Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Size: px
Start display at page:

Download "Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response"

Transcription

1 Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure #5 OUTLINE Chap 4 RC and RL Circuis wih General Sources Paricular and complemenary soluions Time consan Second Order Circuis The differenial equaion Paricular and complemenary soluions The naural frequency and he damping raio Chap 5 Types of Circui Exciaion Why Sinusoidal Exciaion? Phasors Complex Impedances Reading Chap 4, Chap 5 (skip 5.7) EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu

2 Firs Order Circuis v s () v r () R C i c () v c () i s () R L i L () v L () KVL around he loop: v r () v c () = v s () dvc () RC vc() = vs() d KCL a he node: v( ) v( x) dx = i R L L dil () il() = is() R d s ( ) EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 3 Complee Soluion Volages and currens in a s order circui saisfy a differenial equaion of he form dx() x() τ = f() d f() is called he forcing funcion. The complee soluion is he sum of paricular soluion (forced response) and complemenary soluion (naural response). x() = x () x () Paricular soluion saisfies he forcing funcion Complemenary soluion is used o saisfy he iniial condiions. The iniial condiions deermine he value of K. dxp () x p () τ = f () d p c dxc () xc () τ = d = / xc () Ke τ Homogeneous equaion EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 4

3 The Time Consan The complemenary soluion for any s order circui is / xc () = Ke τ For an RC circui, τ = RC For an RL circui, τ = L/R EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 5 Wha Does X c () Look Like? x () = e c / τ τ = 4 τ is he amoun of ime necessary for an exponenial o decay o 36.7% of is iniial value. /τ is he iniial slope of an exponenial wih an iniial value of. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 6 3

4 The Paricular Soluion The paricular soluion x p () is usually a weighed sum of f() and is firs derivaive. If f() is consan, hen x p () is consan. If f() is sinusoidal, hen x p () is sinusoidal. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 7 nd Order Circuis Any circui wih a single capacior, a single inducor, an arbirary number of sources, and an arbirary number of resisors is a circui of order. Any volage or curren in such a circui is he soluion o a nd order differenial equaion. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 8 4

5 A nd Order RLC Circui i() v s () R L C Applicaion: Filers A bandpass filer such as he IF amp for he AM radio. A lowpass filer wih a sharper cuoff han can be obained wih an RC circui. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 9 The Differenial Equaion i() v r () R v s () C v l () KVL around he loop: v r () v c () v l () = v s () di( ) Ri() i( x) dx L vs () C = d Rdi () di () dvs () i () = L d LC d L d L v c () EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 5

6 The Differenial Equaion The volage and curren in a second order circui is he soluion o a differenial equaion of he following form: d x () dx() α ω x( ) = f( ) d d x() = x () x () p c X p () is he paricular soluion (forced response) and X c () is he complemenary soluion (naural response). EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu The Paricular Soluion The paricular soluion x p () is usually a weighed sum of f() and is firs and second derivaives. If f() is consan, hen x p () is consan. If f() is sinusoidal, hen x p () is sinusoidal. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 6

7 The Complemenary Soluion The complemenary soluion has he following form: s x () = Ke c K is a consan deermined by iniial condiions. s is a consan deermined by he coefficiens of he differenial equaion. s s d Ke dke s α ω Ke = d d s Ke αske ω Ke = s s s s αs ω = EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 3 Characerisic Equaion To find he complemenary soluion, we need o solve he characerisic equaion: s ζω s ω = α = ζω The characerisic equaion has wo rooscall hem s and s. x () = K e K e c s s s ζω ω ζ = s ζω ω ζ = EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 4 7

8 Damping Raio and Naural Frequency α ζ = ω damping raio s ζω ω ζ = s ζω ω ζ = The damping raio deermines wha ype of soluion we will ge: Exponenially decreasing (ζ >) Exponenially decreasing sinusoid (ζ < ) The naural frequency is ω I deermines how fas sinusoids wiggle. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 5 Overdamped : Real Unequal Roos If ζ >, s and s are real and no equal. i c ( ) = K e ςω ω ς K e ςω ω ς i().6.4..e6 i().4..e6. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 6 8

