Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Size: px
Start display at page:

Download "Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems"

Transcription

1 Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi A co B in for, wih A an B bing conan To calcula hir valu, w ubiu h iniial coniion an in h abov quaion Th ruling imulanou quaion ar b A A B ha ha h oluion, A an B Th zro-inpu rpon i hrfor givn b zi Bcau of h zro iniial coniion, h zro-inpu rpon i alo zro Zro-a rpon of h m: To calcula h zro-a rpon of h m, h iniial coniion ar aum o b zro Hnc, h zro a rpon z can b calcula b olving h iffrnial quaion 8 x x wih iniial coniion, an, an inpu x xpu Th homognou oluion of m i ha h am form a h zro-inpu rpon an i givn b h z C co C in for, wih C an C bing conan Th paricular oluion for inpu x xpu i of h form p z K u Subiuing h paricular oluion in h iffrnial quaion for m i an olving h ruling quaion giv K /8 Th zro-a rpon of h m i, hrfor, givn b z C co C in u 8

2 Soluion o Aignmn To compu h valu of conan C an C, w u h iniial coniion, an aum for h zro-a rpon Subiuing h iniial coniion in z la o h following imulanou quaion c C C C 8 wih oluion C /8 an C /8 Th zro-a oluion i givn b z co in u 8 Ovrall rpon of h m: Th ovrall rpon of h m i obain b umming up h zro-inpu an zro-a rpon, an i givn b co in u 8 Sa a rpon of h m: Th a a rpon of h m i obain b appling h limi,, o an i givn b lim co in u 8 iii a x wih x! " co in # $ u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m iii i, which ha roo a, Th zro-inpu rpon i givn b zi A for, wih A an B bing conan To calcula hir valu, w ubiu h iniial coniion an in h abov quaion Th ruling imulanou quaion ar A B A ha ha a oluion, A an B Th zro-inpu rpon i hrfor givn b B b zi u Zro-a rpon of h m: To calcula h zro-a rpon of h m, h iniial coniion ar aum o b zro Hnc, h zro a rpon z can b calcula b olving h iffrnial quaion x wih iniial coniion, an, an inpu x [co in]u Th homognou oluion of m iii ha h am form a h zro-inpu rpon an i givn b h z C C

3 Soluion for, wih C an C bing conan Th paricular oluion for inpu x [co in]u i of h form z p K co K in K co K in Subiuing h paricular oluion in h iffrnial quaion for m iii an olving h ruling quaion giv K co K in K co K in K in K co K in K co K co K in K co K in co in Collcing h cofficin of h coin an in rm, w g K K K co K K K in K K K co K K K in which giv K, K 5, K 6, an K 8 Th zro-a rpon of h m i c C C 5in 6co 8in u z To compu h valu of conan C an C, w u h iniial coniion, an Subiuing h iniial coniion in z la o h following imulanou quaion C C C wih oluion C 6 an C Th zro-a oluion i givn b 6 5in 6co 8in u z Ovrall rpon of h m: Th ovrall rpon of h m i obain b umming up h zro-inpu an zro-a rpon, an i givn b or, u 6 5in 6co 8in u or, 6 9 5in 6co 8in u Sa a rpon of h m: Th a a rpon of h m i obain b appling h limi,, o an i givn b 9 5in 6co 8in u lim 6 or, 5in 6co 8in u v a x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m v i, which ha roo a ±j, ±j Th zro-inpu rpon i givn b zi j j j j A B C D,

