EXERCISE - 01 CHECK YOUR GRASP

Size: px
Start display at page:

Download "EXERCISE - 01 CHECK YOUR GRASP"

Transcription

1 DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is posiiv i som porio d giv i som porio from o + + c is posiiv d giv i (, ) + + c hs roo i (, ) 8. L d sc d. / / d si cos d sc / si d / cos cos d 8 log (log ) d ( ) log (log ) f ( ) f '( ) d log. F() si d 7. Now 6 si d [pu ] si d 6 [F()] F(6) F() ( ) 5 (7 ) d (5 ) (5 ) 5 (7 ) 5 dd(i) & (ii) d ( ) (7 ) 5 d d /. O diffriig oh sids d [ƒ ()] ƒ '() cos si...(i)...(ii) [ƒ (9)] ƒ '(9)...(i) Also ƒ( ) cos [ƒ()] [ƒ (9)] 7 ƒ (9)...(ii) from (i) & (ii) ƒ '(9) /9 V V cos d cos d V cos d cos d V cos d cos d / V cos d cos d / cos + si V d f() [ f() ] g(f()) g'(f())f'()

2 . g'()f'() g'() 7 f '() f '() f '() 7 lim ( r)( r) r lim r r r. Usig d ( )( ) ( ) ( ) hc d ƒ()d ƒ( )d EXERCSE - BRAN TEASERS. ( ) d ( ) [( ).] d ( ) d ( ) [ ] + + ( ) Now pu + d ( ) 8 5. L f( ) c 5 is coiuous & diffril vrywhr Now f(), f() d f( ) so f'() will hv ls o roo i (, ) ls o roo i (, ), so i will hv ls wo roos i (, ). v d 7 Pu d d. d d v 7 7 v u Hc u d d 7 u / z z dz z pu z si d / / (si )( cos )d si d si / / (cos ) cos d / / ( si ) cos d pu si cos d d/ / ( ) d Now l si d cos d / cos d 6 ( r) d K L r r k ( r) ()! d [ ] (!) ()! (!) ( + )!!.! k d d K d 9

3 . Giv d Now. d d / si d / / / si si d d / L d [Pu d d] / / si d si d / si d..d d / si cos d si d [Pu ] si d EXERCSE -. L ( ) d [( ) ] ( ) d [( ) ] ( ) ( ) d ( ) ( ) ( ) d ( ) ( )... ( )! Mch h colum :. ( A ) [ ]d [( ) ] [ ] [( ) ] [ ] [( ) ] d (i) (ii) MSCELLANEOUS TYPE QUESTONS ( D ) 55 d 55 d 55 d Assrio & Rso :. Sm- : cos d (i) + (ii) cos d. cos d...(i)...(ii) ( B ) ( C ) dd (i) & (ii) d 6 d ( )d () d Lim r r d cos d Sm- : ƒ ()d ( )ƒ ( )d (i) + (ii) (ru)...(i)...(ii) ( ) ƒ ()d {f ƒ ( + ) ƒ ()

4 ƒ ()d Hc Sm- fls u if ƒ ( + ) ƒ (), h. f() + + f'() f'() > > < f'() < < > f() ½ ƒ f() is icrsig i (, ) d dcrsig i (, ) Now g() m {f() ; } 5 g()d / ( )d 5 / d 9 / 5. (si m.si ) d if m d (si m.si ) d if m cos d cos + 6. Sm- : Pu / / d d 99 cosc d 99 cosc d Comprhsio # :. g() ƒ d g'() ƒ () From h grph i is clr h ƒ () > i [, ) d ƒ () < i (, 7) g() is icrsig i [, ] d g() is dcrsig i [, 7] mimum vlu of g() occurs g() ƒ()d.d ( )d ( 9)d g() sr dcrsig from g() ƒ d ƒ d ƒ d 9 ( 9)d Now, g() ƒ()d 9 9 ƒ d ƒ d 6 ( )d 5 g() 5 5 wich lis i [, 6]. g() coms zro 5 g() will giv i (5, 7) Comprhsio # : (,) ƒ () + (,) (,) ƒ () [, ] m ƒ () mi [, ) [, ] 9

