Outline. Overlook. Controllability measures. Observability measures. Infinite Gramians. MOR: Balanced truncation based on infinite Gramians

Size: px
Start display at page:

Download "Outline. Overlook. Controllability measures. Observability measures. Infinite Gramians. MOR: Balanced truncation based on infinite Gramians"

Transcription

1 Ouli Ovrlook Corollabiliy masurs Obsrvabiliy masurs Ifii Gramias MOR: alacd rucaio basd o ifii Gramias

2 Ovrlook alacd rucaio: firs balacig h ruca. Giv a I sysm: / y u d d For covic of discussio w do h sysm as a block form: alacig ruca rducd modl h uimpora par is rucad

3 Ovrlook Wha s h uimpora par? h sas which ar difficul o corol ad difficul o obsrv corrspod h uimpora par. I sysm hory h ukow vcor is calld h sa of h sysm. cually h ris i dpic h sysm variabls such as brach currs od volags i h ircoc modl ad hrfor dscrib h sa of h sysm.

4 alacd rucaio ihog Fg

5 alyical soluio of h I Sysm Wh discuss balacd rucaio mhod w limi h I sysm o h followig form: d / d y u I ordr o aalyz corollabiliy obsrvabiliy w d o us h aalyical soluio of h sysm hough w always solv h sysm umrically i.. by umrical mhods ad usig compurs. h aalyical soluio of h sysm: h aalyical rprsaio of.

6 alyical soluio of h I Sysm Wha is h aalyical soluio cid by h ipu u ad sarig wih h iiial sa? s also Chapr 4 scio 4. i [Chi-sog Ch iar Sysm hory ad Dsig 3rd diio 999] Muliplyig o boh sids of yilds d d d / d u u which implis d d u Is igraio from o yilds u d

7 alyical soluio of h I Sysm hus w hav u d caus h ivrs of is ad implis I u d d / d u his is h aalyical soluio of. I is impossibl o plo h wavform of by had w d compurs o compu umrically ad plo a may sampls of im. I is difficul o compu by followig h aalyical formulaio i if is vry larg. W d o solv h I sysm umrically wih som umrical mhods lik backward Eulr...c.

8 Ouli Ovrlook Corollabiliy masurs Obsrvabiliy masurs Ifii Gramias MOR: alacd rucaio basd o ifii Gramias

9 Corollabiliy masur Rachabiliy Dfiiio: Giv a sysm a sa is rachabl from h zro sa if hr is a ipu fucio u of fii rgy such ha ca b obai from h zro sa ad wihi a fii priod of im. u = C y

10 Corollabiliy masur Do rach X h subspac spad by h rachabl sas h X rach X X is h whol sa spac.g. X { : R C } h sysm is rachabl spac is rachabl. X rach X: vry sa i h sa

11 Corollabiliy masur Eampl icur rfrrd o [Chi-sog Ch iar sysm hory ad Dsig 3rd diio Nw York Oford Oford Uivrsiy rss 999] _ V _ 8 dos h volag drop alog h capacior ad is h sa of h sysm. I his circui = a ay im. Coclusio: I his circui sa is a rachabl sa bu ay ozro sa is a urachabl sa! hrfor h whol sysm is urachabl.

12 Corollabiliy masur Eampl is acually h Whaso bridg. + R R 3 R 3 is adjusabl i is adjusd ill V G bcoms zro. I mas hr is o volag drop hrough. hrfor w hav V G V _ R V G R R R R ca b asily masurd by h abov quaio. R R 3 Whaso bridg Whaso bridg is a masurig isrum ivd by Samul Hur Chrisi i 833 ad improvd ad popularizd by Sir Charls Whaso i 843. hp://.wikipdia.org/wiki/whaso_bridg

13 Corollabiliy masur Eampl d / d u + F + _ F + _ y V _ volag drops hrough h wo capaciors. hos sas wih ar rachabl bu hos sas wih ar o rachabl. caus whavr h ipu is h volag drops hrough h wo capaciors ar always idical. hrfor h whol sysm is urachabl.

14 Corollabiliy masur Rachabiliy mari of h sysm: R [ ] y h Cayly-Halmilo horm h rak of h rachabiliy mari ad h spa of is colums ar drmid a mos by h firs rms o h firs colums i... hus for compuaioal purpos h followig fii rachabiliy mari is of imporac: R [ ] Somims R is dircly dfid as h rachabiliy mari. Why i is calld rachabiliy mari? y cocio bw ad rachabiliy? R

15 Corollabiliy masur Noic h aalyical soluio of sysm sa quaio d / d u is u u d h rachabiliy of a sa of h sysm is sd by h zro iiial sa w look a h abov aalyical soluio wih u u d Noic: I!! k k k!

