3.2. Derivation of Laplace Transforms of Simple Functions

Size: px
Start display at page:

Download "3.2. Derivation of Laplace Transforms of Simple Functions"

Transcription

1 3. aplac Tarform 3. PE TRNSFORM wid rag of girig ym ar modld mahmaically by uig diffrial quaio. I gral, h diffrial quaio of h ordr ym i wri: d y( a d d d y( dy( a a y( f( (3. d Which i alo ow a a liar diffrial quaio, if h coffici a, a,, a ar o fucio of y(. Soluio of h diffrial quaio wih dicoiuou ipu or of highr ha cod ordr i laboriou by h claical mhod. To implify or ymaiz h oluio of diffrial quaio, h aplac Traform (T mhod i ud xivly. 3.. Dfiiio of h aplac Traform Th dirc aplac raform F( of a fucio of im ( i giv by. f( f( d F( (3. whr ( i a horhad oaio for h aplac igral. complx variabl i rfrd o a h aplac opraor ad ha wo compo =j, a ral ad imagiary compo. Figur 3. illura h complx -pla, i which ay arbirary poi = i dfid by h = j. j Th rvr proc of fidig h im fucio ( from h F( i calld h ivr aplac raform - F( = ( ( Drivaio of aplac Traform of Simpl Fucio Exampl 3.. Ui-p fucio ( Figur 3. U ( Figur 3. (3.4 ( U if (3.4 if Figur 3. 38

2 U ( U ( d 3. aplac Tarform d a (3.5 a if Exampl 3. Expoial fucio (Figur 3.3 U ( if (3.6 U ( Figur 3.3 Exampl 3.3. Ramp fucio (Figur 3.4 U r ( U ( U ( (a a d a d (3.7 U ( r if if (3.8 Figur 3.4 U ( for u ad dv d. Thi, w i hav igrad du d v U ( d d ; r r by ad par. By uig b udv uv a b a b a vdu (3.9 Exampl 3.4. oidr h iuoidal fucio f( = co aplac raform for iuoidal fucio ar drmid, i rm of Eulr' raform jx jx jx jx i x ; co x (3. j 39

3 3. aplac Tarform co co j ( j j co d ( j ( j d ( j d j j (3 3.3 aplac Traform Thorm pplicaio of h aplac raform i may iac ar implifid by uilizaio of h propri of h raform. Th propri ar prd by h followig horm: Thorm. Muliplicaio by a oa b a coa ad F( b h aplac raform of f(. Th [f(] = F( (3. Thorm. Sum ad Diffrc F ( ad F ( b h aplac raform of f ( ad f (, rpcivly. Th [f ( ± f (] = F (S ± F (S (3.3 Thorm 3. Diffriaio F( b h aplac raform of f(, ad l f( b h limi of f( a approach. Th aplac raform of h im drivaiv of f( i [df(/d] = F(S - lim f ( = F( - f( I gral, for highr-ordr drivaio of f(, d f ( d F( lim f ( d f ( d f ( d d = F( f (o f (o f ( Whr f (o do h h -ordr drivaiv of f ( Thorm 4. Igraio ( wih rpc o, valuad a o. Th aplac raform of h fir igral of f ( wih rpc o im i h aplac raform of f ( dividd by ; ha i, f ( d For h-ordr igraio, F( o f( dτd d d F( (3.4 (3.5 (3.6 4

4 3. aplac Tarform Thorm 5. Shif i Tim Th aplac raform of f ( dlayd by im T i qual o h aplac raform f ( T muliplid by f ( Tu T ; ha i, T F( Whr u T do h ui-p fucio ha i hifd o h righ by T. (3.7 Thorm 6. Fial-Valu Thorm If h aplac raform of f ( i F(, ad if F( i aalyic o h imagiary axi ad i h righ half of h -pla, h lim f( lim F( (3.8 Th fial-valu horm i vry uful for h aalyi ad dig of corol ym, ic i giv h fial valu of a im fucio by owig h bhavior of i a lac raform a =. Th fial-valu horm i o valid if F( coai ay pol who ral par i zro or poiiv, which i quival o h aalyic rquirm of F( i h righhalf pla a ad i h horm. Th followig xampl illura h car ha mu b a i applyig hi horm. Exampl 3.5. oidr h fucio F(=5/( + + Sic F( i aalyic o h imagiary axi ad i h righ-half -pla, h fial-valu horm may by applid. Uig Eq. (3.7, w hav lim f( lim F( lim 5/ 5/ Exampl 3.6. oidr h fucio F(=/ + Which i h aplac raform of f(= i. Sic h fucio F( ha wo pol o h imagiary axi of h -pla, h fial valu horm cao b applid i hi ca. Thorm 7. Iiial valu horm lim f( lim F( (3.9 Thorm 8. omplx Shifig Th aplac raform of f ( muliplid by, whr i a coa, i qual o h aplac raform F(, wih rplacd by ; ha i f( = F( (3. Thorm 9. Ral ovoluio (omplx Muliplicaio F ( ad F ( b h aplac raform of f ( ad f (, rpcivly, ad f ( =, f ( =, for < ; h F F f *f f f d (3. Whr h ymbol "*" do covoluio i h im domai. Equaio (. how ha muliplicaio of wo raformd fucio i h complx - domai i quival o h covoluio of wo corrpodig ral fucio f ( ad f ( i h -domai. Th ivr aplac raform of h produc of wo fucio i h -domai i o qual o h produc of h wo corrpodig ral fucio i h -domai; ha i, i gral, - F (F ( f ( f ( 4