5 Now, 6 g() h() g()d h'() g( ). g( ) 6 g() h'() < i ( 6, 7] d hc h() is dcrsig g() g() lim (cos( )) 5 from 6 7. g() g() d 5 g '() lim si cos g '() lim from g ''() lim sc g ''() EXERCSE - [A] CONCEPTUAL SUBJECTVE EXERCSE 5. ( ) ( ) [ ]d.d d.d d 5 cos cos cos cos cos cos [cos ]d d d d.d cos + cos + cos + ( ) d [( ) ] 6 5 d ( )d d d d ( )( ) d / si cos d si / si cos d...() si cos / cos si...() cos si. ( ). dd.() & () / ( ) ( ) d d. ( ) ( ) d Pu + + d d d d ( ) si d si ( ) ( ) Add. (i) d (ii) d si si d d ( / ) ( / ) [ ]...(i) si d...(ii) 6

6 6. 8. si si cos d...(i) h, ( ) si ( ) si cos( ) d...(ii) ( ) ( ) si si cos d ( ) si si cos d dd quio (i) & (ii) si si cos d si cos si cos d Pu cos / si d / / / si d d / / si d si d cos si ( )d L d d/ ( )d d L z 5 / 5 / zdz z dz ( )d d d zdz U () 5 V 8 U 8 V / / 9. J m. ( c ). () m d mj m [ m m ] m. d d d d...() d...() 6 dd () & () 5 6 si cos f() si d cos d Pu si i s igrl d cos i h scod igrl h / / f() si d si d si d si d / 7. ( c ) L si d P lim /... P lim... / P lim... / P lim log log...log lim r r log ( ) lim () + lim / d [ ] lim p P / / lim ( / )

7 EXERCSE - [B] BRAN STORMNG SUBJECTVE EXERCSE. { ( ) ( ) } d ( ) ( ) k f k < {( )( ) ( )} d ( ) ( ) ( + ) k + ( k)d ( ) d ( )( ) ( ) ( ) d d d ( )( ) d ( + ) / so hr will hv wo rl d disic roos for k < Th quio will hv wo rl d disic roos for k R, ( )( ) ( ) 8..( ) d. 5 ( 5 ) d / / 9 d.( ) ( ) d L 5 ( 5 ) d ( 5 + ) {usig propry ( ) / / d 9 ( / ) (( 5 )5 ) d f()d ( ) f(( ) )d } d 9 ( ) d whr + + ( /) k + + ( + ) (k + ) + f k R.H.S. d k d k d so hr will wo rl d disic roos for. ( ) ( ) +, ( )d ( ) d ( ) 5.( 5) 6 6 so f() y f(y)dy yf(y)dy ( y f(y)dy) ( yf(y)dy) f() is qudric prssio of h form + whr y f(y)dy y (y y )dy 5 5 d yf(y)dy y(y y ) dy...(i)

8 9...(ii) from (i) d (ii) 8 8, 9 9 so 8 8 f() 9. u { ( )}. ( ) C C + C...+( ) C (-) + (C C +C ( ) C )( ) (C C + C ( ) C ) (C C + + C ( ) C ) ( ) d du d du d d u d {( )} { }.u u ( )u { } {u +. ( )u { }} C C C ( ) C... C C C ( ) C... ( )u (-)u.u ( )(-)u (-)u ( )u {+ } u ( )u ( )u ( ) u ( )u u { } v.u d & pply y prs wic C C C ( ) C... C C C C...( ) C C C ( ) ( )( ) ( )( ) upo ( + ) rms.... () m ( ) d ( ) d m ( ) m m ( ) d m m ( ) d pu si d si cos d / ( ) d si cos ( si cos )d / si cos d m(m ) ( )( ) m ( ) d m(m )... m ( )( )...( m ) m () ( ) ( )