9 Underdamped: Complex Roos If ζ <, s and s are complex. Define he following consans: α = ζω ω = ω ζ d ( ω ω ) x () = e A cos A sin α c d d i() e5..e5 3.E EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 7 Criically damped: Real Equal Roos If ζ =, s and s are real and equal. x () = K e K e c ςω ςω EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 8 9

10 Example For he example, wha are ζ and ω? i() Ω 769pF 59μH d i( ) R di( ) dvs ( ) i( ) = d L d LC L d d xc() dxc() ζω ω d xc ( ) = d R R C ω =, ζω =, ζ = LC L L EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 9 Example ζ =. ω = π455 Is his sysem over damped, under damped, or criically damped? Wha will he curren look like? i() e5..e5 3.E EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu

11 Slighly Differen Example Increase he resisor o kω Wha are ζ and ω? i() kω v s () 769pF 59μH i() e6 ζ =. ω = π455 EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Types of Circui Exciaion Linear Time Invarian Circui SeadySae Exciaion (DC SeadySae) Linear Time Invarian Circui Sinusoidal (Single Frequency) Exciaion AC SeadySae Sep Exciaion Digial Pulse Source Linear Time Invarian Circui OR Linear Time Invarian Circui Transien Exciaions EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu

12 Signal (V) Relaive Ampliude signal Signal (V) signal Signal (V) Why is SingleFrequency Exciaion Imporan? Some circuis are driven by a singlefrequency sinusoidal source. Some circuis are driven by sinusoidal sources whose frequency changes slowly over ime. You can express any periodic elecrical signal as a sum of singlefrequency sinusoids so you can analyze he response of he (linear, imeinvarian) circui o each individual frequency componen and hen sum he responses o ge he oal response. This is known as Fourier Transform and is remendously imporan o all kinds of engineering disciplines! EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 3 a Represening a Square Wave as a Sum of Sinusoids b c d T i me (ms) Frequency (Hz) (a)square wave wih second period. (b) Fundamenal componen (doed) wih second period, hirdharmonic (solid black) wih/3second period, and heir sum (blue). (c) Sum of firs en componens. (d) Specrum wih erms. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 4

13 SeadySae Sinusoidal Analysis Also known as AC seadysae Any seady sae volage or curren in a linear circui wih a sinusoidal source is a sinusoid. This is a consequence of he naure of paricular soluions for sinusoidal forcing funcions. All AC seady sae volages and currens have he same frequency as he source. In order o find a seady sae volage or curren, all we need o know is is magniude and is phase relaive o he source We already know is frequency. Usually, an AC seady sae volage or curren is given by he paricular soluion o a differenial equaion. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 5 The Good News! We do no have o find his differenial equaion from he circui, nor do we have o solve i. Insead, we use he conceps of phasors and complex impedances. Phasors and complex impedances conver problems involving differenial equaions ino circui analysis problems. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 6 3

14 Phasors A phasor is a complex number ha represens he magniude and phase of a sinusoidal volage or curren. Remember, for AC seady sae analysis, his is all we need o compuewe already know he frequency of any volage or curren. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 7 Complex Impedance Complex impedance describes he relaionship beween he volage across an elemen (expressed as a phasor) and he curren hrough he elemen (expressed as a phasor). Impedance is a complex number. Impedance depends on frequency. Phasors and complex impedance allow us o use Ohm s law wih complex numbers o compue curren from volage and volage from curren. EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 8 4

15 Sinusoids Ampliude: V M Angular frequency: ω = π f Radians/sec Phase angle: θ Frequency: f = /T Uni: /sec or Hz Period: T v () = V cos( ω θ ) M Time necessary o go hrough one cycle EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 9 Phase Wha is he ampliude, period, frequency, and radian frequency of his sinusoid? EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 3 5