5 3. aplac Tarform 4 aplac Traform Tabl Tim fucio f( aplac raform F( ζ ζ α α α α α β α α α ( ( 7. ( ζ ; ζ a ζ i( ζ ( 6. ζ ; ζ i ζ 5. ( co 4. co 3. i. α ( α (. α ( (α α. α ( α ( α 9. α ( ( α 8. β α( ( β (α ; ( α β 7. α (! 6. α ( 5.! fucio p ui ( u. fucio dla δ(. ( ( ( α ( α ( α ( α ( β α( ( α (! α (!

6 3. aplac Tarform 3.4. Ivr aplac Traform by Parial-Fracio Expaio Wh h aplac Traform oluio of a diffrial fucio i a raioal fucio i ca b wri a G( Q( P( (3. Whr Q( ad P( ar polyomial of. I i aumd ha h ordr of P( i grar ha ha of Q(. Th polyomial P( my b wri P( = +a - - +a a +a Whr a, a,... a - ar ral coffici. Th roo of P( = ar calld h pol of ym. Th roo of Q( = ar h zro of ym. Th mhod of parial-fracio xpaio will ow b giv for h ca of impl pol, mulipl-ordr pol, ad complx cojuga pol of G(.. G( ha impl pol. If all h pol of G( ar impl ad ral, Eq. ( 3. ca b wri a Q( Q( G (3.3 P( ( ( ( 3...(...( whr.... pplyig h parial-fracio xpaio, i wri G( Th coffici (=,,... i drmid a (3.4 Q( ( P( ( ( - g( Q( ( ( Exampl 3.7 oidr h fucio 5 3 G( ( ( ( 3 - (3.5 (3.6 (3.7 which i wri i h parial-fracio xpadd form: 3 G( 3 (3.8 Th coffici,, ad 3 ar drmid a follow: 5( 3 (G( ((3 5( 3 (G( 7 ((3 5( 3 3 3(3G( 6 3 (3(3 Thu Eq. (3.8 bcom 7 6 G( ; 3 = -; = -; 3 = -3 ; g(=

7 3. aplac Tarform. G( ha mulipl - ordr pol. If r of h pol of G( ar idical, G( i wri G Q( P( ( Q( r (...( r ( i ; i =,,..., -r (3.9 =- i i a mulipl pol ordr-r. G( ca b xpdd a (-r rm of impl pol G( 3 3 r r (3.3 ir ( i r i(r ( i r i(r ( i r (r rm of rpad pol Th (-r coffici,,,..., (-r which corrpod impl pol,may b valuad by h mhod dcribd by Eq.(3.5. Th coffici ha corrpod o h mulipl ordr pol ar dfid a follow: ( G( ir i i r i(r i G( d (3.3 d i d r i(r G(! d i i r i G( i r d i(r - r (r! d I hi ca, Ivr aplac raform i drmid a r- r i i g( ir i(r (r -! (r!! i 3 i Exampl 3.8 Fid ivr aplac raform of h fucio G( 3 ( ( 3 By uig Eq. 3.3 (3.3 44

8 3 ( 3 ( 3. aplac Tarform ( ( G 3 Th coffici ar 3 ( 3 G( ( G( 3 3 d d 3 ( G( From Eq.(3.3 h Ivr aplac raform ; d! d 3 ( G( g( = ; 3 3 g( 3 3. G( ha impl complx-cojuga pol Th parial-fracio xpaio of Eq. (3.4 i alo valid for impl complx-cojuga pol. Sic complx-cojuga pol ar mor difficul o hadl ad ar of pcial ir i corol ym udi, hy drv pcial ram hr. Exampl 3.9 oidr h fucio ha dcrib a cod-ordr ym G( ζ (3.33 u aum ha h valu of (dampig raio ad w (aural frqucy ar uch ha h pol of G( ar complx. For < h pol of ym ar drmid a j Suppo, a ad Th compl parial- fracio xpaio of Eq. (3.33 i K K G( (3.34 a j a j Th coffici i Eq. (3.34 ar drmid a K ( a jg( a j j K ( a jg( a j j G( j a j a j (