4 Soluion o Aignmn for, wih A an B bing conan To calcula hir valu, w ubiu h iniial coniion in h abov quaion Th ruling imulanou quaion ar A ja A ja B jb B C jc C jc D jd D ha ha a oluion, A j5 Β 5, C j5 an D 5 Th zro-inpu rpon i b which ruc o zi j j j j j5 5 j5 5 u, zi 5in 5 co u Zro-a rpon of h m: To calcula h zro-a rpon of h m, h iniial coniion ar aum o b zro Hnc, h zro a rpon z can b calcula b olving h iffrnial quaion x wih all iniial coniion o an inpu x u Th homognou oluion of m v ha h am form a i zro-inpu rpon an i givn b h z j j j C C C C whr C i ar conan Th paricular oluion for inpu x u i of h form p z Ku Subiuing h paricular oluion in h iffrnial quaion for m v an olving h ruling quaion giv K, or, K Th zro-a rpon of h m i givn b j j j j j z C C C C, for To compu h valu of conan C i, w u zro iniial coniion Subiuing h iniial coniion in z la o h following imulanou quaion A ja A ja B jb B C jc C jc D jd D wih oluion C, C j5, C, an C j5 Th zro-a oluion i givn b c which ruc o z j j j j j5 j5 u, zi co in u Ovrall rpon of h m: Th ovrall rpon of h m i obain b umming up h zro-inpu an zro-a rpon, an i givn b

5 Soluion 5 or, 5in 5 co u co in u or, 5in co in 5 co u Sa a rpon of h m: Th a a rpon of h m i obain b appling h limi,, o an i givn b Problm 5 i co in 5 co u lim 5in Th oupu i givn b Rcall ha Thrfor, h oupu i givn b u u u u u u if if > if u r if < Th aformnion convoluion can alo b compu graphicall iii Th oupu i givn b [ u u u ] [ u u ] Uing h propri of h convoluion ingral, h oupu i xpr a [ u u ] [ u u ] [ u u ] [ u u ] [ u u ] [ u u ] Ba on h rul of par i, i, u * u r, h ovrall oupu i givn b r r r r r r vi Coniring h wo ca < an paral Ca I < : which ruc o or, Ca II : 5 5 5

6 6 Soluion o Aignmn which ruc o or, 5 5 Hnc, h ovrall xprion for i givn b Problm < iii Uing h graphical approach, h convoluion of x wih w i hown in Fig S6, whr w conir ix iffrn ca for iffrn valu of Ca I < : Sinc hr i no ovrlap, Ca II < : Ca III < : w x x a Wavform for z b Wavform for x c Wavform for x w x w x w x Ovrlap bw w an x for < Ovrlap bw w an x for < f Ovrlap bw w an x for < w x w x w x g Ovrlap bw w an x for < h Ovrlap bw w an x for < i Ovrlap bw w an x for >

7 Soluion 6 x*w iii j Convoluion oupu Fig S6: Convoluion of x wih w in Problm 6iii Ca IV < : Ca V < : Ca VI > : Sinc hr i no ovrlap, 9 5 Combining all h ca, h rul of h convoluion x w i givn b Th oupu i plo in Fig S6j 5 9 < < < < lwhr vii Uing h graphical approach, h convoluion of v wih z i hown in Fig 6, whr w conir ix iffrn ca for iffrn valu of v z z a Wavform for v b Wavform for z c Wavform for z

8 8 Soluion o Aignmn v z v z v z Ovrlap bw v an z for < Ovrlap bw v an z for < f Ovrlap bw v an z for < v z v z v z g Ovrlap bw v an z for < h Ovrlap bw v an z for < i Ovrlap bw v an z for > v*z j Convoluion oupu Fig S6: Convoluion of v wih z in Problm 6vii Ca I < : Sinc hr i no ovrlap, Ca II < : [ ] [ ] [ ]

9 Soluion 9 Ca III < < : [ ] [ ] [ ] [ ] Ca IV < < : [ ] [ ] [ ] [ ] Ca V < : [ ] [ ] [ ] Ca VI > : Sinc hr i no ovrlap, Combining all h ca, h rul of h convoluion v z i givn b < < < < lwhr Th oupu i hown in Fig S6j a h n of h oluion of hi problm ix Uing h graphical approach, h convoluion of v wih w i hown in Fig 69, whr w conir ix iffrn ca for iffrn valu of

