13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13.

Size: px
Start display at page:

Download "13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13."

Transcription

1 Chaper 3 The Laplace Tranform in Circui Analyi 3. Circui Elemen in he Domain 3.-3 Circui Analyi in he Domain The Tranfer Funcion and Naural Repone 3.6 The Tranfer Funcion and he Convoluion Inegral 3.7 The Tranfer Funcion and he Seady- Sae Sinuoidal Repone 3.8 The Impule Funcion in Circui Analyi

2 Key poin How o repreen he iniial energy of L, C in he -domain? Why he funcional form of naural and eadyae repone are deermined by he pole of ranfer funcion H and exciaion ource X, repecively? Why he oupu of an LTI circui i he convoluion of he inpu and impule repone? How o inerpre he memory of a circui by convoluion?

3 Secion 3. Circui Elemen in he Domain. Equivalen elemen of R, L, C 3

4 4 A reior in he domain iv-relaion in he ime domain:. i R v By operaional Laplace ranform:., I R i L R i R L v L Phyical uni: in vol-econd, I in ampere-econd.

5 5 An inducor in he domain. i d d L v., 0 LI 0 I L I I L i L L i L L v L iniial curren iv-relaion in he ime domain: By operaional Laplace ranform:

6 Equivalen circui of an inducor Serie equivalen: Parallel equivalen: Thévenin Noron 6

7 A capacior in he domain iv-relaion in he ime domain: d i C v. d By operaional Laplace ranform: LC v C Lv, I C C. L i 0 C 0 iniial volage 7

8 Equivalen circui of a capacior Parallel equivalen: Serie equivalen: Noron Thévenin 8

9 Secion 3., 3.3 Circui Analyi in he Domain. Procedure. Naure repone of RC circui 3. Sep repone of RLC circui 4. Sinuoidal ource 5. MCM 6. Superpoiion 9

10 How o analyze a circui in he -domain?. Replacing each circui elemen wih i -domain equivalen. The iniial energy in L or C i aken ino accoun by adding independen ource in erie or parallel wih he elemen impedance.. Wriing & olving algebraic equaion by he ame circui analyi echnique developed for reiive nework. 3. Obaining he -domain oluion by invere Laplace ranform. 0

11 Why o operae in he -domain? I i convenien in olving ranien repone of linear, lumped parameer circui, for he iniial condiion have been incorporaed ino he equivalen circui. I i alo ueful for circui wih muliple eenial node and mehe, for he imulaneou ODE have been reduced o imulaneou algebraic equaion. I can correcly predic he impulive repone, which i more difficul in he -domain Sec. 3.8.

12 Naure repone of an RC circui Q: i, v=? Replacing he charged capacior by a Thévenin equivalen circui in he -domain. KL, algebraic equaion & oluion of I: 0 I C C0 0 R IR, I RC RC.

13 3 Naure repone of an RC circui The -domain oluion i obained by invere Laplace ranform: u e R L e R RC R L i RC RC i0 + = 0 /R, which i rue for v C 0 + = v C 0 - = 0. i = 0,which i rue for capacior become open no loop curren in eady ae.

14 Naure repone of an RC circui 3 To direcly olve v, replacing he charged capacior by a Noron equivalen in he -domain. Solve, perform invere Laplace ranform: C C 0,. R RC 0 v L RC RC e u Ri

15 Sep repone of a parallel RLC Q: i L =? v C 0 - = 0 i L 0 - = 0 5

16 Sep repone of a parallel RLC KCL, algebraic equaion & oluion of : I dc C R L Idc C, RC LC. Solve I L : I L L I dc RC LC LC 6

17 Sep repone of a parallel RLC 3 Perform parial fracion expanion and invere Laplace ranform: I L ma. 3k j4k 3k j4k i L 4u 4 40e 0e 3k j7 e 3k e co 4k j4k 7 u 3k 4 e 4co4k 3in4k u ma. c. c. u ma 7

18 8 Tranien repone due o a inuoidal ource For a parallel RLC circui, replace he curren ource by a inuoidal one: The algebraic equaion change:.,, LC RC LC I L I LC RC C I I I L R C m L m m g. co u I i m g

19 Tranien repone due o a inuoidal ource Perform parial fracion expanion and invere Laplace ranform: I L i L K j Driving frequency * K j K j Neper frequency * K K K e co K. j Damped frequency K co u. Seady-ae repone ource Naural repone RLC parameer 9