9 3. aplac Tarform Taig h ivr aplac raform o boh id of Eq. (3.35 giv a j j ζ g( ( i ζ (3.36 j ζ 3.5. pplicaio of aplac Traform o h Soluio of iar Diffrial Equaio iar ordiary diffrial quaio ca b olvd by h aplac raform. Th procdur i oulid a follow:. Traform h diffrial quaio o h - domai uig h aplac raform abl. Maipula h raformd algbraic quaio ad olv for h oupu variabl 3. Prform parial-fracio xpaio 4. Obai h ivr aplac raform from h aplac raform abl. u illura h mhod by vral xampl. Exampl 3.. oidr h diffrial quaio d y( dy( 3 y( 5u ( (3.37 d d Whr u ( i h ui-p fucio. Th iiial codiio ar y( ad ( y ( dy( /d. To olv h diffrial quaio, w fir a h aplac raform o boh id of Eq. (3.37: Y( y( y ( (o 3Y( 3Y( Y( 5/ Subiuig h valu of h iiial codiio io Eq. (3.37 ad olvig for Y(, w g Y( 5 5 (3.38 ( 3 ( ( Equaio (3.38 i xpdd by parial fracio xpaio o giv Y( ( Taig h ivr aplac raform, w g h compl oluio Y( = a Dirc aplac Traform 3.5. Malab fil of aplac raform = PE(F i h aplac raform of h calar ym F wih dfaul idpd variabl. Th dfaul rur i a fucio of. If F = F(, h PE rur a fucio of : = (. = PE(F,w,z ma a fucio of z iad of h dfaul (igraio wih rpc o w. Exampl: ym a w x laplac(^5 rur /^6 46

10 3. aplac Tarform laplac(xp(a* laplac(i(w*x, laplac(co(x*w,w, laplac(x^ym(3/, laplac(diff(ym('f(' rur /(-a rur w/(^+w^ rur /(^+x^ rur 3/4*pi^(//^(5/ rur laplac(f(,,*-f( b Ivr aplac raform F = IPE( i h ivr aplac raform of h calar ym wih dfaul idpd variabl. Th dfaul rur i a fucio of. If = (, h IPE rur a fucio of x: F = F(x. F = IPE(,y ma F a fucio of y iad of h dfaul : F = IPE(,y,x ma F a fucio of x iad of h dfaul : Exampl: ym w x y ilaplac(/(- ilaplac(/(^+ ilaplac(^(-ym(5/,x ilaplac(y/(y^ + w^,y,x ilaplac(ym('laplac(f(x,x,',,x rur xp( rur i(x rur 4/3/pi^(/*x^(3/ rur co(w*x rur F(x 3.6 Impul Rpo ad Trafr Fucio of Sym impora ad fir p i h aalyi ad dig corol ym i h mahmaical modlig. Th claical way of modlig liar im-ivaria ym i o u rafr fucio o rpr ipu-oupu rlaio bw h variabl. O way o dfi h rafr fucio i o u impul rpo, which i dfid i h followig. oidr liar im-ivaria ym ( Figur 3.5. Impul rpo g( i dfid a h oupu wh h ipu i ui-impul fucio (. Th rpo Y( of ym i drmid by h u of covoluio igral Y ( U( g( d (3.39 Uig h covoluio propry of h aplac raform, w hav U( g( d U(G( =Y( (3.4 Trafr fucio G( of h ym i drmid by U( Y( ma of aplac raform g(= G(. I gral g( rafr fucio G( i rlad o h aplac raform of h ipu U( ad h oupu Y( hrough h followig rlaio: G( = Y(/U( wih all h Figur 3.5 iiial codiio ar o zro. u coidr ha h ipu-oupu rlaio of TIS i dcribd by h followig h ordr diffrial quaio wih coa ral coffici: 47

11 3. aplac Tarform dy ( dy ( a d d m m d u( d u( b m b m m m d d a dy( a y( d b du( b d u( (3.4 To obai h rafr fucio of a liar ym w implify a h aplac raform o boh id of h quaio ad aum zro iiial codiio. Th rul i: ( + a a +a Y( = (b m m- + b m- m b + b U( (3.4 Th rafr fucio G( bw U( ad Y( i giv by bm G( b a m m m b b a a Q( P( (3.43 Th propri of h rafr fucio ar ummarizd a follow:. Th rafr fucio i dfid oly for a liar-ivaria ym.. Th rafr fucio bw a ipu ad oupu variabl of a ym i dfid a a aplac raform of h impul rpo. lraivly, h rafr fucio i h raio of h aplac raform of h oupu o h aplac raform of h ipu. 3. ll iiial codiio of h ym ar o zro. 4. Th rafr fucio i idpd of h ipu of h ym. haracriic quaio. Th characriic quaio of a TIS i dfid a h quaio obaid by ig h domiaor polyomial of h rafr fucio o zro. Thu, from Eq. (3.43, h characriic quaio of h ym i: P( = + a a + a = (3.44 Th roo of h obaid from P( = ar calld h pol of h ym. Th roo obaid from Q( = ar calld h zro of ym. Exampl 3. Wha i h p rpo of a ym who rafr fucio ha a zro a, a pol a, ad a gai facor of? Th aplac raform of h oupu i giv by Y( = H( U(. Hr ( H(, U(, ( Y( ( y( Evaluaio h ivr raform of h parial fracio xpaio of Y( giv Exampl 3. Evalua h p rpo of a ym who rafr fucio i giv ( G( (.5( 4 48