9 EXERCSE - 5 [A] JEE-[MAN] : PREVOUS YEAR QUESTONS. si d si d si d r r r lim. sc Pu d ; r si d si d si d si d 9 si d 9 8. [ ]d [ ]d [ ]d d d []. f(y) y, g(y) y ; y > d F() 7. f() 8. f( y)g(y)dy. y y ydy ydy [ y y y ] [ + ] ( + ) f() f( ) f( ) g[( )]d, f( ) f() + f( ) f( ) f( ) f( ) f( ) f( ) f( ) g[( )]d g{( )}d {f() f( ) }g( )()d f( ) g{( )}d f( ) f() + f( ) r r sc r lim lowr limi r r / r Pu sc d ; d d ; d d,, sc d ( ) 9. for < <, > d for < <, > for, < <, > d for < <, < d d d d d > d <. Puig for + cos ( d) cos d cos cos d cos d ( cos )d si d

10 [] 5..f '()d.f '()d... []f '()d [f() f()] + [f() f()] [] [f()] [] f() {f() + f() f[]} 6. F() f()+f(/) pu F() l z / log log d d d dz z l l / z d dz ( ) ( / z) z y propry 8. Now f( )d f( )d l l d d ( ) ( ) si < si si d < < / d < l d.5. [ ]d.5 d d d.5 (.5 ). g() cos d g( + ) cos d cos d cos d cos d cos d g() + g() Bcus g() so g() g() is lso corrc As.. Sm- : / / 6 d < cos < / / 6 cos d si cos...() 9. cos < cos d < J < [co ]d... () [co( )]d dd () & () d < < [ co ]d... () [co ] [ co ]d [] + [ ] d us ƒ( )d ƒ( )d / / 6 () + () / d / si d cos si...() So Sm- is fls. d sm- is ru s i is propry.

11 EXERCSE - 5 [B] JEE-[ADVANCED] : PREVOUS YEAR QUESTONS 6. Giv h f() is v fucio, h o prov / / f(cos ) cos d f(si ) cos d L / f(cos ) cos d...() / ƒ cos cos d Usig f( )d f( )d / / f( cos ) si d f(cos ) si d...() [As ƒ() is v fucio] ddig wo vlus of i () d () w g / f(cos )(si cos )d / f(cos ) si cos d / f(cos ) cos( / )d L / d d / f[cos ( / )]cos d / / / / f[ si ]cos d f (si )cos d / [ f is v fucio] / f(si ) cos d [ f is v fucio] 8. () / f(si ) cos d R.H.S. [ ( ) cos( )]d ( ) si( ) cos( ) cos 9. L si cos cos cos si d cos si cos si d cos cos cos si d + Now usig h propry h f()d W g, d if f( ) f() f()d if f( ) f() / cos cos cos si d / cos 6 cos cos si d Pu cos si d d, w g or 6 cos d 6[( cos ) si d] 6 cos( / ) ( si / ) cos / d. 6 cos si( / ). 6 6 cos( / ) si( / ) cos( / ) si 5 / si d si si si ( ) 8

12 . f''() <, (, ), for c (, ) c c F(c) (f() f(c)) (f() f(c)) c c f(c) f() f() F'(c) f '(c) f() f() [( )f '(c) f() f()] F ''(c) ( )f ''(c). L Th, 5 ( ) d d 5 ' ( ) d '.( ) d (( ) ) ( ) d ( ) d 5 5 ' 55 ( ) d ' 55 ( 5 ) d. [ f ''(), (, )d ] F(c) is m. h poi (c, f(c)) whr F'(c) f'(c) lim f() f() f()d (f() f()) ( ) h h f( )d (f( h) f()) lim h h h f( h) [f() f( h)] (f '( h)) lim h h [Usig L'Hospil rul] ( ) d 55 ( 5 ) d 55 ' ' ' 7. S k k k d S ( h fucio is dcrsig) S S d h f( h) f() f '( h) lim h h h f '( h) f '( h) f ''( h) lim h 6h S 6 S Now T S T S > [Usig L' Hospil rul] f ''( h) lim f''(), R h f() mus of m. dgr T > S + s S so T