20 Sep repone of a -meh circui Q: i, i =? i 0 - = 0 i 0 - = 0 0

21 Sep repone of a -meh circui MCM, algebraic equaion & oluion: I I I I I I I I I I

22 Sep repone of a -meh circui 3 Perform invere Laplace ranform: 336 i 4 // e e u 5 A. 4 i e.4e u 5 7 A.

23 Ue of uperpoiion Given independen ource v g, i g and iniially charged C, L, v =? 3

24 4 Ue of uperpoiion: g ac alone 0., 0. 0, C R C R C C L R R C C L R g g

25 5 Ue of uperpoiion 3. 0 R Y Y Y Y C R C C C L R g. g Y Y Y R Y For convenience, define admiance marix:

26 Ue of uperpoiion: I g ac alone 4 Y Y Y Y Same marix 0 I g, Y Y Y Y Same denominaor I g. 6

27 Ue of uperpoiion: Energized L ac alone 5 Y Y Y Y 0, Y Y Y Y. Same marix Same denominaor 7

28 Ue of uperpoiion: Energized C ac alone 6 Y Y "" Y Y "" C, "" C Y Y C. Y Y Y "" The oal volage i:. 8

29 Secion 3.4, 3.5 The Tranfer Funcion and Naural Repone 9

30 Wha i he ranfer funcion of a circui? The raio of a circui oupu o i inpu in he -domain: H Y X A ingle circui may have many ranfer funcion, each correpond o ome pecific choice of inpu and oupu. 30

31 Pole and zero of ranfer funcion For linear and lumped-parameer circui, H i alway a raional funcion of. Pole and zero alway appear in complex conjugae pair. The pole mu lie in he lef half of he -plane if bounded inpu lead o bounded oupu. Im Re 3

32 Example: Serie RLC circui inpu If he oupu i he loop curren I: I C H R L C LC RC g If he oupu i he capacior volage : C H R L C LC g RC.. 3

33 How do pole, zero influence he oluion? Since Y=H X, he parial fracion expanion of he oupu Y yield a erm K/-a for each pole =a of H or X. The funcional form of he ranien naural and eady-ae repone y r and y are deermined by he pole of H and X, repecively. The parial fracion coefficien of Y r and Y are deermined by boh H and X. 33

34 Example 3.: Linear ramp exciaion Q: v o =? 50u 50/ 34

35 Example 3. Only one eenial node, ue NM: o 000 g o o 6 0, H o g H ha complex conjugae pole: 3000 j4000. g = 50/ ha repeaed real pole: = 0. 35

36 Example 3. 3 The oal repone in he -domain i: o H g The oal repone in he -domain: expanion coefficien depend on H & g j j Y r 4 0 Y pole of H: -3k j4k pole of g : 0 4. v o y r y e 3,000 co4, u u. 36

37 Example 3. 4 Seady ae componen y Toal repone = 0.33 m, impac of y r 37

38 Secion 3.6 The Tranfer Funcion and he Convoluion Inegral. Impule repone. Time invarian 3. Convoluion inegral 4. Memory of circui 38

39 39 Impule repone If he inpu o a linear, lumped-parameer circui i an impule, he oupu funcion h i called impule repone, which happen o be he naural repone of he circui:.,, h H L Y L y H H Y L X The applicaion of an impule ource i equivalen o uddenly oring energy in he circui. The ubequen releae of hi energy give rie o he naural repone.

40 40 Time invarian For a linear, lumped-parameer circui, delaying he inpu x by imply delay he repone y by a well ime invarian:.,,,,,,, u y Y L Y L y Y e X H e X H Y X e u x L X

41 Moivaion of working in he ime domain The properie of impule repone and imeinvariance allow one o calculae he oupu funcion y of a linear and ime invarian LTI circui in he -domain only. Thi i beneficial when x, h are known only hrough experimenal daa. 4

42 4 Decompoe he inpu ource x We can approximae x by a erie of recangular pule rec - i of uniform widh : By having, rec - i /- i, x converge o a rain of impule: q i q. lim rec i i i i i i x x x

43 43 Synheize he oupu y Since he circui i LTI:. 0 0 i i i i i i h x x ;,, y a x a h h i i i i i i

44 44 A, ummaion inegraion:. 0 d h x d h x y if x exend -, By change of variable u=-,. du u h u x y The oupu of an LTI circui i he convoluion of inpu and he impule repone of he circui:. d h x d h x h x y Synheize he oupu y

45 Convoluion of a caual circui For phyically realizable circui, no repone can occur prior o he inpu exciaion caual, {h =0 for <0}. Exciaion i urned on a =0, {x=0 for <0}. y x h x h d. 0 45