12 3. aplac Tarform Th pol-zro map of h oupu i obaid by addig h pol ad zro of h ipu o h pol-zro map of h rafr fucio. Th oupu pol-zro map hrfor ha pol a, -,5 ad 4 ad a zro a a how blow. Pol of P( j S-pla * * * Zro of P( Figur 3.6 Pol du o h ipu Parial fracio xpaio for h oupu giv Whr B Y( B.5( (3.5 4( Exampl 3.3 Fid h rafr fucio ad valua h p rpo of h ym which ha a gai facor of 3 ad h pol-zro cofiguraio how i Figur 3.7. Th im rpo i hrfor y( B * Im j m * R * Figur 3.7 -j Th rafr fucio ha zro a - j ad pol a -3 ad a - j. Th rafr fucio ar hrfor 3( j( j G( ( 3( j( j 3( j( j Y( G(U( ( 3( j( j Expadig Y( io parial fracio yild 49

13 3. aplac Tarform ( 3 3 j j 4 Y Whr 3( j( j 3( j( j (( j 3 (7 j ( j( j( j 3( j( 3 (7 j ( j( j(j Evaluaig h ivr aplac raform, w hav y [ a j( j( ] [ 7] 8.3 Exampl 3.4. Fid h oupu of h ym how i Figur 3.8. U( = i4 ; g( =.5 U ( From h Tabl of aplac raform w hav 5 o U( co( ; g( Figur 3.8 y( 4 U( i 4 ; G(.5U (.5 ; Y( U(G( 4 ( 4 Taig h Ivr aplac raform from Y( w obai 8 y( = co Modlig of Elcrical Sym Uig aplac Traform Fir-Ordr Elcrical ircui Th mahmaical modl of a lcrical circui ca b obaid by applyig Ohm', o or boh of Kirhhoff, ad Faraday law. Baic law govrig lcrical circui ar Kirhhoff' law, which a:. Th algbraic um of h curr rig a od i qual o zro. I ohr word, h um of h curr rig a od i qual of curr lavig h am od.. Th algbraic um of h volag aroud ay loop i a lcrical circui i zro. Th volag drop acro a rior i giv by Ohm law, which a ha h volag V R drop acro a rior R i qual o h produc of h curr I ad i riac R I V R 5 R

14 3. aplac Tarform V R = RI Th volag drop acro a iducor i giv by Faraday law, which a ha h volag V drop acro a iducor i qual o h produc of h iducac ad h im ra of icra of curr di V d Th volag acro a capacior i i drmid a follow I V c V Id oidr h diffr lcrical circui. Exampl Fid h rafr fucio rial R- circui umig h circui i o loadd, i.. o curr flow hrough h oupu rmial. pplyig Kirhhof volag law o h ym ( Figur 3.9 a, w obai h followig quaio: I V V R V E di RI E d Th quaio of quaio (3.45 ad, aumig zro iiial codiio w obai RI( I( E( R givof mahmaical I modl of hcircui. Taig h aplac V ( (3.45 (3.46 raform (3.47 E V a Fig. 3.9 b Th oupu volag acro h iducor i V = di/d. Th curr hrough h iducor i hrfor I(=V /. Subiuig hi valu io h Eq. (3.46 giv R V V E V R ( ( ( ; ( ( E( Th rafr fucio of ym of ym i foud o b R V V E V R ( ( ( ; ( ( E( Th rafr fucio of ym of ym i foud o b 5

15 R V 3. aplac Tarform R ( V ( E(; V (( E( Th rafr fucio of ym of ym i foud o b V ( G( E( R For ui-p ipu, w hav rpo V ( ; R R R / - V ( V ( / Ui p rpo of ym how i Fig.3.5 (b ; whr τ Exampl.3.6. Srial R- circui pplyig Kirhhof volag law o h ym, w obai h followig quaio: R RI( V E( ; V Id ; V ( I( ; I( = V ( V ( RV ( E(; V ( R E( ad G( V ( E( R (3.48 R I g( / V ( E V R V a b Figur 3. Impul rpo of ym V ( (G( ; whr = R R / c Taig h Ivr aplac raform w dfi impul rpo g( ( Fig.3. b For p impul w hav (3.49 g( V ( / ; 5