10 Soluion o Aignmn v w w a Wavform for v b Wavform for w c Wavform for w v w v w v w Ovrlap bw v an w for < Ovrlap bw v an w for < f Ovrlap bw v an w for < v w v w v w g Ovrlap bw v an w for < h Ovrlap bw v an w for < i Ovrlap bw v an w for > 9 w*w j Convoluion oupu 9 Fig S69: Convoluion of v wih w in Problm 6ix Sinc w, hrfor, h xprion for w i w Ca I < : Sinc hr i no ovrlap, 9 if < if >

11 Soluion Ca II < : 5 9 Ca III < < : [ ] [ ] [ ] [ ] [ ] [ ] 9 Ca IV < < : [ ] [ ] [ ] [ ] [ ] [ ] 9 Ca V < : 5 9 Ca VI > : Sinc hr i no ovrlap, 9 Combining all h ca, h rul of h convoluion 9 w v i givn b

12 Soluion o Aignmn 9 Th oupu i 9 hown in Fig S69j 5 5 < < < < lwhr Problm iii Sm h i NOT mmorl inc h for Sm h i caual inc h for < Sm h i BIBO abl inc in in in h π u π π < vii Sm h i NOT mmorl inc h for Sm h i caual inc h for < Sm h i NOT BIBO abl inc h co5 Conir h boun inpu ignal co5 If hi ignal i appli o h m, h oupu can b calcula a: x h co5 5 co5 u co55 co5 Th oupu a i givn b, co { fini valu co 5 co5 co 5 co I i obrv ha h oupu bcom unboun a vn if h inpu i alwa boun Thi prov ha h m i no BIBO abl viii Sm h8 i NOT mmorl inc h8 for Sm h8 i NOT caual inc h8 for < Sm h8 i BIBO abl inc

13 Soluion ln95 ln95 h ln95 [ ] 9 < ln95 ln95

14 Soluion o Aignmn Soluion o Problm of Chapr 6 Laplac Tranform Problm 6 b B finiion X x Ingral I ruc o I I [ ] provi R{ } > ROC R :R{ } < II whil ingral II ruc o II [ ] provi R{ } > ROC R :R{ } > Th Laplac ranform i hrfor givn b 6 X I II wih ROC : R R I R or R : < R{} < 9 B finiion X x co9 u co9 Th abov xprion ruc o [ co9 9 in9 ] X co9 9 or, X 9 9 [ ] provi R{ } > R{ } > f W riv h Laplac ranform for wo ca: an Ca I: B finiion 5 X x

15 Soluion 5 Ca II: B finiion X x Ingral I i givn b I I whil Ingral II i givn b II Th Laplac ranform i hrfor givn b X ROC: Enir -plan II No ha h ca can alo b riv from h ohr rul b appling h limi,, an h L Hopial rul Problm 6 b Uing parial fracion xpanion an aociaing h ROC o iniviual rm, giv X 56 A B ROC:R{}< ROC:R{}< whr conan A, an B wr compu in par a a A, an B Taking h invr ranform of X, giv x u No ha h am raional fracion for X giv iffrn im omain rprnaion if h aocia ROC i chang X 56 A B C ROC:R{}< ROC:R{}< ROC:R{}< f whr conan A, B, an C wr compu in par c a A, B 6, an C Taking h invr ranform of X, giv x 6 u Uing parial fracion xpanion an aociaing h ROC o iniviual rm, giv

16 6 Soluion o Aignmn X whr B C an D A B C R{ } > R{ } > R{ } > [ ] [ ] [ ] [ ] [ ] [ ] To valua A, xpan X a D R{ } > A B C D an compar h cofficin of W g A C D which ha a oluion A 5/ Th Laplac ranform ma b xpr a X 5 R{ } > R{ } > R{ } > R{ } > Taking h invr ranform of X, giv g x 5 u u u u Uing parial fracion xpanion an aociaing h ROC o iniviual rm, giv X whr C 6 D E A B C 6 ROC:R{ } < ROC:R{ } < [ ] [ ] 6 6 To valua A, B, an C xpan X a ROC:R{ } < ROC:R{ } < A 6 B 6 C 6 D E an compar h cofficin of,,, an W g A D A B D E A B C D E A 6B D E cofficin of cofficin of, or, cofficin of cofficin of A A D B D E A B D E A 6B D E which ha a oluion of A 6, B 6, D 6, an E 8 Taking h invr ranform of X, giv