46 Effec of x i weighed by h The convoluion inegral y x h d 0 how ha he value of y i he weighed average of x from =0 o = [from = o =0 for x-]. 0 If h i monoonically decreaing, he highe weigh i given o he preen x. 46

47 Memory of he circui If h only la from =0 o =T, he convoluion inegral T y 0 x h d. implie ha he circui ha a memory over a finie inerval =[-T,]. If h=, no memory, oupu a only depend on x, y=x*=x, no diorion. 47

48 48 Example 3.3: RL driven by a rapezoidal ource., H i o i o. u e L h Q: v o =?

49 Example 3.3 v o 0 v i h d. Separae ino 3 inerval: 49

50 Example Since he circui ha cerain memory, v o ha ome diorion wih repec o v i. 50

51 Secion 3.7 The Tranfer Funcion and he Seady-Sae Sinuoidal Repone 5

52 How o ge inuoidal eady-ae repone by H? In Chaper 9-, we ued phaor analyi o ge eady-ae repone y due o a inuoidal inpu x Aco. If we know H, y mu be: y where H j H H j Aco, j H j e j The change of ampliude and phae depend on he ampling of H along he imaginary axi.. 5

53 53 Proof. in in co co co A A A x. in co in co A A A X, in co Y Y A H X H Y r. co.. j A H c c j Ae e j H L y j j. in co in co, where * j j j Ae j H j j A j H j A H j Y K j K j K Y

54 Obain H from H j We can revere he proce: deermine H j experimenally, hen conruc H from he daa no alway poible. Once we know H, we can find he repone o oher exciaion ource. 54

55 Secion 3.8 The Impule Funcion in Circui Analyi 55

56 E.g. Impulive inducor volage Q: v o =? i 0 - =0 A i 0 - =0 The opening of he wich force he wo inducor curren i, i change immediaely by inducing an impulive inducor volage [v=li']. 56

57 E.g. Equivalen circui & oluion in he -domain iniial curren , improper raional

58 E.g. Soluion in he -domain v0 L 60 0e u. 5 To verify wheher hi oluion v o i correc, we need o olve i a well. 00 I , 5 i 4 e 5 u. jump jump 58

59 Impulive inducor volage 4 The jump of i from 0 o 6 A caue i 6, Afer > 0 +, v 5 i o 54 e 5 H i 0e 60 0e conribuing o a volage impule L i. conien wih ha olved by Laplace ranform. 5 5, 59

60 Key poin How o repreen he iniial energy of L, C in he -domain? Why he funcional form of naural and eadyae repone are deermined by he pole of ranfer funcion H and exciaion ource X, repecively? Why he oupu of an LTI circui i he convoluion of he inpu and impule repone? How o inerpre he memory of a circui by convoluion? 60

61 Pracical Perpecive olage Surge 6

62 Why can a volage urge occur? Q: Why a volage urge i creaed when a load i wiched off? Model: A inuoidal volage ource drive hree load, where R b i wiched off a =0. Since i canno change abruply, i will jump by he amoun of i 3 0 -, volage urge occur. 6

63 Example Le o =00 rm, f =60 Hz, R a =, R b =8, X a =4. i.e. L a =X a /=09 mh, X l = i.e. L l =.65 mh. Solve v o for >0 -. To draw he -domain circui, we need o calculae he iniial inducor curren i 0 -, i

64 Seady-ae before he wiching The hree branch curren rm phaor are: I = o /R a =00/ =00 A, I = o /jx a =00/j4. =.9-90 A, I 3 = o /R b =00/8 =50 A, The line curren i: I 0 =I +I +I 3 = A. Source volage: g = o +I 0 jx l =5-.5. The wo iniial inducor curren a =0 - are: i =.9co0-90, i 0 - =0; i 0 =5.co0-6.65, i =35.4 A. 64

65 S-domain analyi The -domain circui i: I 0 = 35.4 A o g = 5-.5 rm By NM: L l =.65 mh o L I l L 0 l g R o a o L L a = 09 a 0, mh a Ll g I0Ra R L L L L 475 j0 j0 R a a l a l 65

66 Invere Laplace ranform Given o j j0, v o e 73co u. 66

EE202 Circuit Theory II

EE202 Circuit Theory II EE202 Circui Theory II 2017-2018, Spring Dr. Yılmaz KALKAN I. Inroducion & eview of Fir Order Circui (Chaper 7 of Nilon - 3 Hr. Inroducion, C and L Circui, Naural and Sep epone of Serie and Parallel L/C