16 3. aplac Tarform E( ; V ( Taig h Ivr aplac raform ( w dfi p rpo how i Figur 3. (b V ( / ; ( Scod-Ordr Elcrical ircui pplyig Kirchhof volag law o h ym how i Figur 3., w obai h R E V Fig.3. di( (3.5 RI( V c( E( followig quaio: d V ( I(d (3.5 Equaio (3.5 ad (3.5 giv a mahmaical modl of h ym. Taig h aplac raform of quaio (3.5 ad (3.5, aumig zro iiial codiio, w obai I( RI( I( E(; I( V ( I( V (; V ( RV ( V ( E( V ( G( E( R R ad Puig w hav G( (3.53 Th pol of hi ym ar, Whr i calld a dampig raio ad - aural frqucy of ym. 3.8 Tim-Rpo haracriic of Scod Ordr Sym Th oluio of h Eq.(3.53 G( Whr, dpd o whhr i mallr ha uiy, grar ha uiy, or qual o uiy (

17 3. aplac Tarform. Wh, h rpo of ym i aid o b udrdampd. For a ui-p ipu U(=/, oupu Y( of ym Y( ( Th Ivr aplac raform ( Tabl of aplac Traform y( i( a (3.55. Wh =, h roo ar ral ad qual = = -, ad ym i aid o b criically. For a ui-p ipu Y( ( y( ( Wh, h rpo i calld ovrdampd. For a ui-p ipu ( y( (3.57 family of curv corrpodig o hi quaio i how i Figur 3., whr abcia i h dimiol variabl y(. =. =.5..5 = = 5 Figur 3. Thi curv how ha h amou of ovrhoo dpd o h dampig raio. For h ovrdampd ad criically dampd ca, hr i o ovrhoo. For h udrdampd ca, <, h ym ocilla aroud h fial valu. Th ocillaio dcra wih im, ad h ym rpo approach h fial valu. Th pa ovrhoo for h udrdampd ym i fir ovrhoo. Th im p a which h pa ovrhoo occur, ca b drmid by diffriaig Y( from Eq.(3.55 wih rpc o im ad ig hi drivaiv o zro: 54

18 3. aplac Tarform dy i( d Thi drivaiv i zro a =,,,... Th pa ovrhoo occur a h fir valu afr zro, providd hr ar zro iiial codiio; hrfor p Irig hi valu of im i Eq. (3. giv h pa ovrhoo a Mp p xp( Th rai-rpo characriic for h cod ordr ym how a umbr of igifica paramr of ym. Th ovrdampd ym i low acig ad do o ocilla abou h fial poiio. For om applicaio h abc of ocillaio may b cary. For xampl, a lvaor cao b allowd o ocilla a ach op. Bu for ym whr a fa rpo i cary, h low rpo ca o b olrad. Th udrdampd ym rach h fial valu far ha h ovrdampd ym, bu h rpo ocilla abou hi fial valu. Th amou h prmiibl ovrhoo drmi h dirabl valu of h dampig raio. Th prformac of a ym may b valuad i rm of h followig quaii, a how, i Figur 3.3. p y( llowabl olrac -( or 5% p Figur 3.3. Pa ovrhoo p i h magiud of h larg ovrhoo ad of occur a h fir ovrhoo. Thi may b xprd i prc of h fial valu. Tim of maximum ovrhoo p i h im rquird rachig h maximum ovrhoo. 3. Tim of fir zro i h im rquird rachig a fial valu h fir im. I i of rfrrd o a duplicaig im 4. Sig im i h im rquird for h oupu rpo fir o rach ad hrafr rmai wihi a prcribd of h fial valu. ommo valu ud for ig im ar ad 5%. Th ig im for a % rror cririo i approximaly 4 im coa; for a 5% rror cririo, i i 3 im coa 55

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

15. Numerical Methods

15. Numerical Methods S K Modal' 5. Numrical Mhod. Th quaio + 4 4 i o b olvd uig h Nwo-Rapho mhod. If i ak a h iiial approimaio of h oluio, h h approimaio uig hi mhod will b [EC: GATE-7].(a (a (b 4 Nwo-Rapho iraio chm i f(

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

Control Systems. Transient and Steady State Response.

Control Systems. Transient and Steady State Response. Corol Sym Trai a Say Sa Ro chibum@oulch.ac.kr Ouli Tim Domai Aalyi orr ym Ui ro Ui ram ro Ui imul ro Chibum L -Soulch Corol Sym Tim Domai Aalyi Afr h mahmaical mol of h ym i obai, aalyi of ym rformac i.