17 Soluion x 6 u 6 u 6 Problm 6 a Calculaing h Laplac ranform of boh i, w g u 6co u 5in u " Y % " % $ ' # $ &' $ Y ' Y # $ &' which ruc o Y or, Y Calculaing h invr Laplac ranform, w g u u Calculaing h Laplac ranform of boh i, w g " % " % $ Y ' # $ &' $ Y ' # $ &' Y, which ruc o Y, or, A B C D E Y, whr A [ ] [ ] Equaing numraor of Y on boh i an ing A, w g B C D E B C B D C E Comparing h cofficin of polnomial of iffrn orr w g Cofficin of : B B Cofficin of : C Cofficin of : B D D D Cofficin of : C E E Th parial fracion xpanion of Y i givn b Y Th invr ranform i hrfor givn b [ ] co 5in u whr w hav u h following ranform pair

18 8 Soluion o Aignmn which i prov in Problm 6b Problm 6 Soluion: a L ω in ω u ω Th Laplac ranform of h inpu an oupu ignal ar givn b an Y X Diviing Y wih X, h ranfr funcion i givn b Y X H Th impul rpon i obain b aking h parial fracion xpanion of H a follow H Taking h invr Laplac ranform, h impul rpon i givn b h δ u u In orr o calcula h inpu-oupu rlaionhip in h form of a iffrnial quaion, w rprn h ranfr funcion a Y X H Cro mulipling, w g Y X which can b rprn a Y 8Y X X X Taking h invr Laplac ranform an auming zro iniial coniion, h iffrnial quaion rprning h m i givn b c x x 8 x Th Laplac ranform of h inpu an oupu ignal ar givn b an Y X Diviing Y wih X, h ranfr funcion i givn b Y X H Th impul rpon i obain b aking h invr Laplac ranform Th impul rpon i givn b h u [ u ] In orr o calcula h inpu-oupu rlaionhip in h form of a iffrnial quaion, w rprn h ranfr funcion a

19 Soluion 9 H Y X Cro mulipling, w g Y Y X X 8X Taking h invr Laplac ranform, h inpu-oupu rlaionhip of h m i givn b x x 8x No ha hr i no ovrlap bwn h ROC of h wo rm xpu an xpu, hrfor, h Laplac ranform for o no xi Problm 65 j j a H c Two zro a j, j Two pol a, Bcau boh pol ar in h lf han i of h -plan, h m i alwa BIBO abl H / On zro a / Two pol a, 6 Bcau boh pol ar in h lf i of h -plan, h m i alwa BIBO abl H Th m o no hav an zro On pol a Thr i onl on pol, which i loca on h imaginar axi Thrfor, h m i a marginall abl m

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

Why Laplace transforms?

Why Laplace transforms? MAE4 Linar ircui Why Lalac ranform? Firordr R cc v v v KVL S R inananou for ach Subiu lmn rlaion v S Ordinary diffrnial quaion in rm of caacior volag Lalac ranform Solv Invr LT V u, v Ri, i A R V A _ v

More information

CONTROL SYSTEMS. Chapter 10 : State Space Response

CONTROL SYSTEMS. Chapter 10 : State Space Response CONTROL SYSTEMS Chaper : Sae Space Repone GATE Objecive & Numerical Type Soluion Queion 5 [GATE EE 99 IIT-Bombay : Mark] Conider a econd order yem whoe ae pace repreenaion i of he form A Bu. If () (),