13 8. (ƒ '()) d ƒ()d, diffriig oh h sids & squrig ƒ '() (ƒ ' ()) ƒ () ƒ () si ƒ () + c ƒ () ƒ () si si for [, ] ƒ 9. < d ƒ <. si si d si si d + (ii) (i) si d si..(i) si d...(i) si ( + ) cos m m + m Pu i quio (i) m m si d si. f() f d...(i) si d si f'() f() f() k. From (i) f() f() k. k f(). Applyig L-Hospil rul, ( ) d ( ) lim lim ( ) lim ( ).. d 5 d 6 d d d d. d d d {} wh 9 < 8; 7 6,... f() {} wh 9; 8 7,... Sic f() & cos oh r priodic fucios hvig priod. ( {}) cos d {}cos d ( ) cos d ( ) cos d cos d cos d cos d cos d. f() + d f '() f() f'() f() dy y d (sy)...(i) cosidrig y f(). so h f'(y) d f '() dy y... (ii) for f() i.. y f () dy d from (), f ' ()

14 5. si d ; pu si si( 6 ) d d si d...(i) si si( 6 ) si( 6 ) d si( 6 ) si Addig quio (i) & (ii) d 6. Ar (OABC) y C(, ) (, /) Shdd r is S. Clrly S < d d > S > B(, ) (, /) A d ((B) is corrc Agi S Ar (rpzium ACDO) y A B C E D F / S S C is wrog y...(ii) Also S Sum of rs of rcgls ABDO & CEFD S S ( (D) is corrc) + cos d cosd / / / / / / cos d cos d / / / ( si ) si d / / ( cos ) cos d / cos d L lim lim lim ims r r r r r r lim d & will rjcd s d is o dfid.

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

METHOD OF DIFFERENTIATION

METHOD OF DIFFERENTIATION EXERCISE - 0 METHOD OF DIFFERENTIATION CHECK YOUR GRASP 5. m mn n ( m n )(n ) ( n )( m ) ( m )(m n ) 0 7. co y / y / loga m m n n (m n )(n )( m ) d () d 0 tan y y log a tan y tan log a Now diffrntiating

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

( A) ( B) ( C) ( D) ( E)

( A) ( B) ( C) ( D) ( E) d Smsr Fial Exam Worksh x 5x.( NC)If f ( ) d + 7, h 4 f ( ) d is 9x + x 5 6 ( B) ( C) 0 7 ( E) divrg +. (NC) Th ifii sris ak has h parial sum S ( ) for. k Wha is h sum of h sris a? ( B) 0 ( C) ( E) divrgs

More information

Fourier Series: main points

Fourier Series: main points BIOEN 3 Lcur 6 Fourir rasforms Novmbr 9, Fourir Sris: mai pois Ifii sum of sis, cosis, or boh + a a cos( + b si( All frqucis ar igr mulipls of a fudamal frqucy, o F.S. ca rprs ay priodic fucio ha w ca

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c) per I. Le α 7 d β 7. The α d β re he roos o he equio, such h α α, β β, --- α β d αβ. For, α β For, α β α β αβ 66 The seme is rue or,. ssume Cosider, α β d α β y deiiio α α α α β or some posiive ieer.

More information

Poisson Arrival Process

Poisson Arrival Process Poisso Arrival Procss Arrivals occur i) i a mmylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = λδ + ( Δ ) P o P j arrivals durig Δ = o Δ f j = 2,3, o Δ whr lim =. Δ Δ C C 2 C

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

12 th Mathematics Objective Test Solutions

12 th Mathematics Objective Test Solutions Maemaics Objecive Tes Soluios Differeiaio & H.O.D A oes idividual is saisfied wi imself as muc as oer are saisfied wi im. Name: Roll. No. Bac [Moda/Tuesda] Maimum Time: 90 Miues [Eac rig aswer carries

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

EE415/515 Fundamentals of Semiconductor Devices Fall 2012 3 EE4555 Fudmls of Smicoducor vics Fll cur 8: PN ucio iod hr 8 Forwrd & rvrs bis Moriy crrir diffusio Brrir lowrd blcd by iffusio rducd iffusio icrsd mioriy crrir drif rif hcd 3 EE 4555. E. Morris 3 3

