Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5

Size: px
Start display at page:

Download "Mon Apr 2: Laplace transform and initial value problems like we studied in Chapter 5"

Transcription

1 Mah Week 2 April 2-6 coninue.-.3; alo cover par of.4-.5, EP 7.6 Mon Apr 2:.-.3 Laplace ranform and iniial value problem like we udied in Chaper 5 Announcemen: Warm-up Exercie:

2 Recall, The Laplace ranform i a linear ranformaion " " ha conver piecewie coninuou funcion f, defined for and wih a mo exponenial growh ( f Ce M for ome value of C and M), ino funcion F defined by he ranformaion formula F = f f e d. Noice ha he inegral formula for F i only defined for ufficienly large, and cerainly for M, becaue a oon a M he inegrand i decaying exponenially, o he improper inegral from = o converge. The convenion i o ue lower cae leer for he inpu funcion and (he ame) capial leer for heir Laplace ranform, a we did for f and F above. Thu if we called he inpu funcion x hen we would denoe he Laplace ranform by X.

3 Exercie ) (o review) Ue he able enrie we compued la Wedneday, o compue a) 4 5 co 3 2e 4 in 2 b) f F f Ce M f e d for M c f c 2 f 2 c F c 2 F 2 e ( ( a co k in k 2 k 2 ( k 2 k 2 ( e a co k a a 2 k 2 ( a e a in k k a 2 k 2 a f F f f 2 F f f Laplace ranform able

4 Exercie 2) (o review) Ue Laplace ranform o olve he IVP for an underdamped, unforced ocillaor DE. Compare o Chaper 5 mehod. x 6 x 34 x = x = 3 x =

5 We'll fill in more able enrie oday. (Compare o fron cover of your ex, which conain hi informaion bu maybe more compacly.) f, wih f Ce M F f e d for M verified c f c 2 f 2 c F c 2 F 2 2 n, n e ( n! n ( co k in k coh k inh k e a co k e a in k f f f n, n f d f 2 f n f, n f co k 2 k in k 2 k 2 ( k 2 k 2 ( 2 k 2 ( k k 2 k 2 ( k a a 2 k 2 ( a k a 2 k 2 a F f 2 F f f n F n f... f n F F F n F n F d 2 k 2 2 k k 2 2

6 2 k 3 in k k co k 2 k 2 2 e a f F a e a n e a, n a 2 n! a n Laplace ranform able work down he able... 3a) coh k = 3b) inh k = 2 k 2 k 2 k 2.

7 Exercie 4) Recall we ued inegraion by par on Wedneday o derive g = g g. Ue ha ideniy o how a) f = 2 F f f, b) f = 3 F 2 f f f, c) f n = n F n f n 2 f... f n, n. d) f d = F. Thee are he ideniie ha make Laplace ranform work o well for iniial value problem uch a we udied in Chaper 5... wih Laplace ranform he "free parameer" when you wrie down he oluion x = x P x H are exacly he iniial value for he differenial equaion, raher han he linear combinaion coefficien in he general homogeneou oluion, o you definiely ave a ep here, in olving IVP.

8 Exercie 5) Find 2 4 a) uing he reul of 4d. b) uing parial fracion. Exercie 6) Show n n! =, n, uing he reul of 4, namely n f n = n F n f n 2 f... f n, n.

9 Mah Tue Apr Laplace ranform, and applicaion o DE IVP, including Chaper 5. Today we'll coninue o fill in he Laplace ranform able, and o ue he able enrie o olve linear differenial equaion. One focu oday will be o review parial fracion, ince he able enrie are e up preciely o how he invere Laplace ranform of he componen of parial fracion decompoiion. Announcemen: Warm-up Exercie:

10 F = f f e d. Exercie ) Check why hi able enry i rue - noice ha i generalize how he Laplace ranform of co k, in k are relaed o hoe of e a co k, e a in k : e a f F a Exercie 2) Ue he able enry n, n n! n and Exercie o ge he able enry n e a n! a n

11 A harder able enry o underand i he following one - go hrough hi compuaion and ee why i eem reaonable, even hough here' one ep ha we don' compleely juify. The able enry i f F We recognize ha i will be helpful for applicaion problem where reonance occur. Here' how we ge i: F = f d d F = d d f e d = f e d d d f e d. I' hi la ep which i rue, bu need more juificaion. We know ha he derivaive of a um i he um of he derivaive, and he inegral i a limi of Riemann um, o hi ep doe a lea eem reaonable. The re i raighforward: d d f e d = f e d = f.