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

Chapter 9 - The Laplace Transform

Chapter 9 - The Laplace Transform Chaper 9 - The Laplace Tranform Selece Soluion. Skech he pole-zero plo an region of convergence (if i exi) for hee ignal. ω [] () 8 (a) x e u = 8 ROC σ ( ) 3 (b) x e co π u ω [] ( ) () (c) x e u e u ROC

More information

Laplace Transforms recap for ccts

Laplace Transforms recap for ccts Lalac Tranform rca for cc Wha h big ida?. Loo a iniial condiion ron of cc du o caacior volag and inducor currn a im Mh or nodal analyi wih -domain imdanc rianc or admianc conducanc Soluion of ODE drivn

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

Heat flow in composite rods an old problem reconsidered

Heat flow in composite rods an old problem reconsidered Ha flow in copoi ro an ol probl rconir. Kranjc a Dparn of Phyic an chnology Faculy of Eucaion Univriy of jubljana Karljva ploca 6 jubljana Slovnia an J. Prnlj Faculy of Civil an Goic Enginring Univriy

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı CONTROL SYSTEMS Chaper Mahemaical Modelling of Phyical Syem-Laplace Tranform Prof.Dr. Faih Mehme Boalı Definiion Tranform -- a mahemaical converion from one way of hinking o anoher o make a problem eaier

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13.

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13. Chaper 3 The Laplace Tranform in Circui Analyi 3. Circui Elemen in he Domain 3.-3 Circui Analyi in he Domain 3.4-5 The Tranfer Funcion and Naural Repone 3.6 The Tranfer Funcion and he Convoluion Inegral

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

Chapter 9 The Laplace Transform

Chapter 9 The Laplace Transform Chapr 9 Th Laplac Tranform 熊红凯特聘教授 hp://min.ju.du.cn 电子工程系上海交通大学 7 Topic 9. DEFINATION OF THE LAPLACE TRANSFORM 9. THE REGION OF CONVERGENCE FOR LAPLACE THANSFORMS 9. PROPERTIES OF THE LAPLACE TRANSFORM

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

ECE Connections: What do Roots of Unity have to do with OP-AMPs? Louis Scharf, Colorado State University PART 1: Why Complex?

ECE Connections: What do Roots of Unity have to do with OP-AMPs? Louis Scharf, Colorado State University PART 1: Why Complex? ECE Conncion: Wha do Roo of Uni hav o do wih OP-AMP? Loui Scharf, Colorado Sa Univri PART : Wh Compl?. Curioi, M favori curioi i : π π ( ) 0.07... π π ECE Conncion: Colorado Sa Univri Ocobr 007 . Quion,

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

EE202 Circuit Theory II

EE202 Circuit Theory II EE202 Circui Theory II 2017-2018, Spring Dr. Yılmaz KALKAN I. Inroducion & eview of Fir Order Circui (Chaper 7 of Nilon - 3 Hr. Inroducion, C and L Circui, Naural and Sep epone of Serie and Parallel L/C

More information

Instrumentation & Process Control

Instrumentation & Process Control Chemical Engineering (GTE & PSU) Poal Correpondence GTE & Public Secor Inrumenaion & Proce Conrol To Buy Poal Correpondence Package call a -999657855 Poal Coure ( GTE & PSU) 5 ENGINEERS INSTITUTE OF INDI.

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform Boy/DiPrima/Mad h d, Ch 6.: Diniion o apla Tranorm Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Many praial nginring

More information

Exponential Sawtooth

Exponential Sawtooth ECPE 36 HOMEWORK 3: PROPERTIES OF THE FOURIER TRANSFORM SOLUTION. Exponenial Sawooh: The eaie way o do hi problem i o look a he Fourier ranform of a ingle exponenial funcion, () = exp( )u(). From he able

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

APPLICATION OF FINITE INTEGRAL TRANSFORMATION METHOD TO THE SOLUTION OF MIXED PROBLEMS FOR PARABOLIC EQUATIONS WITH A CONTROL