16 !! k k d u d u d u d u d u u which mas a rachabl sa is h liar combiaio of h rms: k hrfor is dfid as h rachabiliy Mari. R Corollabiliy masur

17 Corollabiliy masur cually hr is a horm horm 4.5 i Chapr 4 i [oulas5]: rach horm If X is h subspac spad by h rachabl sas h X rach im R :spac spad by h colums. h horm lls us h subspac spad by all rachabl sas is acly h subspac spad by h colums of h rachabiliy mari R. h fii rachabiliy gramia a im is dfid as : d for

18 Corollabiliy masur Cocio bw rachabiliy mari ad rachabiliy gramias roposiio h fii rachabiliy gramias hav h followig propris: a ad b hir colums spa h rachabiliy subspac i.. im im R. roposiio 4.8 i [ulous 5] roof asir way is o prov im im R whr im im C ad im R im R C W firs prov im im R im w hav d for all

19 Corollabiliy masur k k k I!!!. for all hrfor i i i im R im R W hav provd: im im R

20 Corollabiliy masur N w prov: im R im i im R im R for all i i for all i. im for all why? im symmric ull d

21 Corollabiliy masur ull p p p ad p p p ull p i ull im symmric } spa{ } spa {colums of im p p im im ull im

22 Corollabiliy masur h rlaio im im R provids a way o driv h miimal rgy which ar dd o rach a sa. h sas usig larg miimal rgy ar difficul o rach ad will b rucad durig MOR basd o balacd rucaio. hrfor h miimal rgy for rachig a rachabl sa is a ky cocp for modl ordr rducio basd o balacd rucaio. N w will driv h miimal rgy for rachig a sa.

23 Corollabiliy masur From h aalyical soluio if a sa is rachd a im h wih fii rgy such ha d u How much mus h ipu u b? W hav provd if is rachabl h i.. im ud d d u ad u his mas ca b rachd a im wih ipu u

24 Corollabiliy masur u = C y h ipu u is h ciaio of h sysm is rgy is h rgy rquird o rach h sa. Ergy of a fucio is dfid as: u u u d

25 Corollabiliy masur W s from abov aalysis if is rachabl a im rprsd as: ud ca b y ohr ipu u u ca also rach. Howvr if u u i cao rach a im may d logr im. u u cually h rgy of is h miimal rgy o rach h sa a h giv im priod. roposiio 4. i [ulous 5] Ergy of u : u u u d d rlaio o?

26 Corollabiliy masur sysm is rachabl mas vry sa i h whol sa spac is rachabl. From horm : X rach im R im R hrfor h sysm is rachabl rak R From roposiio : im im R hrfor h sysm is rachabl rak hrfor is osigular for ay if h sysm is rachabl.

27 Corollabiliy masur Ergy of u oic : u u Corollabiliy masur! Oly for rachabl sysms.

28 Corollabiliy masur Rmark : Rachabiliy is a gric propry for I sysms wih h form: d / d u his mas iuiivly ha almos vry I sysm wih h form abov is rachabl. If hr ar ay urachabl sysms hy ar vry rar. h urachabl I sysms lik ampls ar rar. Rmark : h rachabiliy of h sysm ca b mor asily chckd by h criria: h sysm is rachabl rak R

29 Corollabiliy masur cocp which is closly rlad o rachabiliy is ha of corollabiliy. Hr isad of drivig h zro sa o a dsird sa a giv ozro sa is srd o h zro sa. Mor prcisly w hav: Dfiiio of corollabiliy: Giv a I sysm as abov a o-zro sa is corollabl if hr is a ipu u wih fii rgy such ha h sa of h sysm gos o zro from wihi a fii im:.

30 Corollabiliy masur I has b provd ha for im coiuous I sysms as discussd i his lcur h cocps of rachabiliy ad corollabiliy ar quival. horm For im coiuous sysms ulous 5 X rach X cor. horm 4.6 i Similarly X cor is h subspac spad by h corollabl sas. From h propry of rachabl sysm w hav h sysm is corollabl rak R

31 Corollabiliy masur Eampl: laform sysm u Dampig Coffici: dashpo Sprig Cosa: Dampig Coffici: dashpo Sprig Cosa: h sysm is dscribd by h followig liar im ivaria I sysm: assum mass of h plaform is zro ad from Nwo s law: F v k ma u u.5.5 d / d u

32 Corollabiliy masur Is h plaform sysm corollabl? h sysm is corollabl rak R R [ ] ar liarly idpd! rak R hrfor h plaform sysm is corollabl.

33 Corollabiliy masur ssociad wih corollabiliy hr is h cocp of obsrvabiliy. Corollabiliy: ipu u sa. ossibiliy of srig h sa from h ipu. Obsrvabiliy: oupu y sa. ossibiliy of simaig h sa from h oupu.

34 Ouli Ovrlook Corollabiliy masurs Obsrvabiliy masurs Ifii Gramias MOR: alacd rucaio basd o ifii Gramias

35 Obsrvabiliy masur Obsrvabiliy is a masur for how wll iral sas of a sysm ca b simad by kowldg of is ral oupus. Dfiiio of Obsrvabiliy: Giv ay ipu u a sa of h sysm is obsrvabl if sarig wih h sa = ad afr a fii priod of im ca b uiquly drmid by h oupu y. = u C y

36 Obsrvabiliy masur Obsrvabiliy mari? Obsrvabiliy Gramia? Oupu rgy? O

37 Obsrvabiliy masur Drivaio of Obsrvabiliy mari d u From h aalyical soluio of w s ha afr im : u d d / h sysm sarig wih = hrfor d u d h oupu corrspodig o is: d u ad d u d u y