16 Phasors A phasor is a complex number ha represens he magniude and phase of a sinusoid: X M cos ( ω θ ) Time Domain X = X M θ Frequency Domain EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu 3 6

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 35 Chaper 8: Second Order Circuis Daniel M. Liynski, Ph.D. ECE 1 Circui Analysis Lesson 3-34 Chaper 7: Firs Order Circuis (Naural response RC & RL circuis, Singulariy funcions,

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 37 Chaper 8: Second Order Circuis Discuss Exam Daniel M. Liynski, Ph.D. Exam CH 1-4: On Exam 1; Basis for work CH 5: Operaional Amplifiers CH 6: Capaciors and Inducor CH 7-8:

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

EEEB113 CIRCUIT ANALYSIS I

EEEB113 CIRCUIT ANALYSIS I 9/14/29 1 EEEB113 CICUIT ANALYSIS I Chaper 7 Firs-Order Circuis Maerials from Fundamenals of Elecric Circuis 4e, Alexander Sadiku, McGraw-Hill Companies, Inc. 2 Firs-Order Circuis -Chaper 7 7.2 The Source-Free

More information

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK EE202 Circui Theory II 2018 2019, Spring Dr. Yılmaz KALKAN & Dr. Ailla DÖNÜK 1. Basic Conceps (Chaper 1 of Nilsson - 3 Hrs.) Inroducion, Curren and Volage, Power and Energy 2. Basic Laws (Chaper 2&3 of

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution: Example: The inpu o each of he circuis shown in Figure 10-N1 is he volage source volage. The oupu of each circui is he curren i( ). Deermine he oupu of each of he circuis. (a) (b) (c) (d) (e) Figure 10-N1

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions.

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions. Signals And Sysems Exam#. Given x() and y() below: x() y() 4 4 (A) Give he expression of x() in erms of sep funcions. (%) x () = q() q( ) + q( 4) (B) Plo x(.5). (%) x() g() = x( ) h() = g(. 5) = x(. 5)

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

First Order RC and RL Transient Circuits

First Order RC and RL Transient Circuits Firs Order R and RL Transien ircuis Objecives To inroduce he ransiens phenomena. To analyze sep and naural responses of firs order R circuis. To analyze sep and naural responses of firs order RL circuis.

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

Signal and System (Chapter 3. Continuous-Time Systems)

Signal and System (Chapter 3. Continuous-Time Systems) Signal and Sysem (Chaper 3. Coninuous-Time Sysems) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 0-760-453 Fax:0-760-4435 1 Dep. Elecronics and Informaion Eng. 1 Nodes, Branches, Loops A nework wih b

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

2.9 Modeling: Electric Circuits

2.9 Modeling: Electric Circuits SE. 2.9 Modeling: Elecric ircuis 93 2.9 Modeling: Elecric ircuis Designing good models is a ask he compuer canno do. Hence seing up models has become an imporan ask in modern applied mahemaics. The bes

More information

( ) = Q 0. ( ) R = R dq. ( t) = I t

( ) = Q 0. ( ) R = R dq. ( t) = I t ircuis onceps The addiion of a simple capacior o a circui of resisors allows wo relaed phenomena o occur The observaion ha he ime-dependence of a complex waveform is alered by he circui is referred o as

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

LAB 5: Computer Simulation of RLC Circuit Response using PSpice

LAB 5: Computer Simulation of RLC Circuit Response using PSpice --3LabManualLab5.doc LAB 5: ompuer imulaion of RL ircui Response using Ppice PURPOE To use a compuer simulaion program (Ppice) o invesigae he response of an RL series circui o: (a) a sinusoidal exciaion.