APPLICATION OF FINITE INTEGRAL TRANSFORMATION METHOD TO THE SOLUTION OF MIXED PROBLEMS FOR PARABOLIC EQUATIONS WITH A CONTROL PROCEEDINGS OF IAM V7 N 8 pp94-5 APPLICATION OF FINITE INTEGRAL TRANSFORMATION METHOD TO THE SOLUTION OF MIXED PROBLEMS FOR PARABOLIC EQUATIONS WITH A CONTROL * Elmaga A Gaymov Baku Sa Univriy Az 4 Baku

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions EE 35 Signals an Sysms Spring 5 Sampl Exam # - Soluions. For h following signal x( cos( sin(3 - cos(5 - T, /T x( j j 3 j 3 j j 5 j 5 j a -, a a -, a a - ½, a 3 /j-j -j/, a -3 -/jj j/, a 5 -½, a -5 -½,

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition. CHAPTER 8 Forced Equaion and Syem 8 The aplace Tranform and I Invere Tranform from he Definiion 5 5 = b b {} 5 = 5e d = lim5 e = ( ) b {} = e d = lim e + e d b = (inegraion by par) = = = = b b ( ) ( )

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

s-domain Circuit Analysis

s-domain Circuit Analysis Domain ircui Analyi Operae direcly in he domain wih capacior, inducor and reior Key feaure lineariy i preerved c decribed by ODE and heir I Order equal number of plu number of Elemenbyelemen and ource

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Veer Surendra Sai University of Technology, Burla. S u b j e c t : S i g n a l s a n d S y s t e m s - I S u b j e c t c o d e : B E E

Veer Surendra Sai University of Technology, Burla. S u b j e c t : S i g n a l s a n d S y s t e m s - I S u b j e c t c o d e : B E E Vr Surndra Sai Univriy of Tchnology, Burla Dparmn o f E l c r i c a l & E l c r o n i c E n g g S u b j c : S i g n a l a n d S y m - I S u b j c c o d : B E E - 6 0 5 B r a n c h m r : E E E 5 h m SYLLABUS

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj Guss.? ourir Analysis an Synhsis Tool Qusion??? niksh.473@lpu.co.in Digial Signal Procssing School of Elcronics an Communicaion Lovly Profssional Univrsiy Wha o you man by Transform? Wha is /Transform?

More information

Frequency Response. We now know how to analyze and design ccts via s- domain methods which yield dynamical information

Frequency Response. We now know how to analyze and design ccts via s- domain methods which yield dynamical information Frequency Repone We now now how o analyze and deign cc via - domain mehod which yield dynamical informaion Zero-ae repone Zero-inpu repone Naural repone Forced repone The repone are decribed by he exponenial

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

More on ODEs by Laplace Transforms October 30, 2017

More on ODEs by Laplace Transforms October 30, 2017 More on OE b Laplace Tranfor Ocober, 7 More on Ordinar ifferenial Equaion wih Laplace Tranfor Larr areo Mechanical Engineering 5 Seinar in Engineering nali Ocober, 7 Ouline Review la cla efiniion of Laplace

More information

AN ANALYTICAL METHOD OF SOLUTION FOR SYSTEMS OF BOOLEAN EQUATIONS

AN ANALYTICAL METHOD OF SOLUTION FOR SYSTEMS OF BOOLEAN EQUATIONS CHAPTER 5 AN ANALYTICAL METHOD OF SOLUTION FOR SYSTEMS OF BOOLEAN EQUATIONS 51 APPLICATIONS OF DE MORGAN S LAWS A we have een in Secion 44 of Chaer 4, any Boolean Equaion of ye (1), (2) or (3) could be

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

THE LAPLACE TRANSFORM

THE LAPLACE TRANSFORM THE LAPLACE TRANSFORM LEARNING GOALS Diniion Th ranorm map a ncion o im ino a ncion o a complx variabl Two imporan inglariy ncion Th ni p and h ni impl Tranorm pair Baic abl wih commonly d ranorm Propri