38 Obsrvabiliy masur If is obsrvabl h for ay u ca b uiquly drmid by h corrspodig y : Drivaio of Obsrvabiliy mari y ad u d Sic ca b uiquly drmid by ca b uiquly drmid by y. i is suffici o prov ha us s udr wha codiio ca b uiquly drmid by? y

39 y Diffria h abov quaio o boh sids ad g h drivaivs a =: y y ' y '' y k k ' k k y y y # has a uiqu soluio if has full row rak. # k Obsrvabiliy masur Drivaio of Obsrvabiliy mari

40 k k Q Do: y Q k ' k y y y y ca b uiquly drmid wih k big a mos. if m> h k< if m= k=. m R Obsrvabiliy masur Drivaio of Obsrvabiliy mari

41 Obsrvabiliy mari: O hrfor: O From abov aalysis acually h fii Obsrvabiliy mari is ough o drmi obsrvabiliy: hrfor w dfi h sysm is obsrvabl O rak Obsrvabiliy masur Drivaio of Obsrvabiliy mari

42 Obsrvabiliy masur h oupu rgy associad wih h iiial sa is: y y Q y d d Oupu rgy d. Ergy of obsrvaio producd by a obsrvabl sa.. Obsrvabiliy masur! Fii Obsrvabiliy Gramia a im is dfid as: Q d

43 Obsrvabiliy masur Obsrvabiliy Gramia Rcall h miimal rgy o rach a sa a im is u Noic boh rgis ar rlad o im. u y Q * d Q d Fii rachabiliy corollabiliy Gramia ad obsrvabiliy Gramia will b usd o driv h ifii Gramias which. Mak h wo masurs compuabl.. will b dircly usd for rucaio i MOR.

44 Ouli Ovrlook Corollabiliy masurs Obsrvabiliy masurs Ifii Gramias MOR: alacd rucaio basd o ifii Gramias

45 Ifii Gramias Q Udr which codiio ad ar boudd wh im gos o ifiiy:? mak h wo masurs compuabl d Q d Roughly spakig Q ad ca b boudd wh if is boudd wh.

46 Ifii Gramias mak h wo masurs compuabl is boudd if h ral pars of all h igvalus of ar gaiv. Why? S S b h ig-dcomposiio of S S S S S r im S S r im S r r r r im j im j im j im r i im i i ar igvalus of. i

47 S S S S im r S S r r r r im im im im j j j r i si cos im i im i j j im i boudd Ifii Gramias mak h wo masurs compuabl

48 Ifii Gramias mak h wo masurs compuabl hrfor S S S S S r im S if h ral pars of all h igvalus of ar gaiv. hrfor h follow limis iss if all h igvalus of ar gaiv i.. if h sysm is sabl: lim lim d d Q lim Q lim d d whr ad Q ar h ifii Gramias oly for sabl sysms.

49 Ifii Gramias mak h wo masurs compuabl h ifii Gramias: lim lim Q lim Q lim d d d d From h propry of igral w hav Q Q I h maig of ir produc:

50 Ifii Gramias mak h wo masurs compuabl h miimal rgy cssary for rachig a rachabl sa a im is: u For sabl sysms lowr boud of h miimal rgy cssary for rachig a rachabl sa is: u * bcaus For sabl sysms h uppr boud of h rgy producd by h obsrvabl sa is: * y Q Q bcaus Q Q Compuabl masurs! Oly suiabl for sabl sysms!

51 Ifii Gramias mak h wo masurs compuabl For sabl sysms h miimal rgy cssary for rachig a sa is: * mi u For sabl sysms h maimum rgy producd by a sa is: ma y * Q

52 Ifii Gramias mak h wo masurs compuabl caus h MOR mhod w will iroduc uss ad Q o driv h rducd-ordr modl ad hrfor is oly suiabl for sabl sysms. mi u ma y Q h igspacs of ad Q mak h wo masurms pracically compuabl!

53 Eigspacs of ad Q mak h wo masurs parcically compuabl h sas which ar difficul o rach ar icludd i h subspac spad by hos igvcors of ha corrspods o small igvalus. h sas which ar difficul o obsrv ar icludd i h subspac spad by hos igvcors of Q ha corrspods o small igvalus. why ad how?

54 Eigspacs of ad Q mak h wo masurs pracically compuabl Do as h igvcors of h corrspodig igvalus ar. is symmric i has ral igvalus. C h sa ca hrfor b rprsd by : ar liarly idpd hrfor hy cosiu a basis of h whol spac. mi u If a mari is osigular h is ivrs has h sam igvcors bu h igvalus ar h rciprocals: /

55 u mi * * * u mi idicas h miimal rgy dd o rach h sa hrfor h largr is h mor difficul h sa o rach. mi u mi u hrfor is orhogoal. is symmric ] [ Q Eigspacs of ad Q mak h wo masurs pracically compuabl

56 Eigspacs of ad Q mak h wo masurs pracically compuabl mi u mi u is largr if ad k k k k k k ha if k k ad his mas if is difficul o rach u is larg should hav larg compos i h subspac spad by h igvcors corrspodig o h small igvalus of. Or should almos locas i h subspac spad by h igvcors corrspodig o h small igvalus.