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Linear Systems Analysis in the Time Domain

Linear Systems Analysis in the Time Domain Liar Sysms Aalysis i h Tim Domai Firs Ordr Sysms di vl = L, vr = Ri, d di L + Ri = () d R x= i, x& = x+ ( ) L L X() s I() s = = = U() s E() s Ls+ R R L s + R u () = () =, i() = L i () = R R Firs Ordr Sysms

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform Aalyi o No-Siuoidal Wavorm Par Laplac raorm I h arlir cio, w lar ha h Fourir Sri may b wri i complx orm a ( ) C jω whr h Fourir coici C i giv by o o jωo C ( ) d o I h ymmrical orm, h Fourir ri i wri wih

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems BoDiPrima 9 h d Ch 7.9: Nohomogou Liar Sm Elmar Diffrial Equaio ad Boudar Valu Prolm 9 h diio William E. Bo ad Rihard C. DiPrima 9 Joh Wil & So I. Th gral hor of a ohomogou m of quaio g g aralll ha of

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

ECE351: Signals and Systems I. Thinh Nguyen

ECE351: Signals and Systems I. Thinh Nguyen ECE35: Sigals ad Sysms I Thih Nguy FudamalsofSigalsadSysms x Fudamals of Sigals ad Sysms co. Fudamals of Sigals ad Sysms co. x x] Classificaio of sigals Classificaio of sigals co. x] x x] =xt s =x

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Modeling of the CML FD noise-to-jitter conversion as an LPTV process

Modeling of the CML FD noise-to-jitter conversion as an LPTV process Modlig of h CML FD ois-o-ir covrsio as a LPV procss Marko Alksic. Rvisio hisory Vrsio Da Comms. //4 Firs vrsio mrgd wo docums. Cyclosaioary Nois ad Applicaio o CML Frqucy Dividr Jir/Phas Nois Aalysis fil

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals ELECTOMAGNETIC COMPATIBILITY HANDBOOK Chapr : Spcra of Priodic ad Apriodic Sigals. Drmi whhr ach of h followig fucios ar priodic. If hy ar priodic, provid hir fudamal frqucy ad priod. a) x 4cos( 5 ) si(

More information

BMM3553 Mechanical Vibrations

BMM3553 Mechanical Vibrations BMM3553 Mhaial Vibraio Chapr 3: Damp Vibraio of Sigl Dgr of From Sym (Par ) by Ch Ku Ey Nizwa Bi Ch Ku Hui Fauly of Mhaial Egirig mail: y@ump.u.my Chapr Dripio Ep Ouom Su will b abl o: Drmi h aural frquy

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function Chapr VII Spcial Fucios Ocobr 7, 7 479 CHAPTER VII SPECIAL FUNCTIONS Cos: Havisid sp fucio, filr fucio Dirac dla fucio, modlig of impuls procsss 3 Si igral fucio 4 Error fucio 5 Gamma fucio E Epoial igral

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations, Shiraz Uivrsiy of Tchology From h SlcdWorks of Habibolla Laifizadh Th Dvlopm of Suiabl ad Wll-foudd Numrical Mhods o Solv Sysms of Igro- Diffrial Equaios, Habibolla Laifizadh, Shiraz Uivrsiy of Tchology

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

From Fourier Series towards Fourier Transform

From Fourier Series towards Fourier Transform From Fourir Sris owards Fourir rasform D D d D, d wh lim Dparm of Elcrical ad Compur Eiri D, d wh lim L s Cosidr a fucio G d W ca xprss D i rms of Gw D G Dparm of Elcrical ad Compur Eiri D G G 3 Dparm

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals Rviw opics from Chapr 3&4 Fourir Sris Fourir rasform Liar im Ivaria (LI) Sysms Ergy-yp Sigals Powr-yp Sigals Fourir Sris Rprsaio for Priodic Sigals Dfiiio: L h sigal () b a priodic sigal wih priod. ()

More information

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite Wb-basd Supplmary Marials for Sampl siz cosidraios for GEE aalyss of hr-lvl clusr radomizd rials by Sv Trsra, Big Lu, oh S. Prissr, Tho va Achrbrg, ad Gorg F. Borm Wb-appdix : macro o calcula h rag of

More information

What Is the Difference between Gamma and Gaussian Distributions?

