liar quatio C A 0 5C D A B 5.5C 5D A B 8.5D B 6 Th olutio to th abov four imultaou liar quatio i A B C 0.45 D Th Y ) {.5.565)}.5)

25 Primr for Ordiary Diffrtial Equatio ) ) ) ) ) Y ) ) ) ) ).5) 5.45 Takig th ivr aplac traform o both id ) ) ) ) ) 5.45 )} { Y ) ) ) ) ) 5.45 Sic b b a a a co b b a b a i a a )! ) a a Th complt olutio i y i co ).5.5 ) 0.455i 0.45co

26 Chaptr 08.0 ORDINARY DIFFERENTIA EQUATIONS Topic A Primr o ordiary diffrtial quatio Summary Ttbook ot of a primr o olutio of ordiary diffrtial quatio Major All major of girig Author Autar Kaw, Prav Chalaai Dat Novmbr 0, 05 Wb Sit

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs

Solution to Volterra Singular Integral Equations and Non Homogenous Time Fractional PDEs G. Math. Not Vol. No. Jauary 3 pp. 6- ISSN 9-78; Copyright ICSRS Publicatio 3 www.i-cr.org Availabl fr oli at http://www.gma.i Solutio to Voltrra Sigular Itgral Equatio ad No Homogou Tim Fractioal PDE

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

IV Design of Discrete Time Control System by Conventional Methods

IV Design of Discrete Time Control System by Conventional Methods IV Dig of Dicrt im Cotrol Sytm by Covtioal Mthod opic to b covrd. Itroductio. Mappig bt th pla ad pla 3. Stability aalyi 4. rait ad tady tat rpo 5. Dig bad o root locu mthod 6. Dig bad o frqucy rpo mthod

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

2. SIMPLE SOIL PROPETIES

2. SIMPLE SOIL PROPETIES 2. SIMPLE SOIL PROPETIES 2.1 EIGHT-OLUME RELATIONSHIPS It i oft rquir of th gotchical gir to collct, claify a ivtigat oil ampl. B it for ig of fouatio or i calculatio of arthork volum, trmiatio of oil

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Revised Variational Iteration Method for Solving Systems of Ordinary Differential Equations

Revised Variational Iteration Method for Solving Systems of Ordinary Differential Equations Availabl at http://pvau.du/aa Appl. Appl. Math. ISSN: 9-9 Spcial Iu No. Augut 00 pp. 0 Applicatio ad Applid Mathatic: A Itratioal Joural AAM Rvid Variatioal Itratio Mthod for Solvig St of Ordiar Diffrtial

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

SOLUTIONS TO CHAPTER 2 PROBLEMS

SOLUTIONS TO CHAPTER 2 PROBLEMS SOLUTIONS TO CHAPTER PROBLEMS Problm.1 Th pully of Fig..33 is composd of fiv portios: thr cylidrs (of which two ar idtical) ad two idtical co frustum sgmts. Th mass momt of irtia of a cylidr dfid by a

More information

CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion and Wave Equations 1/9

CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion and Wave Equations 1/9 CIVL 7/8111 im-dpdt Problm - -D Diffio ad Wav Eqatio 1/9 h govrig balac qatio that dcrib diffio proc i itatio ivolvig two idpdt variabl appar typically a xyt,, fxyt,, 0 t i g, t o 1 t q t x, y,0 c x, y

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles ENGG 03 Tutoial Systms ad Cotol 9 Apil Laig Obctivs Z tasfom Complx pols Fdbac cotol systms Ac: MIT OCW 60, 6003 Diffc Equatios Cosid th systm pstd by th followig diffc quatio y[ ] x[ ] (5y[ ] 3y[ ]) wh

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

BMM3553 Mechanical Vibrations

BMM3553 Mechanical Vibrations BMM3553 Mhaial Vibraio Chapr 3: Damp Vibraio of Sigl Dgr of From Sym (Par ) by Ch Ku Ey Nizwa Bi Ch Ku Hui Fauly of Mhaial Egirig mail: y@ump.u.my Chapr Dripio Ep Ouom Su will b abl o: Drmi h aural frquy