57 Eigspacs of ad Q mak h wo masurs pracically compuabl Similarly if is difficul o obsrv y Q is small should hav larg compos i h subspac spad by h igvcors corrspodig o h small igvalus of Q. Or should almos locas i h subspac spad by h igvcors corrspodig o h small igvalus. k k k i i i i k k Q i i i i k k

58 Eigspacs of ad Q mak h wo masurs pracically compuabl ill ow i sms w could do h rucaio by fidig subspac spad by h igvcors corrspodig o h small igvalus of or Q. Howvr i could happ ha sas which ar difficul o rach produc h maimal rgy of obsrvaio; sas which produc h smalls rgy of obsrvaio ar vrhlss h asis o rach! For such sysm w do o kow which sas o ruca!

59 Eampl: Cosidr h followig I sysm / y u d d Q h wo Gramias ar: hir igvalus ad igvcors ar: Q Q Q Q Eigspacs of ad Q mak h wo masurs pracically compuabl

60 Eigspacs of ad Q mak h wo masurs pracically compuabl.3868 Q.5573 Q Q h agl bw ad is vry small. his mas if S is h subspac spad by h h asily obsrvabl sas may also i S. Q Q - Q I lls us if w ruca h sas which ar difficul o rach h sas loca i S w risk rucaig h sas which ar asy o obsrv produc h maimal rgy of obsrvaio bcaus hy ar also i S.

61 Eigspacs of ad Q mak h wo masurs pracically compuabl Howvr if ad Q hav h sam igvalus ad igvcors h h problms is solvd. h sas i h subspac spad by h igvcors of corrspodig o h small igvalus always i h subspac spad by h igvcors of Q corrspodig o h small igvalus bcaus h igvalus ar h sam ad igvcors ar h sam hrfor h subspacs ar h sam. Ca w achiv his? Ys. W ca achiv i by balacig.

62 Ouli Ovrlook Corollabiliy masurs Obsrvabiliy masurs Ifii Gramias MOR: alacd rucaio basd o ifii Gramias

63 Rcall h alacd rucaio mhod: Giv a I sysm: / y u d d b b balacig ruca rducd modl h uimpora par is rucad MOR: alacd rucaio alacig

64 MOR: alacd rucaio alacig asic ida of balacig rasformaio: Us sa spac rasformaio o g aohr ralizaio of h sam sysm so ha h rasformd Gramias ar diagoal marics. Dfiiio of alacig rasformaio: Fidig a osigular mari such ha Q Q ad Q. Dfiiio of alacd sysm: h rachabl obsrvabl ad sabl I sysm is balacd if is wo Gramias ar qual Q i is pricipal-ais balacd if Q diag.

65 MOR: alacd rucaio alacig asic ida of balacig rasformaio: Us sa spac rasformaio o g aohr ralizaio of h sam sysm so ha h rasformd Gramias ar qual ad ar diagoal marics. I.. Q Q How o cosruc? Rcall ha Q Q. Sic Q w hav Q which mas Q. should b h ivrs of h mari of igvcors of Q.

66 MOR: alacd rucaio alacig Chck :? How o mak? If UU h UU U UU U Hr w mus hav h rlaio U. / / If furhr U h U UU I looks ha w ca compu as Howvr w kow ha w hav o compu h ivrs of / U h mari of U I is h ivrs of h igvcors igvcors if /. I. of Q.Sic Q is o a p.s.d. mari o g. o avoid compuig h ivrs of h mari of igvcors w compu i a diffr way.

67 MOR: alacd rucaio alacig Subsiu / U h lf had sid / / io Q w g / U QU / / U UU QU U QU /. ook a h righ had sid w g / / U QU i.. U QU.hrfor is h ivrs of h mari of igvcors of U QU. Furualy h raspos of U QU is a p.s.d. mari. hrfor h ivrs of h mari of h mari islf.so ha w do o hav o compu h ivrs. igvcors is acly

68 MOR: alacd rucaio alacig h abov aalysis clarly shows ha: Eisc of balacig rasformaio: d / d y Giv a rachabl obsrvabl ad sabl I sysm ad h corrspodig Gramias ad Q a pricipal ais balacig rasformaio is giv as follows: u K U ad UK / / Hr UU is h Cholsky facorizaio of. U QU K is h ig-dcomposiio of U QU. Symmric posiiv smidfii mari has ral o-giv igvalus ad orhogoal igvcors. Hr h Eigvcors i K ar ak as orhoormal K

69 MOR: alacd rucaio alacig Wha is h corrspodig balacd sysm? pply h sa spac asformaio: o h origial ralizaio: d / d y u d / d y u

70 MOR: alacd rucaio alacig : alacig Giv d / d y u Compu Q. Compu UU U QU K K h igvalus ar ordrd from h largs o h smalls d / d u / K U d / d u y / UK y

71 MOR: alacd rucaio ruca balacd sysm: / y u d d. : ar h igvcors of h ui vcors i Q i i i i spa h subspac coaiig asily corollabl ad asily obsrvabl sas. hrfor. is alrady ordrd as : of ssum ha h lms o h diagoal r. mas : sas o - corol - o - obsrv ad difficul - ruca h difficul r r r i h balacd sysm : Rplac wih. : I.. r / y u d d : r z z y u u z z d

72 MOR: alacd rucaio ruca z y u u z z d miimal ralizaio of h sam sysm is: is a o-miimal ralizaio of a sysm. ˆ z y u z dz h rducd-ordr modl ROM hrfor w hav h followig simpl sps for rucaio:

73 MOR: alacd rucaio alacig: ruca d / d y u / K U / UK d / d y u ruca: Small par ad Q Sparad accordig o h sparaio of. dz / d yˆ z z u Rducd modl!