What Is the Difference between Gamma and Gaussian Distributions? Applid Mahmaics,,, 85-89 hp://ddoiorg/6/am Publishd Oli Fbruary (hp://wwwscirporg/joural/am) Wha Is h Diffrc bw Gamma ad Gaussia Disribuios? iao-li Hu chool of Elcrical Egirig ad Compur cic, Uivrsiy of

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by Sae-Space Model I geeral, he dyaic equaio of a luped-paraeer coiuou ye ay be repreeed by x & f x, u, y g x, u, ae equaio oupu equaio where f ad g are oliear vecor-valued fucio Uig a liearized echique,

More information

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions Iraioal Joural of horical ad Mahmaical Physics 4, 4(6: 5-9 DOI: 59/jijmp446 Rig of arg Numbr Muually Coupld Oscillaors Priodic Soluios Vasil G Aglov,*, Dafika z Aglova Dparm Nam of Mahmaics, Uivrsiy of

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Par:- Elecrical Egieerig Deparme Nework Lab. Deermiaio of differe parameers of -por eworks ad verificaio of heir ierrelaio ships. Objecive: - To deermie Y, ad ABD parameers of sigle ad cascaded wo Por

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

ON H-TRICHOTOMY IN BANACH SPACES

ON H-TRICHOTOMY IN BANACH SPACES CODRUTA STOICA IHAIL EGA O H-TRICHOTOY I BAACH SPACES Absrac: I his papr w mphasiz h oio of skw-oluio smiflows cosidrd a gralizaio of smigroups oluio opraors ad skw-produc smiflows which aris i h sabiliy

More information

It is quickly verified that the dynamic response of this system is entirely governed by τ or equivalently the pole s = 1.

It is quickly verified that the dynamic response of this system is entirely governed by τ or equivalently the pole s = 1. Tim Domai Prforma I orr o aalyz h im omai rforma of ym, w will xami h hararii of h ouu of h ym wh a ariular iu i ali Th iu w will hoo i a ui iu, ha i u ( < Th Lala raform of hi iu i U ( Thi iu i l bau

More information

Mixing time with Coupling

Mixing time with Coupling Mixig im wih Couplig Jihui Li Mig Zhg Saisics Dparm May 7 Goal Iroducio o boudig h mixig im for MCMC wih couplig ad pah couplig Prsig a simpl xampl o illusra h basic ida Noaio M is a Markov chai o fii

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials Ifii Coiu Fraio CF rraio of h oial igral fuio l fuio a Lol olyoial Coiu Fraio CF rraio a orhogoal olyoial I hi io w rall h rlaio bw ifi rurry rlaio of olyoial orroig orhogoaliy a aroria ifii oiu fraio

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e.

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e. SURPLUS PRODUCTION (coiud) Trasiio o a Nw Equilibrium Th followig marials ar adapd from lchr (978), o h Rcommdd Radig lis caus () approachs h w quilibrium valu asympoically, i aks a ifii amou of im o acually

More information

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π Soluios Maual. (a) (b) (c) (d) (e) (f) (g) liear oliear liear liear oliear oliear liear. The Fourier Series is: F () 5si( ) ad he fudameal frequecy is ω f ----- H z.3 Sice V rms V ad f 6Hz, he Fourier

More information

Signal & Linear System Analysis

Signal & Linear System Analysis Pricipl of Commuicaio I Fall, Sigal & Liar Sym Aalyi Sigal & Liar Sym Aalyi Sigal Modl ad Claificaio Drmiiic v. Radom Drmiiic igal: complly pcifid fucio of im. Prdicabl, o ucraiy.g., < < ; whr A ad ω ar

More information

Outline. Overlook. Controllability measures. Observability measures. Infinite Gramians. MOR: Balanced truncation based on infinite Gramians

Outline. Overlook. Controllability measures. Observability measures. Infinite Gramians. MOR: Balanced truncation based on infinite Gramians Ouli Ovrlook Corollabiliy masurs Obsrvabiliy masurs Ifii Gramias MOR: alacd rucaio basd o ifii Gramias Ovrlook alacd rucaio: firs balacig h ruca. Giv a I sysm: / y u d d For covic of discussio w do h sysm

More information

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability:

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability: Oulie Sabiliy Sab Sabiliy of Digial Syem Ieral Sabiliy Exeral Sabiliy Example Roo Locu v ime Repoe Fir Orer Seco Orer Sabiliy e Jury e Rouh Crierio Example Sabiliy A very impora propery of a yamic yem

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

1.7 Vector Calculus 2 - Integration

1.7 Vector Calculus 2 - Integration cio.7.7 cor alculus - Igraio.7. Ordiary Igrals o a cor A vcor ca b igrad i h ordiary way o roduc aohr vcor or aml 5 5 d 6.7. Li Igrals Discussd hr is h oio o a dii igral ivolvig a vcor ucio ha gras a scalar.

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

1a.- Solution: 1a.- (5 points) Plot ONLY three full periods of the square wave MUST include the principal region.