More information

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers A ircuis A ircui wih only A circui wih only A circui wih only A circui wih phasors esonance Transformers Phys 435: hap 31, Pg 1 A ircuis New Topic Phys : hap. 6, Pg Physics Moivaion as ime we discovered

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chaper 1 Fundamenal Conceps 1 Signals A signal is a paern of variaion of a physical quaniy, ofen as a funcion of ime (bu also space, disance, posiion, ec). These quaniies are usually he independen variables

More information

ECE-205 Dynamical Systems

ECE-205 Dynamical Systems ECE-5 Dynamical Sysems Course Noes Spring Bob Throne Copyrigh Rober D. Throne Copyrigh Rober D. Throne . Elecrical Sysems The ypes of dynamical sysems we will be sudying can be modeled in erms of algebraic

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mar Fowler Noe Se #1 C-T Signals: Circuis wih Periodic Sources 1/1 Solving Circuis wih Periodic Sources FS maes i easy o find he response of an RLC circui o a periodic source!

More information

Inductor Energy Storage

Inductor Energy Storage School of Compuer Science and Elecrical Engineering 5/5/ nducor Energy Sorage Boh capaciors and inducors are energy sorage devices They do no dissipae energy like a resisor, bu sore and reurn i o he circui

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Chapter 9 Sinusoidal Steady State Analysis

Chapter 9 Sinusoidal Steady State Analysis Chaper 9 Sinusoidal Seady Sae Analysis 9.-9. The Sinusoidal Source and Response 9.3 The Phasor 9.4 pedances of Passive Eleens 9.5-9.9 Circui Analysis Techniques in he Frequency Doain 9.0-9. The Transforer

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

7. Capacitors and Inductors

7. Capacitors and Inductors 7. Capaciors and Inducors 7. The Capacior The ideal capacior is a passive elemen wih circui symbol The curren-volage relaion is i=c dv where v and i saisfy he convenions for a passive elemen The capacior

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

MTH Feburary 2012 Final term PAPER SOLVED TODAY s Paper

MTH Feburary 2012 Final term PAPER SOLVED TODAY s Paper MTH401 7 Feburary 01 Final erm PAPER SOLVED TODAY s Paper Toal Quesion: 5 Mcqz: 40 Subjecive quesion: 1 4 q of 5 marks 4 q of 3 marks 4 q of marks Guidelines: Prepare his file as I included all pas papers

More information

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direc Curren Circuis February 19, 2014 Physics for Scieniss & Engineers 2, Chaper 26 1 Ammeers and Volmeers! A device used o measure curren is called an ammeer! A device used o measure poenial difference

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics E06 Embedded Elecronics Le Le3 Le4 Le Ex Ex P-block Documenaion, Seriecom Pulse sensors,, R, P, serial and parallel K LAB Pulse sensors, Menu program Sar of programing ask Kirchhoffs laws Node analysis

More information

MEMS 0031 Electric Circuits

MEMS 0031 Electric Circuits MEMS 0031 Elecric Circuis Chaper 1 Circui variables Chaper/Lecure Learning Objecives A he end of his lecure and chaper, you should able o: Represen he curren and volage of an elecric circui elemen, paying

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

Chapter 2 : Fourier Series. Chapter 3 : Fourier Series

Chapter 2 : Fourier Series. Chapter 3 : Fourier Series Chaper 2 : Fourier Series.0 Inroducion Fourier Series : represenaion of periodic signals as weighed sums of harmonically relaed frequencies. If a signal x() is periodic signal, hen x() can be represened

More information

8.022 (E&M) Lecture 16

8.022 (E&M) Lecture 16 8. (E&M) ecure 16 Topics: Inducors in circuis circuis circuis circuis as ime Our second lecure on elecromagneic inducance 3 ways of creaing emf using Faraday s law: hange area of circui S() hange angle