74 MOR: alacd rucaio alacig: d / d y u / K U / UK d / d y u Dos i mak ss if w do modl rducio o h balacd sysm rahr ha h origial sysm? Ys. s a sa rasformaio balacig dos o chag h rasfr Fucio ad h HSVs h balacd sysm is oly a diffr ralizaio of h sysm.

75 Obsrv: MOR: alacd rucaio / y u d d / y u d d ˆ / z y u z d dz W W Y Q Y Y Y :. produc mari h of igvcors h ar : i Hr h colums.. h ad as as spara If Y Y Y Y Y Y Y Y W Y W Y W Y W Y W Y Y W W W W W W W Y Y Y Y Y

76 MOR: alacd rucaio hrfor h wo ROMs ar h sam: dz / d yˆ z z u d / d W Y W y Y u Coclusio: balacd rucaio is rov-galrki projcio as blow: Y d / d y u rov - Galrki Y d / d W y Y usig W Y W u hrfor balacd rucaio is quival o: fidig h ivaria subspac of Q ad rmaiig oly h par Y which corrspods o h largs HSVs squar roo of h igvalus of Q.

77 MOR: alacd rucaio lgorihm alacig:. Compu Q. Giv d / d u y. Compu UU 3. / K U U QU K / UK K 4. alacig ad sparaig accordig o h sparaio of : ruca: 5. Form h rducd modl: dˆ / d yˆ ˆ ˆ u

78 MOR: alacd rucaio compuaioal dails r w rady o g h rducd modl from h abov lgorihm? No y bcaus w do o kow y how o compu ad Q umrically! Rcall: Forualy w hav: d Q roposiio proposiio 4.5 i [oulas 5] ad Q ar h soluio of h followig wo yapuov quaios: Q Q hs wo mari quaios ca b solvd umrically by compur! Of cours by usig som algorihms. d?

79 MOR: alacd rucaio I M us commad: compuaioal dails lyap ' Q lyap '

80 MOR: alacd rucaio Numrical issus h balacig mari is: / K U UU. Compuaio of U may caus umrical isabiliy bcaus U is usually ar sigular. U is usually ar sigular bcaus h mari has umrically low-rak i.. ar sigular. is ar sigular bcaus i may cass is igvalus dcay rapidly o zro som igvalus ar vry clos o zro.g.. Q ad bhavs similarly as. i Howvr i algorihm w d o compu: / / K U UK Ca w avoid compuig U?

81 MOR: alacd rucaio compuaioal dails If usig Cholsky facorizaio of boh Z Z Q Z Obsrv Z p Z QZ Z p Q Z p Z Q Z U V Q Q Z Z p Q Us SVD isad of ig- dcomposiio Comparig wih dfid i lgorihm w immdialy g Q U Z / p o avoid compuig h ivrs of Z Z U V Z V Z p U Q Z p w hav: / V Z Q

82 MOR: alacd rucaio Numrical issus lgorihm SR mhod Gig h rducd modl wihou compuig :. Do Cholsky facorizaio of h wo Gramias: Z Z Q ar lowr riagular marics. Z Z Q Z. Do Sigular valu dcomposiio SVD of mari Z Q i.. hr Z ar wo orhoormal marics U V U U I V V I such ha V Z ZQ U V U U. V W / Q Z V / 3. V Z U. ˆ 4. W V W V. ˆ ˆ Q U Z Q 5. h rducd modl is dˆ / d yˆ ˆ ˆ ˆ ˆ u ˆ Do w hav do balacig?

83 MOR: alacd rucaio Numrical issus W will prov ha h rducd modl w go coms from h abov balacd sysm balacd by /! V Z Q h balacd sysm which is balacd by ad Z U / is: / V Z Q

84 MOR: alacd rucaio Numrical issus h rducd modl w obaid jus ow is: V W V W ˆ ˆ ˆ / V Z W Q / U Z V Q V V U U V U Z Z Q Q Q Z V Z V Z V / / / / / / U Z U Z U Z Us h block forms abov o chck if ˆ ˆ ˆ Ys hy ar qual! h rducd modl is rally from a balacd sysm.