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

Serial : 4LS1_A_EC_Signal & Systems_230918

Serial : 4LS1_A_EC_Signal & Systems_230918 Serial : LS_A_EC_Signal & Syem_8 CLASS TEST (GATE) Delhi oida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubanewar Kolkaa Pana Web: E-mail: info@madeeay.in Ph: -56 CLASS TEST 8- ELECTROICS EGIEERIG Subjec

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

2.22 Process Gains, Time Lags, Reaction Curves

2.22 Process Gains, Time Lags, Reaction Curves . Proc Gain, Tim Lag, Racion Curv P. S. SCHERMANN (995) W. GARCÍA-GABÍN (5) INTRODUCTION An unraning of a proc can b obain by vloping a horical proc mol uing nrgy balanc, ma balanc, an chmical an phyical

More information

EECE.3620 Signal and System I

EECE.3620 Signal and System I EECE.360 Signal and Sysem I Hengyong Yu, PhD Associae Professor Deparmen of Elecrical and Compuer Engineering Universiy of Massachuses owell EECE.360 Signal and Sysem I Ch.9.4. Geomeric Evaluaion of he

More information

6.003 Homework #8 Solutions

6.003 Homework #8 Solutions 6.003 Homework #8 Soluions Problems. Fourier Series Deermine he Fourier series coefficiens a k for x () shown below. x ()= x ( + 0) 0 a 0 = 0 a k = e /0 sin(/0) for k 0 a k = π x()e k d = 0 0 π e 0 k d

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Design and Analysis of Algorithms (Autumn 2017)

Design and Analysis of Algorithms (Autumn 2017) Din an Analyi o Alorim (Auumn 2017) Exri 3 Soluion 1. Sor pa Ain om poiiv an naiv o o ar o rap own low, o a Bllman-For in a or pa. Simula ir alorim a ru prolm o a layr DAG ( li), or on a an riv rom rurrn.

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

Chapter 2 The Derivative Business Calculus 99

Chapter 2 The Derivative Business Calculus 99 Chapr Th Drivaiv Businss Calculus 99 Scion 5: Drivaivs of Formulas In his scion, w ll g h rivaiv ruls ha will l us fin formulas for rivaivs whn our funcion coms o us as a formula. This is a vry algbraic

More information

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1 8. a For ep repone, inpu i u, U Y a U α α Y a α α Taking invere Laplae ranform a α e e / α / α A α 0 a δ 0 e / α a δ deal repone, α d Y i Gi U i δ Hene a α 0 a i For ramp repone, inpu i u, U Soluion anual

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

CHAPTER 3 SIGNALS & SYSTEMS. z -transform in the z -plane will be (A) 1 (B) 1 (D) (C) . The unilateral Laplace transform of tf() (A) s (B) + + (D) (C)

CHAPTER 3 SIGNALS & SYSTEMS. z -transform in the z -plane will be (A) 1 (B) 1 (D) (C) . The unilateral Laplace transform of tf() (A) s (B) + + (D) (C) CHAPER SIGNALS & SYSEMS YEAR ONE MARK n n MCQ. If xn [ ] (/) (/) un [ ], hen he region of convergence (ROC) of i z ranform in he z plane will be (A) < z < (B) < z < (C) < z < (D) < z MCQ. he unilaeral

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Signal & Syem Prof. ark Fowler oe Se #34 C-T Tranfer Funcion and Frequency Repone /4 Finding he Tranfer Funcion from Differenial Eq. Recall: we found a DT yem Tranfer Funcion Hz y aking he ZT of

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Laplace Transform and its Relation to Fourier Transform

Laplace Transform and its Relation to Fourier Transform Chaper 6 Laplace Transform and is Relaion o Fourier Transform (A Brief Summary) Gis of he Maer 2 Domains of Represenaion Represenaion of signals and sysems Time Domain Coninuous Discree Time Time () [n]

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information