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

Signals & Systems - Chapter 3

Signals & Systems - Chapter 3 .EgrCS.cm, i Sigls d Sysms pg 9 Sigls & Sysms - Chpr S. Ciuus-im pridic sigl is rl vlud d hs fudml prid 8. h zr Furir sris cfficis r -, - *. Eprss i h m. cs A φ Slui: 8cs cs 8 8si cs si cs Eulrs Apply

More information

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt

More information

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016 MAT3700/0//06 Tuorial Lr 0//06 Mahmaics III (Egirig) MAT3700 Smsr Dparm of Mahmaical scics This uorial lr coais soluios ad aswrs o assigms. BARCODE CONTENTS Pag SOLUTIONS ASSIGNMENT... 3 SOLUTIONS ASSIGNMENT...

More information

CS 688 Pattern Recognition. Linear Models for Classification

CS 688 Pattern Recognition. Linear Models for Classification //6 S 688 Pr Rcogiio Lir Modls for lssificio Ø Probbilisic griv modls Ø Probbilisic discrimiiv modls Probbilisic Griv Modls Ø W o ur o robbilisic roch o clssificio Ø W ll s ho modls ih lir dcisio boudris

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

LOCAL NEWS. PAVBBS any at this offioe. TAKE NOT IUE. AH accounts due the. firm qf MORRIS A' III HE mutt be paid to

LOCAL NEWS. PAVBBS any at this offioe. TAKE NOT IUE. AH accounts due the. firm qf MORRIS A' III HE mutt be paid to U Q -2 U- VU V G DDY Y 2 (87 U U UD VY D D Y G UY- D * (* ) * * D U D U q F D G** D D * * * G UX UUV ; 5 6 87 V* " * - j ; j $ Q F X * * «* F U 25 ](«* 7» * * 75! j j U8F j» ; F DVG j * * F DY U» *»q*

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

FOURIER ANALYSIS Signals and System Analysis

FOURIER ANALYSIS Signals and System Analysis FOURIER ANALYSIS Isc Nwo Whi ligh cosiss of sv compos J Bpis Josph Fourir Bor: Mrch 768 i Auxrr, Bourgog, Frc Did: 6 My 83 i Pris, Frc Fourir Sris A priodic sigl of priod T sisfis ft f for ll f f for ll

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series I Jorl of Mh Alysis, Vol 4, 2, o 2, 4-47 Approximio of Fcios Blogig o Lipschiz Clss by Triglr Mrix Mhod of Forir Sris Shym Ll Dprm of Mhmics Brs Hid Uivrsiy, Brs, Idi shym _ll@rdiffmilcom Biod Prsd Dhl

More information

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering Lcur No Lcur-6-9 Ar rdig his lsso, you will lr ou Fourir sris xpsio rigoomric d xpoil Propris o Fourir Sris Rspos o lir sysm Normlizd powr i Fourir xpsio Powr spcrl dsiy Ec o rsr ucio o PSD. FOURIER SERIES

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

www.vidrhipu.com TRANSFORMS & PDE MA65 Quio Bk wih Awr UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Oi pri diffri quio imiig rirr co d from z A.U M/Ju Souio: Giv z ----- Diff Pri w.r. d p > - p/ q > q/

More information

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics F.Y. Diplom : Sem. II [CE/CR/CS] Applied Mhemics Prelim Quesio Pper Soluio Q. Aemp y FIVE of he followig : [0] Q. () Defie Eve d odd fucios. [] As.: A fucio f() is sid o e eve fucio if f() f() A fucio

More information

GNSS-Based Orbit Determination for Highly Elliptical Orbit Satellites

GNSS-Based Orbit Determination for Highly Elliptical Orbit Satellites -Bd D f Hghy p Q,*, ug, Ch Rz d Jy u Cg f u gg, g Uvy f u d u, Ch :6--987, -:.q@ud.uw.du. h f uvyg d p If y, Uvy f w uh W, u : h Hghy p H ufu f y/yhu f h dgd hv w ud pg h d hgh ud pg h f f h f. Du h g