85 MOR: alacd rucaio Numrical issus lgorihm somims cao coiu ihr bcaus h Cholsky facorizaio of Q cao b do. his is bcaus ha i som cass ad Q iclud oo small igvalus lik: which is cosidrd by h algorihm as a sigular mari hrfor Cholsky facorizaio cao b coiud. apr [rq 5] provids a algorihm compuig h umrically full rak facors of ad Q which ar i h forms Z ˆ ˆ R Z R h full rak facors umrically saisfy: Z Z Q Z Z. Q Q ˆ Q [rq 5]. r E.S. Quiaa-Ori Modl rducio basd o spcral projcio mhods. I:. r V.. Mhrma D.C. Sors ds. "Dimsio Rduio of arg-scal Sysms" vol. 45 of cur Nos i Compuaioal Scic ad Egirig pp Sprigr-Vrlag rli/hidlbrg 5. lgorihm 4 i h papr

86 MOR: alacd rucaio Numrical issus lgorihm 3 Gig h rducd modl usig full-rak facors [rq 5]:. Compu full-rak facors of h Gramias:. Compu SVD. Q V V U U V U Z Z / V Z W Q 3.. / U Z V 5. h rducd modl is ˆ ˆ ˆ ˆ ˆ ˆ / ˆ y u d d 4.. ˆ ˆ ˆ V W V W Q Q Z Z Q Z Z. ˆ ˆ ˆ R Z R Z Q

87 MOR: alacd rucaio Error boud horm [rq 5] If h origial I sysm is sabl h h rducd modl obaid by lgorihm lgorihm lgorihm 3 saisfis: h rducd modl is balacd miimal ad sabl. I s Gramias ar qual o h sam diagoal mari. h absolu rror boud proof i [oulas 5] Chapr 7 holds. H s Hˆ s H k r k

88 Rfrcs [].C. oulas pproimaio of larg-scal Sysms SIM ook Sris: dvacs i Dsig ad Corol 5. [] Chi-sog Ch iar sysm hory ad Dsig 3rd diio Nw York Oford Oford Uivrsiy rss 999.

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals ELECTOMAGNETIC COMPATIBILITY HANDBOOK Chapr : Spcra of Priodic ad Apriodic Sigals. Drmi whhr ach of h followig fucios ar priodic. If hy ar priodic, provid hir fudamal frqucy ad priod. a) x 4cos( 5 ) si(

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

Modeling of the CML FD noise-to-jitter conversion as an LPTV process

Modeling of the CML FD noise-to-jitter conversion as an LPTV process Modlig of h CML FD ois-o-ir covrsio as a LPV procss Marko Alksic. Rvisio hisory Vrsio Da Comms. //4 Firs vrsio mrgd wo docums. Cyclosaioary Nois ad Applicaio o CML Frqucy Dividr Jir/Phas Nois Aalysis fil

More information

Note 6 Frequency Response

Note 6 Frequency Response No 6 Frqucy Rpo Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada Dparm of Mchaical Egirig, Uivriy Of Sakachwa, 57 Campu Driv, Sakaoo, S S7N 59, Caada. alyical Exprio

More information

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals Rviw opics from Chapr 3&4 Fourir Sris Fourir rasform Liar im Ivaria (LI) Sysms Ergy-yp Sigals Powr-yp Sigals Fourir Sris Rprsaio for Priodic Sigals Dfiiio: L h sigal () b a priodic sigal wih priod. ()

More information

Mixing time with Coupling

Mixing time with Coupling Mixig im wih Couplig Jihui Li Mig Zhg Saisics Dparm May 7 Goal Iroducio o boudig h mixig im for MCMC wih couplig ad pah couplig Prsig a simpl xampl o illusra h basic ida Noaio M is a Markov chai o fii

More information

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite Wb-basd Supplmary Marials for Sampl siz cosidraios for GEE aalyss of hr-lvl clusr radomizd rials by Sv Trsra, Big Lu, oh S. Prissr, Tho va Achrbrg, ad Gorg F. Borm Wb-appdix : macro o calcula h rag of

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations, Shiraz Uivrsiy of Tchology From h SlcdWorks of Habibolla Laifizadh Th Dvlopm of Suiabl ad Wll-foudd Numrical Mhods o Solv Sysms of Igro- Diffrial Equaios, Habibolla Laifizadh, Shiraz Uivrsiy of Tchology

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

What Is the Difference between Gamma and Gaussian Distributions?

What Is the Difference between Gamma and Gaussian Distributions? Applid Mahmaics,,, 85-89 hp://ddoiorg/6/am Publishd Oli Fbruary (hp://wwwscirporg/joural/am) Wha Is h Diffrc bw Gamma ad Gaussia Disribuios? iao-li Hu chool of Elcrical Egirig ad Compur cic, Uivrsiy of

More information

Linear Systems Analysis in the Time Domain

Linear Systems Analysis in the Time Domain Liar Sysms Aalysis i h Tim Domai Firs Ordr Sysms di vl = L, vr = Ri, d di L + Ri = () d R x= i, x& = x+ ( ) L L X() s I() s = = = U() s E() s Ls+ R R L s + R u () = () =, i() = L i () = R R Firs Ordr Sysms

More information

ECE351: Signals and Systems I. Thinh Nguyen

ECE351: Signals and Systems I. Thinh Nguyen ECE35: Sigals ad Sysms I Thih Nguy FudamalsofSigalsadSysms x Fudamals of Sigals ad Sysms co. Fudamals of Sigals ad Sysms co. x x] Classificaio of sigals Classificaio of sigals co. x] x x] =xt s =x