More information

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II Module 3: The Damped Oscillaor-II Lecure 3: The Damped Oscillaor-II 3. Over-damped Oscillaions. This refers o he siuaion where β > ω (3.) The wo roos are and α = β + α 2 = β β 2 ω 2 = (3.2) β 2 ω 2 = 2

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.003 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 3 0 a 0 5 a k a k 0 πk j3 e 0 e j πk 0 jπk πk e 0

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

EE202 Circuit Theory II

EE202 Circuit Theory II EE202 Circui Theory II 2017-2018, Spring Dr. Yılmaz KALKAN I. Inroducion & eview of Fir Order Circui (Chaper 7 of Nilon - 3 Hr. Inroducion, C and L Circui, Naural and Sep epone of Serie and Parallel L/C

More information

Section 3.8, Mechanical and Electrical Vibrations

Section 3.8, Mechanical and Electrical Vibrations Secion 3.8, Mechanical and Elecrical Vibraions Mechanical Unis in he U.S. Cusomary and Meric Sysems Disance Mass Time Force g (Earh) Uni U.S. Cusomary MKS Sysem CGS Sysem fee f slugs seconds sec pounds

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

6.003 Homework #9 Solutions

6.003 Homework #9 Solutions 6.00 Homework #9 Soluions Problems. Fourier varieies a. Deermine he Fourier series coefficiens of he following signal, which is periodic in 0. x () 0 0 a 0 5 a k sin πk 5 sin πk 5 πk for k 0 a k 0 πk j

More information

Lecture Outline. Introduction Transmission Line Equations Transmission Line Wave Equations 8/10/2018. EE 4347 Applied Electromagnetics.

Lecture Outline. Introduction Transmission Line Equations Transmission Line Wave Equations 8/10/2018. EE 4347 Applied Electromagnetics. 8/10/018 Course Insrucor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@uep.edu EE 4347 Applied Elecromagneics Topic 4a Transmission Line Equaions Transmission These Line noes

More information

Experimental Buck Converter

Experimental Buck Converter Experimenal Buck Converer Inpu Filer Cap MOSFET Schoky Diode Inducor Conroller Block Proecion Conroller ASIC Experimenal Synchronous Buck Converer SoC Buck Converer Basic Sysem S 1 u D 1 r r C C R R X

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing.

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing. MECHANICS APPLICATIONS OF SECOND-ORDER ODES 7 Mechanics applicaions of second-order ODEs Second-order linear ODEs wih consan coefficiens arise in many physical applicaions. One physical sysems whose behaviour

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB

EECS 2602 Winter Laboratory 3 Fourier series, Fourier transform and Bode Plots in MATLAB EECS 6 Winer 7 Laboraory 3 Fourier series, Fourier ransform and Bode Plos in MATLAB Inroducion: The objecives of his lab are o use MATLAB:. To plo periodic signals wih Fourier series represenaion. To obain

More information

Complete solutions to Exercise 14(b) 1. Very similar to EXAMPLE 4. We have same characteristic equation:

Complete solutions to Exercise 14(b) 1. Very similar to EXAMPLE 4. We have same characteristic equation: Soluions 4(b) Complee soluions o Exercise 4(b). Very similar o EXAMPE 4. We have same characerisic equaion: 5 i Ae = + Be By using he given iniial condiions we obain he simulaneous equaions A+ B= 0 5A

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

EE 301 Lab 2 Convolution

EE 301 Lab 2 Convolution EE 301 Lab 2 Convoluion 1 Inroducion In his lab we will gain some more experience wih he convoluion inegral and creae a scrip ha shows he graphical mehod of convoluion. 2 Wha you will learn This lab will

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

STATE PLANE ANALYSIS, AVERAGING,

STATE PLANE ANALYSIS, AVERAGING, CHAPER 3 SAE PLAE AALYSIS, AVERAGIG, AD OHER AALYICAL OOLS he sinusoidal approximaions used in he previous chaper break down when he effecs of harmonics are significan. his is a paricular problem in he

More information

Chapter 16: Summary. Instructor: Jean-François MILLITHALER.