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

s-domain Circuit Analysis

s-domain Circuit Analysis Domain ircui Analyi Operae direcly in he domain wih capacior, inducor and reior Key feaure lineariy i preerved c decribed by ODE and heir I Order equal number of plu number of Elemenbyelemen and ource

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı CONTROL SYSTEMS Chaper Mahemaical Modelling of Phyical Syem-Laplace Tranform Prof.Dr. Faih Mehme Boalı Definiion Tranform -- a mahemaical converion from one way of hinking o anoher o make a problem eaier

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 35 Chaper 8: Second Order Circuis Daniel M. Liynski, Ph.D. ECE 1 Circui Analysis Lesson 3-34 Chaper 7: Firs Order Circuis (Naural response RC & RL circuis, Singulariy funcions,

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

Chapter 9 - The Laplace Transform

Chapter 9 - The Laplace Transform Chaper 9 - The Laplace Tranform Selece Soluion. Skech he pole-zero plo an region of convergence (if i exi) for hee ignal. ω [] () 8 (a) x e u = 8 ROC σ ( ) 3 (b) x e co π u ω [] ( ) () (c) x e u e u ROC

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 37 Chaper 8: Second Order Circuis Discuss Exam Daniel M. Liynski, Ph.D. Exam CH 1-4: On Exam 1; Basis for work CH 5: Operaional Amplifiers CH 6: Capaciors and Inducor CH 7-8:

More information

Chapter 9 Sinusoidal Steady State Analysis

Chapter 9 Sinusoidal Steady State Analysis Chaper 9 Sinusoidal Seady Sae Analysis 9.-9. The Sinusoidal Source and Response 9.3 The Phasor 9.4 pedances of Passive Eleens 9.5-9.9 Circui Analysis Techniques in he Frequency Doain 9.0-9. The Transforer

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

CONTROL SYSTEMS. Chapter 10 : State Space Response

CONTROL SYSTEMS. Chapter 10 : State Space Response CONTROL SYSTEMS Chaper : Sae Space Repone GATE Objecive & Numerical Type Soluion Queion 5 [GATE EE 99 IIT-Bombay : Mark] Conider a econd order yem whoe ae pace repreenaion i of he form A Bu. If () (),

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK EE202 Circui Theory II 2018 2019, Spring Dr. Yılmaz KALKAN & Dr. Ailla DÖNÜK 1. Basic Conceps (Chaper 1 of Nilsson - 3 Hrs.) Inroducion, Curren and Volage, Power and Energy 2. Basic Laws (Chaper 2&3 of

More information

Frequency Response. We now know how to analyze and design ccts via s- domain methods which yield dynamical information

Frequency Response. We now know how to analyze and design ccts via s- domain methods which yield dynamical information Frequency Repone We now now how o analyze and deign cc via - domain mehod which yield dynamical informaion Zero-ae repone Zero-inpu repone Naural repone Forced repone The repone are decribed by he exponenial

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition. CHAPTER 8 Forced Equaion and Syem 8 The aplace Tranform and I Invere Tranform from he Definiion 5 5 = b b {} 5 = 5e d = lim5 e = ( ) b {} = e d = lim e + e d b = (inegraion by par) = = = = b b ( ) ( )

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

CHAPTER 3 SIGNALS & SYSTEMS. z -transform in the z -plane will be (A) 1 (B) 1 (D) (C) . The unilateral Laplace transform of tf() (A) s (B) + + (D) (C)

CHAPTER 3 SIGNALS & SYSTEMS. z -transform in the z -plane will be (A) 1 (B) 1 (D) (C) . The unilateral Laplace transform of tf() (A) s (B) + + (D) (C) CHAPER SIGNALS & SYSEMS YEAR ONE MARK n n MCQ. If xn [ ] (/) (/) un [ ], hen he region of convergence (ROC) of i z ranform in he z plane will be (A) < z < (B) < z < (C) < z < (D) < z MCQ. he unilaeral

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

Single Phase Line Frequency Uncontrolled Rectifiers

Single Phase Line Frequency Uncontrolled Rectifiers Single Phae Line Frequency Unconrolle Recifier Kevin Gaughan 24-Nov-03 Single Phae Unconrolle Recifier 1 Topic Baic operaion an Waveform (nucive Loa) Power Facor Calculaion Supply curren Harmonic an Th

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

First Order RC and RL Transient Circuits

First Order RC and RL Transient Circuits Firs Order R and RL Transien ircuis Objecives To inroduce he ransiens phenomena. To analyze sep and naural responses of firs order R circuis. To analyze sep and naural responses of firs order RL circuis.