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

Fourier Techniques Chapters 2 & 3, Part I

Fourier Techniques Chapters 2 & 3, Part I Fourir chiqus Chaprs & 3, Par I Dr. Yu Q. Shi Dp o Elcrical & Compur Egirig Nw Jrsy Isiu o chology Email: shi@i.du usd or h cours: , 4 h Ediio, Lahi ad Dog, Oord

More information

Model Reduction for Dynamical Systems Lecture 6

Model Reduction for Dynamical Systems Lecture 6 Oo-von-Guericke Universiä Magdeburg Faculy of Mahemaics Summer erm 07 Model Reducion for Dynamical Sysems ecure 6 v eer enner and ihong Feng Max lanck Insiue for Dynamics of Complex echnical Sysems Compuaional

More information

15. Numerical Methods

15. Numerical Methods S K Modal' 5. Numrical Mhod. Th quaio + 4 4 i o b olvd uig h Nwo-Rapho mhod. If i ak a h iiial approimaio of h oluio, h h approimaio uig hi mhod will b [EC: GATE-7].(a (a (b 4 Nwo-Rapho iraio chm i f(

More information

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e.

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e. SURPLUS PRODUCTION (coiud) Trasiio o a Nw Equilibrium Th followig marials ar adapd from lchr (978), o h Rcommdd Radig lis caus () approachs h w quilibrium valu asympoically, i aks a ifii amou of im o acually

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function Chapr VII Spcial Fucios Ocobr 7, 7 479 CHAPTER VII SPECIAL FUNCTIONS Cos: Havisid sp fucio, filr fucio Dirac dla fucio, modlig of impuls procsss 3 Si igral fucio 4 Error fucio 5 Gamma fucio E Epoial igral

More information

ON H-TRICHOTOMY IN BANACH SPACES

ON H-TRICHOTOMY IN BANACH SPACES CODRUTA STOICA IHAIL EGA O H-TRICHOTOY I BAACH SPACES Absrac: I his papr w mphasiz h oio of skw-oluio smiflows cosidrd a gralizaio of smigroups oluio opraors ad skw-produc smiflows which aris i h sabiliy

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition:

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition: Assigm Thomas Aam, Spha Brumm, Haik Lor May 6 h, 3 8 h smsr, 357, 7544, 757 oblm For R b X a raom variabl havig ormal isribuio wih ma µ a variac σ (his is wri as ~ (,) X. by: R a. Is X ) a urhrmor all

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

3.2. Derivation of Laplace Transforms of Simple Functions

3.2. Derivation of Laplace Transforms of Simple Functions 3. aplac Tarform 3. PE TRNSFORM wid rag of girig ym ar modld mahmaically by uig diffrial quaio. I gral, h diffrial quaio of h ordr ym i wri: d y( a d d d y( dy( a a y( f( (3. d Which i alo ow a a liar

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform Aalyi o No-Siuoidal Wavorm Par Laplac raorm I h arlir cio, w lar ha h Fourir Sri may b wri i complx orm a ( ) C jω whr h Fourir coici C i giv by o o jωo C ( ) d o I h ymmrical orm, h Fourir ri i wri wih

More information

Chapter 11 INTEGRAL EQUATIONS

Chapter 11 INTEGRAL EQUATIONS hapr INTERAL EQUATIONS hapr INTERAL EUATIONS Dcmbr 4, 8 hapr Igral Eqaios. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. achy-byaowsi iqaliy 5. iowsi iqaliy. Liar

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

The geometry of surfaces contact

The geometry of surfaces contact Applid ad ompuaioal Mchaics (007 647-656 h gomry of surfacs coac J. Sigl a * J. Švíglr a a Faculy of Applid Scics UWB i Pils Uivrzií 0 00 Pils zch public civd 0 Spmbr 007; rcivd i rvisd form 0 Ocobr 007

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions Iraioal Joural of horical ad Mahmaical Physics 4, 4(6: 5-9 DOI: 59/jijmp446 Rig of arg Numbr Muually Coupld Oscillaors Priodic Soluios Vasil G Aglov,*, Dafika z Aglova Dparm Nam of Mahmaics, Uivrsiy of

More information

Control Systems. Transient and Steady State Response.

Control Systems. Transient and Steady State Response. Corol Sym Trai a Say Sa Ro chibum@oulch.ac.kr Ouli Tim Domai Aalyi orr ym Ui ro Ui ram ro Ui imul ro Chibum L -Soulch Corol Sym Tim Domai Aalyi Afr h mahmaical mol of h ym i obai, aalyi of ym rformac i.