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp O hour h by Sf Trpp How o g rich Th Dl! offr you: liflog, vry dy Kr for o-i py ow of oly 5 Kr. d irs r of % bu oly o h oy you hv i.. h oy gv you ius h oy you pid bc for h irs No d o py bc yhig ls! s h

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

HYDROMETRIC NETWORK REQUIREMENTS OKANAGAN BASIN FOR THE. Prepared for. Photo: Belgo Creek at Highway 33

HYDROMETRIC NETWORK REQUIREMENTS OKANAGAN BASIN FOR THE. Prepared for. Photo: Belgo Creek at Highway 33 YD QU F G f : g g 33 b g g G g 8 f g f g Dv, f v b g g G g 8 : b, f v b-b g g, ://.v.gv.b.// f g b f g. 1. 1 2. g.. 4 3. f F. 4. 11 5... 13 6... b b 1... 11 b 2. F.. x.. f f x.. b x... f g f g 1. b g f.

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Heroes. of the New Testament. Creative. Communications. Sample

Heroes. of the New Testament. Creative. Communications. Sample H f h Nw T c My Dd y kw h y h? Y, y. Y h bc h hw Gd d y. Gd cd y h w g. Gd gd. Gd hy. Gd. Gd cd y b h hg. Wh y d hg h gd, hy g, y g h hc f Gd w f y. Af J, h g h h wh wd f-y-d g. Th gh. My w ch d h y wh

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Mathematical Preliminaries for Transforms, Subbands, and Wavelets Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP UNIT # 09 PARABOLA, ELLIPSE & HYPERBOLA PARABOLA EXERCISE - 0 CHECK YOUR GRASP. Hin : Disnce beween direcri nd focus is 5. Given (, be one end of focl chord hen oher end be, lengh of focl chord 6. Focus

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = = L's rvs codol rol whr h v M s rssd rs o h rdo vrl. L { M } rrr v such h { M } Assu. { } { A M} { A { } } M < { } { } A u { } { } { A} { A} ( A) ( A) { A} A A { A } hs llows us o cosdr h cs wh M { } [ (

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition:

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition: Assigm Thomas Aam, Spha Brumm, Haik Lor May 6 h, 3 8 h smsr, 357, 7544, 757 oblm For R b X a raom variabl havig ormal isribuio wih ma µ a variac σ (his is wri as ~ (,) X. by: R a. Is X ) a urhrmor all

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

Let s celebrate! UNIT. 1 Write the town places. 3 Read and match. school. c 1 When s your birthday? Listen, check and practise the dialogues.

Let s celebrate! UNIT. 1 Write the town places. 3 Read and match. school. c 1 When s your birthday? Listen, check and practise the dialogues. UNIT L clb! Sud Bk pg W h w plc. l c h m c u chl g w m m l p p c p k 7 b 8 l y. L, chck d pc h dlgu. Rd d mch. c Wh yu bhdy? Wh d h flm? Wh p wuld yu lk? Hw much h dg? Wuld yu lk g h pk? D yu lk c? 7 Wh

More information

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C)

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C) Nm:... Bch:... TOPIC: II. ( + ) d cos ( ) co( ) n( ) ( ) n (D) non of hs. n sc d sc + sc é ësc sc ù û sc sc é ë ù û (D) non of hs. sc cosc d logn log (n ) co (log ) log log (n ) (D) n (log ). cos log(

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

Mathematics Paper- II

Mathematics Paper- II R Prerna Tower, Road No -, Conracors Area, Bisupur, Jamsedpur - 8, Tel - (65789, www.prernaclasses.com Maemaics Paper- II Jee Advance PART III - MATHEMATICS SECTION - : (One or more opions correc Type

More information

S.E. Sem. III [EXTC] Applied Mathematics - III

S.E. Sem. III [EXTC] Applied Mathematics - III S.E. Sem. III [EXTC] Applied Mhemic - III Time : 3 Hr.] Prelim Pper Soluio [Mrk : 8 Q.() Fid Lplce rform of e 3 co. [5] A.: L{co }, L{ co } d ( ) d () L{ co } y F.S.T. 3 ( 3) Le co 3 Q.() Prove h : f (