More information

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution: Example: The inpu o each of he circuis shown in Figure 10-N1 is he volage source volage. The oupu of each circui is he curren i( ). Deermine he oupu of each of he circuis. (a) (b) (c) (d) (e) Figure 10-N1

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Signal & Syem Prof. ark Fowler oe Se #34 C-T Tranfer Funcion and Frequency Repone /4 Finding he Tranfer Funcion from Differenial Eq. Recall: we found a DT yem Tranfer Funcion Hz y aking he ZT of

More information

NODIA AND COMPANY. GATE SOLVED PAPER Electrical Engineering SIGNALS & SYSTEMS. Copyright By NODIA & COMPANY

NODIA AND COMPANY. GATE SOLVED PAPER Electrical Engineering SIGNALS & SYSTEMS. Copyright By NODIA & COMPANY No par of hi publicaion may be reproduced or diribued in any form or any mean, elecronic, mechanical, phoocopying, or oherie ihou he prior permiion of he auhor. GAE SOLVED PAPER Elecrical Engineering SIGNALS

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

Instrumentation & Process Control

Instrumentation & Process Control Chemical Engineering (GTE & PSU) Poal Correpondence GTE & Public Secor Inrumenaion & Proce Conrol To Buy Poal Correpondence Package call a -999657855 Poal Coure ( GTE & PSU) 5 ENGINEERS INSTITUTE OF INDI.

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

EEEB113 CIRCUIT ANALYSIS I

EEEB113 CIRCUIT ANALYSIS I 9/14/29 1 EEEB113 CICUIT ANALYSIS I Chaper 7 Firs-Order Circuis Maerials from Fundamenals of Elecric Circuis 4e, Alexander Sadiku, McGraw-Hill Companies, Inc. 2 Firs-Order Circuis -Chaper 7 7.2 The Source-Free

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

LAB 5: Computer Simulation of RLC Circuit Response using PSpice

LAB 5: Computer Simulation of RLC Circuit Response using PSpice --3LabManualLab5.doc LAB 5: ompuer imulaion of RL ircui Response using Ppice PURPOE To use a compuer simulaion program (Ppice) o invesigae he response of an RL series circui o: (a) a sinusoidal exciaion.

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

6 December 2013 H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ 1

6 December 2013 H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ 1 Lecure Noe Fundamenal of Conrol Syem Inrucor: Aoc. Prof. Dr. Huynh Thai Hoang Deparmen of Auomaic Conrol Faculy of Elecrical & Elecronic Engineering Ho Chi Minh Ciy Univeriy of Technology Email: hhoang@hcmu.edu.vn

More information

Inductor Energy Storage

Inductor Energy Storage School of Compuer Science and Elecrical Engineering 5/5/ nducor Energy Sorage Boh capaciors and inducors are energy sorage devices They do no dissipae energy like a resisor, bu sore and reurn i o he circui

More information

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics

UT Austin, ECE Department VLSI Design 5. CMOS Gate Characteristics La moule: CMOS Tranior heory Thi moule: DC epone Logic Level an Noie Margin Tranien epone Delay Eimaion Tranior ehavior 1) If he wih of a ranior increae, he curren will ) If he lengh of a ranior increae,

More information

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson 6.32 Feedback Syem Phae-locked loop are a foundaional building block for analog circui deign, paricularly for communicaion circui. They provide a good example yem for hi cla becaue hey are an excellen

More information

8.022 (E&M) Lecture 16

8.022 (E&M) Lecture 16 8. (E&M) ecure 16 Topics: Inducors in circuis circuis circuis circuis as ime Our second lecure on elecromagneic inducance 3 ways of creaing emf using Faraday s law: hange area of circui S() hange angle

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

1 CHAPTER 14 LAPLACE TRANSFORMS

1 CHAPTER 14 LAPLACE TRANSFORMS CHAPTER 4 LAPLACE TRANSFORMS 4 nroducion f x) i a funcion of x, where x lie in he range o, hen he funcion p), defined by p) px e x) dx, 4 i called he Laplace ranform of x) However, in hi chaper, where

More information

EE 301 Lab 2 Convolution

EE 301 Lab 2 Convolution EE 301 Lab 2 Convoluion 1 Inroducion In his lab we will gain some more experience wih he convoluion inegral and creae a scrip ha shows he graphical mehod of convoluion. 2 Wha you will learn This lab will