1a.- Solution: 1a.- (5 points) Plot ONLY three full periods of the square wave MUST include the principal region. INEL495 SIGNALS AND SYSEMS FINAL EXAM: Ma 9, 8 Pro. Doigo Rodrígz SOLUIONS Probl O: Copl Epoial Forir Sri A priodi ri ar wav l ad a daal priod al o o od. i providd wi a a 5% d a.- 5 poi: Plo r ll priod

More information

IV Design of Discrete Time Control System by Conventional Methods

IV Design of Discrete Time Control System by Conventional Methods IV Dig of Dicrt im Cotrol Sytm by Covtioal Mthod opic to b covrd. Itroductio. Mappig bt th pla ad pla 3. Stability aalyi 4. rait ad tady tat rpo 5. Dig bad o root locu mthod 6. Dig bad o frqucy rpo mthod

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

Suggested Solutions to Assignment 1 (REQUIRED)

Suggested Solutions to Assignment 1 (REQUIRED) EC 45 dvaced Macroecoomic Irucor: Sharif F ha Deparme of Ecoomic Wilfrid Laurier Uiveri Wier 28 Suggeed Soluio o igme (REQUIRED Toal Mar: 5 Par True/ Fale/ Ucerai Queio [2 mar] Explai wh he followig aeme

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Analyticity and Operation Transform on Generalized Fractional Hartley Transform I Jourl of Mh Alyi, Vol, 008, o 0, 977-986 Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi-44460 (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi-444604

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

82A Engineering Mathematics

82A Engineering Mathematics Class Nos 5: Sod Ordr Diffrial Eqaio No Homoos 8A Eiri Mahmais Sod Ordr Liar Diffrial Eqaios Homoos & No Homoos v q Homoos No-homoos q ar iv oios fios o h o irval I Sod Ordr Liar Diffrial Eqaios Homoos

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

NON-LINEAR PARAMETER ESTIMATION USING VOLTERRA SERIES WITH MULTI-TONE EXCITATION

NON-LINEAR PARAMETER ESTIMATION USING VOLTERRA SERIES WITH MULTI-TONE EXCITATION NON-LINER PRMETER ESTIMTION USING VOLTERR SERIES WIT MULTI-TONE ECITTION imsh Char Dparm of Mchaical Egirig Visvsvaraya Rgioal Collg of Egirig Nagpur INDI-00 Naliash Vyas Dparm of Mchaical Egirig Iia Isiu

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1 TH ROAL TATITICAL OCIT 6 AINATION OLTION GRADAT DILOA ODL T oci i providig olio o ai cadida prparig or aiaio i 7. T olio ar idd a larig aid ad old o b a "odl awr". r o olio old alwa b awar a i a ca r ar

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Lecture 25 Outline: LTI Systems: Causality, Stability, Feedback

Lecture 25 Outline: LTI Systems: Causality, Stability, Feedback Lecure 5 Oulie: LTI Sye: Caualiy, Sabiliy, Feebac oucee: Reaig: 6: Lalace Trafor. 37-49.5, 53-63.5, 73; 7: 7: Feebac. -4.5, 8-7. W 8 oe, ue oay. Free -ay eeio W 9 will be oe oay, ue e Friay (o lae W) Fial

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

New Results Involving a Class of Generalized Hurwitz- Lerch Zeta Functions and Their Applications

New Results Involving a Class of Generalized Hurwitz- Lerch Zeta Functions and Their Applications Turkih Joural of Aalyi ad Nur Thory 3 Vol No 6-35 Availal oli a hp://pucipuco/a///7 Scic ad Educaio Pulihig DOI:69/a---7 Nw Rul Ivolvig a Cla of Gralid Hurwi- Lrch Za Fucio ad Thir Applicaio H M Srivaava

More information

ESE-2018 PRELIMS TEST SERIES Date: 12 th November, 2017 ANSWERS. 61. (d) 121. (c) 2. (a) 62. (a) 122. (b) 3. (b) 63. (a) 123. (c) 4. (b) 64.

ESE-2018 PRELIMS TEST SERIES Date: 12 th November, 2017 ANSWERS. 61. (d) 121. (c) 2. (a) 62. (a) 122. (b) 3. (b) 63. (a) 123. (c) 4. (b) 64. ESE-8 PRELIMS TEST SERIES Da: h Novmbr, 7 ANSWERS. (d). (a) 6. (d) 9. (d). (c). (a). (c) 6. (a) 9. (d). (b). (b). (a) 6. (a) 9. (a). (c). (b). (b) 6. (a) 9. (b). (a) 5. (d) 5. (c) 65. (b) 95. (a) 5. (c)

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

A Comparative Study of Adomain Decompostion Method and He-Laplace Method

A Comparative Study of Adomain Decompostion Method and He-Laplace Method Applied Mahemaic,, 5, 5-6 Publihed Olie December i SciRe. hp://www.cirp.org/joural/am hp://d.doi.org/.6/am..5 A Comparaive Sudy of Adomai Decompoio Mehod ad He-Laplace Mehod Badradee A. A. Adam, Deparme

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information