12 For reonance and oher applicaion... Exercie 4) Ue f = F 2 k 2 a) co k = 2 k 2 2 b) 2 k in k = 2 k 2 2 c) Then ue a and he ideniy 2 k 2 2 = 2 k 2 2 k 2 2 k 2 2 k k 2 2 o verify he able enry 2 k 2 2 = 2 k 2 in k co k. k

13 Noice how he Laplace ranform able i e up o ue parial fracion decompoiion. And be amazed a how i le you quickly deduce he oluion o imporan DE IVP, like hi reonance problem: Exercie 5a) Ue Laplace ranform o wrie down he oluion o 2 x x = F in x = x x = v. wha phenomenon do he oluion o hi IVP exhibi? (Compare, in your homework you will re-olve he IVP when he forcing i F co. We worked prey hard in Chaper 5, o derive hi general oluion formula.) 5b) Ue Laplace ranform o olve he general undamped forced ocillaion problem, when x 2 x = F in x = x : x = v wha phenomenon o he oluion o hi IVP exhibi when you'll do hi wih forcing F in. Thi will mirror work we did in Chaper 5.) (bu )? (In your homework,

14 f, wih f Ce M F f e d for M verified c f c 2 f 2 c F c 2 F 2 2 n, n n! n ( e ( a co k in k coh k inh k e a co k e a in k 2 k 2 ( k 2 k 2 ( 2 k 2 ( k k 2 k 2 ( k a a 2 k 2 ( a k a 2 k 2 a e a f F a f f f n, n f d f 2 f n f, n f co k F f 2 F f f n F n f... f n F F F n F n F d 2 k 2 2 k 2 2

15 2 k in k 2 k 3 in k k co k e a n e a, n 2 k k 2 2 a 2 n! a n Laplace ranform able

16 The pendulum applicaion ha we didn' cover carefully in Chaper 5...we'll ue hi for a equence of example uing Laplace ranform over he nex everal lecure.

17 Mah Wed Apr 4.3 parial fracion;.5 piecewie forcing. Announcemen: Warm-up Exercie:

18 parial fracion occur naurally when olving iniial value problem wih Laplace ranform, a we've already een. Here' a moderaely-involved example: Exercie ) Solve he following IVP. Ue hi example o recall he general parial fracion algorihm. x 4 x = 8 e 2 x = x =

19 Wolfram alpha can check mo of your ep, once you've e up he problem. Or, if i' a ridiculou problem don' ry o even work i by hand: Exercie 2a) Wha i he form of he parial fracion decompoiion for X = b) Check exac number wih Wolfram alpha 2c) Wha i x = X? 2d) Have Wolfram alpha compue he invere Laplace ranform direcly. Noice ha being fluid wih Euler' formula i ueful.

20 .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on and off. The following Laplace ranform maerial i ueful in yem where we urn forcing funcion on and off, and when we have righ hand ide "forcing funcion" ha are more complicaed han wha undeermined coefficien can handle. We will coninue hi dicuion on Friday, wih a few more able enrie including "he dela (impule) funcion". f wih f Ce M F f e d for M commen u a uni ep funcion e a for urning componen on and off a = a. f a u a e a F more complicaed on/off f f d F G "convoluion" for invering produc of Laplace ranform The uni ep funcion wih jump a = i defined o be, u =,. IThi funcion i alo called he "Heaviide" funcion, e.g. in Maple and Wolfram alpha. In Wolfram alpha i' alo called he "hea" funcion. Oliver Heaviide wa a an accomplihed phyici in he 8'. The name i no becaue he graph i heavy on one ide. :-) hp://en.wikipedia.org/wiki/oliver_heaviide > wih plo : plo Heaviide, = 3..3, color = green, ile = `graph of uni ep funcion` ; graph of uni ep funcion Noice ha echnically he verical line hould no be here - a more precie picure would have a olid poin a, and a hollow circle a,, for he graph of u. In erm of Laplace ranform inegral definiion i doen' acually maer wha we define u o be.