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

EXACT SOLUTION OF DISCRETE HEDGING EQUATION FOR EUROPEAN OPTION

EXACT SOLUTION OF DISCRETE HEDGING EQUATION FOR EUROPEAN OPTION EXACT SOLUTION OF DISCRETE HEDGING EQUATION FOR EUROPEAN OPTION Yaovlv D.E., Zhabi D. N. Dartmt of Highr athmatic ad athmatical Phyic Tom Polytchic Uivrity, Tom, Lia avu 3, 6344, Ruia Th aroach that allow

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

ANOVA- Analyisis of Variance

ANOVA- Analyisis of Variance ANOVA- Aalii of Variac CS 700 Comparig altrativ Comparig two altrativ u cofidc itrval Comparig mor tha two altrativ ANOVA Aali of Variac Comparig Mor Tha Two Altrativ Naïv approach Compar cofidc itrval

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Precalculus MATH Sections 3.1, 3.2, 3.3. Exponential, Logistic and Logarithmic Functions

Precalculus MATH Sections 3.1, 3.2, 3.3. Exponential, Logistic and Logarithmic Functions Precalculus MATH 2412 Sectios 3.1, 3.2, 3.3 Epoetial, Logistic ad Logarithmic Fuctios Epoetial fuctios are used i umerous applicatios coverig may fields of study. They are probably the most importat group

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals ECEN 5005 Cryta Naocryta ad Dvic Appicatio Ca 14 Group Thory For Cryta Spi Aguar Motu Quatu Stat of Hydrog-ik Ato Sig Ectro Cryta Fid Thory Fu Rotatio Group 1 Spi Aguar Motu Spi itriic aguar otu of ctro

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

The Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point. A. Jodayree Akbarfam * and H.

The Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point. A. Jodayree Akbarfam * and H. Joral of Scic Ilaic Rpblic of Ira 5(: -9 ( Uirity of Thra ISSN 6- Th Ayptotic For of Eigal for a Cla of Str-Lioill Probl with O Sipl Trig Poit A. Jodayr Abarfa * ad H. Khiri Faclty of Mathatical Scic Tabriz

More information

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants.

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants. Numrov-Cooly Mthod : 1-D Schr. Eq. Last tim: Rydbrg, Kli, Rs Mthod ad Log-Rag Modl G(v), B(v) rotatio-vibratio costats 9-1 V J (x) pottial rgy curv x = R R Ev,J, v,j, all cocivabl xprimts wp( x, t) = ai

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Sigal & Sytem Prof. Mark Fowler Note Set #8 C-T Sytem: Laplace Traform Solvig Differetial Equatio Readig Aigmet: Sectio 6.4 of Kame ad Heck / Coure Flow Diagram The arrow here how coceptual flow

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

2. Fourier Series, Fourier Integrals and Fourier Transforms

2. Fourier Series, Fourier Integrals and Fourier Transforms Mathematics IV -. Fourier Series, Fourier Itegrals ad Fourier Trasforms The Fourier series are used for the aalysis of the periodic pheomea, which ofte appear i physics ad egieerig. The Fourier itegrals

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Last time: Completed solution to the optimum linear filter in real-time operation

Last time: Completed solution to the optimum linear filter in real-time operation 6.3 tochatic Etimatio ad Cotrol, Fall 4 ecture at time: Completed olutio to the oimum liear filter i real-time operatio emi-free cofiguratio: t D( p) F( p) i( p) dte dp e π F( ) F( ) ( ) F( p) ( p) 4444443

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

Traveling Salesperson Problem and Neural Networks. A Complete Algorithm in Matrix Form

Traveling Salesperson Problem and Neural Networks. A Complete Algorithm in Matrix Form Procdigs of th th WSEAS Itratioal Cofrc o COMPUTERS, Agios Nikolaos, Crt Islad, Grc, July 6-8, 7 47 Travlig Salsprso Problm ad Nural Ntworks A Complt Algorithm i Matrix Form NICOLAE POPOVICIU Faculty of

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry Zeta-reciprocal Eteded reciprocal zeta fuctio ad a alterate formulatio of the Riema hypothei By. Alam Chaudhry Departmet of athematical Sciece, Kig Fahd Uiverity of Petroleum ad ieral Dhahra 36, Saudi

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information