Chapter 16: Summary. Instructor: Jean-François MILLITHALER. Chaper 16: Summary Insrucor: Jean-François MILLITHALER hp://faculy.uml.edu/jeanfrancois_millihaler/funelec/spring2017 Slide 1 Curren & Charge Elecric curren is he ime rae of change of charge, measured

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges.

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges. Chaper Soluions Secion. Inroducion. Curren source. Volage source. esisor.4 Capacior.5 Inducor Secion. Charge and Curren.6 b) The curren direcion is designaed as he direcion of he movemen of posiive charges..7

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY

UNIVERSITY OF CALIFORNIA AT BERKELEY Homework #10 Soluions EECS 40, Fall 2006 Prof. Chang-Hasnain Due a 6 pm in 240 Cory on Wednesday, 04/18/07 oal Poins: 100 Pu (1) your name and (2) discussion secion number on your homework. You need o

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

8.022 (E&M) Lecture 9

8.022 (E&M) Lecture 9 8.0 (E&M) Lecure 9 Topics: circuis Thevenin s heorem Las ime Elecromoive force: How does a baery work and is inernal resisance How o solve simple circuis: Kirchhoff s firs rule: a any node, sum of he currens

More information

Chapter 4 AC Network Analysis

Chapter 4 AC Network Analysis haper 4 A Nework Analysis Jaesung Jang apaciance Inducance and Inducion Time-Varying Signals Sinusoidal Signals Reference: David K. heng, Field and Wave Elecromagneics. Energy Sorage ircui Elemens Energy

More information

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition EE 224 Signals and Sysems I Complex numbers sinusodal signals Complex exponenials e jω phasor addiion 1/28 Complex Numbers Recangular Polar y z r z θ x Good for addiion/subracion Good for muliplicaion/division

More information

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member Verificaion Example Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro Caegory: Isoropic Linear Elasiciy, Dynamics, Member Verificaion Example: 0104 Canilever Beam wih Periodic Exciaion 0104 Canilever Beam

More information

Zhihan Xu, Matt Proctor, Ilia Voloh

Zhihan Xu, Matt Proctor, Ilia Voloh Zhihan Xu, Ma rocor, lia Voloh - GE Digial Energy Mike Lara - SNC-Lavalin resened by: Terrence Smih GE Digial Energy CT fundamenals Circui model, exciaion curve, simulaion model CT sauraion AC sauraion,

More information

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction EE-202/445, 3/18/18 9-1 R. A. DeCarlo Lecures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS I. Inroducion 1. The biquadraic ransfer funcion has boh a 2nd order numeraor and a 2nd order denominaor:

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance:

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance: Problem Se # Problem : a) Using phasor noaion, calculae he volage and curren waves on a ransmission line by solving he wave equaion Assume ha R, L,, G are all non-zero and independen of frequency From

More information

Analytic Model and Bilateral Approximation for Clocked Comparator

Analytic Model and Bilateral Approximation for Clocked Comparator Analyic Model and Bilaeral Approximaion for Clocked Comparaor M. Greians, E. Hermanis, G.Supols Insiue of, Riga, Lavia, e-mail: gais.supols@edi.lv Research is suppored by: 1) ESF projec Nr.1DP/1.1.1.2.0/09/APIA/VIAA/020,

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

ln 2 1 ln y x c y C x

ln 2 1 ln y x c y C x Lecure 14 Appendi B: Some sample problems from Boas Here are some soluions o he sample problems assigned for Chaper 8 8: 6 Soluion: We wan o find he soluion o he following firs order equaion using separaion

More information

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response.

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response. Experimen 4:he Sdies of ransiional processes of 1. Prpose firs-order circi a) Use he oscilloscope o observe he ransiional processes of firs-order circi. b) Use he oscilloscope o measre he ime consan of

More information