More information

Control Systems (Lecture note #6)

Control Systems (Lecture note #6) 6.5 Corol Sysms (Lcur o #6 Las Tm: Lar algbra rw Lar algbrac quaos soluos Paramrzao of all soluos Smlary rasformao: compao form Egalus ad gcors dagoal form bg pcur: o brach of h cours Vcor spacs marcs

More information

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials Ifii Coiu Fraio CF rraio of h oial igral fuio l fuio a Lol olyoial Coiu Fraio CF rraio a orhogoal olyoial I hi io w rall h rlaio bw ifi rurry rlaio of olyoial orroig orhogoaliy a aroria ifii oiu fraio

More information

BMM3553 Mechanical Vibrations

BMM3553 Mechanical Vibrations BMM3553 Mhaial Vibraio Chapr 3: Damp Vibraio of Sigl Dgr of From Sym (Par ) by Ch Ku Ey Nizwa Bi Ch Ku Hui Fauly of Mhaial Egirig mail: y@ump.u.my Chapr Dripio Ep Ouom Su will b abl o: Drmi h aural frquy

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

From Fourier Series towards Fourier Transform

From Fourier Series towards Fourier Transform From Fourir Sris owards Fourir rasform D D d D, d wh lim Dparm of Elcrical ad Compur Eiri D, d wh lim L s Cosidr a fucio G d W ca xprss D i rms of Gw D G Dparm of Elcrical ad Compur Eiri D G G 3 Dparm

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems BoDiPrima 9 h d Ch 7.9: Nohomogou Liar Sm Elmar Diffrial Equaio ad Boudar Valu Prolm 9 h diio William E. Bo ad Rihard C. DiPrima 9 Joh Wil & So I. Th gral hor of a ohomogou m of quaio g g aralll ha of

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS hapr 7 INTERAL EQUATIONS hapr 7 INTERAL EUATIONS hapr 7 Igral Eqaios 7. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. ach-baowsi iqali 5. iowsi iqali 7. Liar Opraors

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series I Jorl of Mh Alysis, Vol 4, 2, o 2, 4-47 Approximio of Fcios Blogig o Lipschiz Clss by Triglr Mrix Mhod of Forir Sris Shym Ll Dprm of Mhmics Brs Hid Uivrsiy, Brs, Idi shym _ll@rdiffmilcom Biod Prsd Dhl

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

CS 688 Pattern Recognition. Linear Models for Classification

CS 688 Pattern Recognition. Linear Models for Classification //6 S 688 Pr Rcogiio Lir Modls for lssificio Ø Probbilisic griv modls Ø Probbilisic discrimiiv modls Probbilisic Griv Modls Ø W o ur o robbilisic roch o clssificio Ø W ll s ho modls ih lir dcisio boudris

More information

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent oucms Couga Gas Mchal Kazha (6.657) Ifomao abou h Sma (6.757) hav b pos ol: hp://www.cs.hu.u/~msha Tch Spcs: o M o Tusay afoo. o Two paps scuss ach w. o Vos fo w s caa paps u by Thusay vg. Oul Rvw of Sps

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

82A Engineering Mathematics

82A Engineering Mathematics Class Nos 5: Sod Ordr Diffrial Eqaio No Homoos 8A Eiri Mahmais Sod Ordr Liar Diffrial Eqaios Homoos & No Homoos v q Homoos No-homoos q ar iv oios fios o h o irval I Sod Ordr Liar Diffrial Eqaios Homoos

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

Controllability and Observability of Matrix Differential Algebraic Equations

Controllability and Observability of Matrix Differential Algebraic Equations NERNAONAL JOURNAL OF CRCUS, SYSEMS AND SGNAL PROCESSNG Corollabiliy ad Obsrvabiliy of Marix Diffrial Algbrai Equaios Ya Wu Absra Corollabiliy ad obsrvabiliy of a lass of marix Diffrial Algbrai Equaio (DAEs)

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system: Undrdamd Sysms Undrdamd Sysms nd Ordr Sysms Ouu modld wih a nd ordr ODE: d y dy a a1 a0 y b f If a 0 0, hn: whr: a d y a1 dy b d y dy y f y f a a a 0 0 0 is h naural riod of oscillaion. is h daming facor.

More information

Intrinsic formulation for elastic line deformed on a surface by an external field in the pseudo-galilean space 3. Nevin Gürbüz

Intrinsic formulation for elastic line deformed on a surface by an external field in the pseudo-galilean space 3. Nevin Gürbüz risic formuaio for asic i form o a surfac by a xra fi i h psuo-aia spac Nvi ürbüz Eskişhir Osmaazi Uivrsiy Mahmaics a Compur Scics Dparm urbuz@ouur Absrac: his papr w riv irisic formuaio for asic i form

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Lecture 12: Introduction to nonlinear optics II.

Lecture 12: Introduction to nonlinear optics II. Lcur : Iroduco o olar opcs II r Kužl ropagao of srog opc sgals propr olar ffcs Scod ordr ffcs! Thr-wav mxg has machg codo! Scod harmoc grao! Sum frqucy grao! aramrc grao Thrd ordr ffcs! Four-wav mxg! Opcal

More information

Chap 2: Reliability and Availability Models

Chap 2: Reliability and Availability Models Chap : lably ad valably Modls lably = prob{s s fully fucog [,]} Suppos from [,] m prod, w masur ou of N compos, of whch N : # of compos oprag corrcly a m N f : # of compos whch hav fald a m rlably of h

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

NAME: SOLUTIONS EEE 203 HW 1

NAME: SOLUTIONS EEE 203 HW 1 NAME: SOLUIONS EEE W Problm. Cosir sigal os grap is so blo. Sc folloig sigals: -, -, R, r R os rflcio opraio a os sif la opraio b. - - R - Problm. Dscrib folloig sigals i rms of lmar fcios,,r, a comp a.

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information