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow KEY Mah 334 Miderm III Fall 28 secions and 3 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance:

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance: Problem Se # Problem : a) Using phasor noaion, calculae he volage and curren waves on a ransmission line by solving he wave equaion Assume ha R, L,, G are all non-zero and independen of frequency From

More information

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction /9/ Coninuous Time Linear Time Invarian (LTI) Sysems Why LTI? Inroducion Many physical sysems. Easy o solve mahemaically Available informaion abou analysis and design. We can apply superposiion LTI Sysem

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

More on ODEs by Laplace Transforms October 30, 2017

More on ODEs by Laplace Transforms October 30, 2017 More on OE b Laplace Tranfor Ocober, 7 More on Ordinar ifferenial Equaion wih Laplace Tranfor Larr areo Mechanical Engineering 5 Seinar in Engineering nali Ocober, 7 Ouline Review la cla efiniion of Laplace

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

ECE-205 Dynamical Systems

ECE-205 Dynamical Systems ECE-5 Dynamical Sysems Course Noes Spring Bob Throne Copyrigh Rober D. Throne Copyrigh Rober D. Throne . Elecrical Sysems The ypes of dynamical sysems we will be sudying can be modeled in erms of algebraic

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Experimental Buck Converter

Experimental Buck Converter Experimenal Buck Converer Inpu Filer Cap MOSFET Schoky Diode Inducor Conroller Block Proecion Conroller ASIC Experimenal Synchronous Buck Converer SoC Buck Converer Basic Sysem S 1 u D 1 r r C C R R X

More information

Design of Controller for Robot Position Control

Design of Controller for Robot Position Control eign of Conroller for Robo oiion Conrol Two imporan goal of conrol: 1. Reference inpu racking: The oupu mu follow he reference inpu rajecory a quickly a poible. Se-poin racking: Tracking when he reference

More information

Chapter 5: Discontinuous conduction mode. Introduction to Discontinuous Conduction Mode (DCM)

Chapter 5: Discontinuous conduction mode. Introduction to Discontinuous Conduction Mode (DCM) haper 5. The isconinuous onducion Mode 5.. Origin of he disconinuous conducion mode, and mode boundary 5.. Analysis of he conversion raio M(,K) 5.3. Boos converer example 5.4. Summary of resuls and key

More information

Signal and System (Chapter 3. Continuous-Time Systems)

Signal and System (Chapter 3. Continuous-Time Systems) Signal and Sysem (Chaper 3. Coninuous-Time Sysems) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 0-760-453 Fax:0-760-4435 1 Dep. Elecronics and Informaion Eng. 1 Nodes, Branches, Loops A nework wih b

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

Laplace Transform and its Relation to Fourier Transform

Laplace Transform and its Relation to Fourier Transform Chaper 6 Laplace Transform and is Relaion o Fourier Transform (A Brief Summary) Gis of he Maer 2 Domains of Represenaion Represenaion of signals and sysems Time Domain Coninuous Discree Time Time () [n]

More information

2.9 Modeling: Electric Circuits

2.9 Modeling: Electric Circuits SE. 2.9 Modeling: Elecric ircuis 93 2.9 Modeling: Elecric ircuis Designing good models is a ask he compuer canno do. Hence seing up models has become an imporan ask in modern applied mahemaics. The bes

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5

Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5 Mah 225-4 Week 2 April 2-6 coninue.-.3; alo cover par of.4-.5, EP 7.6 Mon Apr 2:.-.3 Laplace ranform and iniial value problem like we udied in Chaper 5 Announcemen: Warm-up Exercie: Recall, The Laplace

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

7. Capacitors and Inductors

7. Capacitors and Inductors 7. Capaciors and Inducors 7. The Capacior The ideal capacior is a passive elemen wih circui symbol The curren-volage relaion is i=c dv where v and i saisfy he convenions for a passive elemen The capacior

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mark Fowler Noe Se #1 C-T Sysems: Convoluion Represenaion Reading Assignmen: Secion 2.6 of Kamen and Heck 1/11 Course Flow Diagram The arrows here show concepual flow beween

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

t )? How would you have tried to solve this problem in Chapter 3?

t )? How would you have tried to solve this problem in Chapter 3? Exercie 9) Ue Laplace ranform o wrie down he oluion o 2 x x = F in x = x x = v. wha phenomena do oluion o hi DE illurae (even hough we're forcing wih in co )? How would you have ried o olve hi problem

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information