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP EXERISE - 0 HEK YOUR GRASP 3. ( + Fo sum of coefficiets put ( + 4 ( + Fo sum of coefficiets put ; ( + ( 4. Give epessio c e ewitte s 7 4 7 7 3 7 7 ( 4 3( 4... 7( 4 7 7 7 3 ( 4... 7( 4 Lst tem ecomes (4

More information

Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Analyticity and Operation Transform on Generalized Fractional Hartley Transform I Jourl of Mh Alyi, Vol, 008, o 0, 977-986 Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi-44460 (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi-444604

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

From Fourier Series towards Fourier Transform

From Fourier Series towards Fourier Transform From Fourir Sris owards Fourir rasform D D d D, d wh lim Dparm of Elcrical ad Compur Eiri D, d wh lim L s Cosidr a fucio G d W ca xprss D i rms of Gw D G Dparm of Elcrical ad Compur Eiri D G G 3 Dparm

More information

m H = ± 0.24GeV

m H = ± 0.24GeV m H = 125.09 ± 0.24GeV Y B n B s =(8.59 ± 0.11) 10 11 n B = n b n b( b) : n b s : W = g 2 2/4 (s) B ( W T ) 4 =0.1 1.0 (b) B T 4 e E sph/t E sph : v(t ) v v C T T C v C T C V e (T ) T>T C T = T C T

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

Linear System Review. Linear System Review. Descriptions of Linear Systems: 2008 Spring ME854 - GGZ Page 1

Linear System Review. Linear System Review. Descriptions of Linear Systems: 2008 Spring ME854 - GGZ Page 1 8 Sprg ME854 - Z Pg r Sym Rvw r Sym Rvw r Sym Rvw crpo of r Sym: p m R y R R y FT : & U Y Trfr Fco : y or : & : d y d r Sym Rvw orollbly d Obrvbly: fo 3.: FT dymc ym or h pr d o b corollbl f y l > d fl

More information

Functional Analysis HW 2

Functional Analysis HW 2 Brandon Behring Functional Analysis HW 2 Exercise 2.6 The space C[a, b] equipped with the L norm defined by f = b a f(x) dx is incomplete. If f n f with respect to the sup-norm then f n f with respect

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6 Faculty of Natural and Agricultural Sciences Chemistry Department Semester Test 1 Analytical Chemistry CMY 283 Date: 5 September 2016 Lecturers : Prof P Forbes, Dr Laurens, Mr SA Nsibande Time: 120 min

More information

Indeed, the family is still orthogonal if we consider a complex valued inner product ( or an inner product on complex vector space)

Indeed, the family is still orthogonal if we consider a complex valued inner product ( or an inner product on complex vector space) Fourier series of complex valued functions Suppose now f is a piecewise continuous complex valued function on [, π], that is f(x) = u(x)+iv(x) such that both u and v are real valued piecewise continuous

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

For more important questions visit :

For more important questions visit : For mor important qustions visit : www4onocom CHAPTER 5 CONTINUITY AND DIFFERENTIATION POINTS TO REMEMBER A function f() is said to b continuous at = c iff lim f f c c i, lim f lim f f c c c f() is continuous

More information

Chemistry 431 Practice Final Exam Fall Hours

Chemistry 431 Practice Final Exam Fall Hours Chemistry 431 Practice Final Exam Fall 2018 3 Hours R =8.3144 J mol 1 K 1 R=.0821 L atm mol 1 K 1 R=.08314 L bar mol 1 K 1 k=1.381 10 23 J molecule 1 K 1 h=6.626 10 34 Js N A = 6.022 10 23 molecules mol

More information

Creative Communications Sample

Creative Communications Sample P f L D f h Scd S C Cc S j wk ASH WEDNESDAY L: P 136 G hk h Ld, f h gd, f h df d f. PSALM 136:1 L. I wh Ah Wddy b? Wh b dy fc h g gf f g h gf f Gd w S, J, b S f. Ech dy L, w x dff, cdg h h f h w fc d fc

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information