21 Then, a ; i.e. a u a =, a ; i.e. a and ha graph ha i a horizonal ranlaion by a o he righ, of he original graph, e.g. for a = 2: Exercie 3) Verify he able enrie u a uni ep funcion e a for urning componen on and off a = a. f a u a e a F more complicaed on/off

22 Exercie 4) Conider he funcion f which i zero for 4 and wih he following graph. Ue lineariy and he uni ep funcion enry o compue he Laplace ranform F. Thi hould remind you of a homework problem from he aignmen due omorrow - alhough you're aked o find he Laplace ranform of ha ep funcion direcly from he definiion. In your nex week' homework aignmen you will re-do ha problem uing uni ep funcion. (Of coure, you could alo check your anwer in hi week' homework wih hi mehod.)

23 Exercie 5a) Explain why he decripion above lead o he differenial equaion iniial value problem for x x x =.2 co u x = x = 5b) Find x. Show ha afer he paren op puhing, he child i ocillaing wih an ampliude of exacly meer (in our linearized model).

24 Picure for he wing: > plo plo. in, =.. Pi, color = black : plo2 plo Pi in, = Pi..2 Pi, color = black : plo3 plo Pi, = Pi..2 Pi, color = black, lineyle = 2 : plo4 plo Pi, = Pi..2 Pi, color = black, lineyle = 2 : plo5 plo., =.. Pi, color = black, lineyle = 2 : plo6 plo., =.. Pi, color = black, lineyle = 2 : diplay plo, plo2, plo3, plo4, plo5, plo6, ile = `advenure a he winge` ; 3 3 advenure a he winge Alernae approach via Chaper 5: ep ) olve for. ep 2) Then olve and e x = y for. x x =.2 co x = x = y y = y = x y = x

25 f, wih f Ce M F f e d for M verified c f c 2 f 2 c F c 2 F 2 2 n, n n! n ( e ( a co k in k coh k inh k e a co k e a in k e a f u a f a u a a f f f n, n 2 k 2 ( k 2 k 2 ( 2 k 2 ( k k 2 k 2 ( k a a 2 k 2 ( a k a 2 k 2 a F a e a e a F e a F f 2 F f f n F n f... f n

26 f d F f 2 f n f, n f co k 2 k in k 2 k 3 in k k co k e a n e a, n F F n F n F d 2 k 2 2 k k k 2 2 a 2 n! a n f g d F G f wih period p e p p f e d Laplace ranform able

27 Mah Fri Apr 6.5, EP7.6 piecewie and implule forcing. Announcemen: Warm-up Exercie:

28 Laplace able enrie for oday. f wih f Ce M F f e d for M commen u a uni ep funcion e a for urning componen on and off a = a. f a u a e a F more complicaed on/off a e a uni impule/dela "funcion" EP 7.6 impule funcion and he operaor. Conider a force f acing on an objec for only on a very hor ime inerval a a, for example a when a ba hi a ball. Thi impule p of he force i defined o be he inegral p a a f d and i meaure he ne change in momenum of he objec ince by Newon' econd law m v = f a a m v d = m v a a a = a f d = p Since he impule p only depend on he inegral of f, and ince he exac form of f i unlikely o be known in any cae, he eaie model i o replace f wih a conan force having he ame oal impule, i.e. o e f = p d a, where d a, i he uni impule funcion given by = p., a, a a d a, =, a. Noice ha a d a, d = a d =. a a Here' a graph of d 2,., for example:

29 2 3 4

30 Since he uni impule funcion i a linear combinaion of uni ep funcion, we could olve differenial equaion wih impule funcion o-conruced. A far a Laplace ranform goe, i' even eaier o ake he limi a for he Laplace ranform d a,, and hi effecively model impule on very hor ime cale. d a, = u a u a d a, = e a e a = e a e. In Laplace land we can ue L'Hopial' rule (in he variable ) o ake he limi a : lim e a e = e a e lim = e a. The reul in ime pace i no really a funcion bu we call i he "dela funcion" a anyway, and viualize i a a funcion ha i zero everywhere excep a = a, and ha i i infinie a = a in uch a way ha i inegral over any open inerval conaining a equal one. A explained in EP7.6, he dela "funcion" can be hough of in a rigorou way a a linear ranformaion, no a a funcion. I can alo be hough of a he derivaive of he uni ep funcion u a, and hi i conien wih he Laplace able enrie for derivaive of funcion. In any cae, hi lead o he very ueful Laplace ranform able enry a uni impule funcion e a for impule forcing

31 Exercie ) Revii he wing from Wedneday' noe and olve he IVP below for x. In hi cae he paren i providing an impule each ime he child pae hrough equilibrium poiion afer compleing a cycle. x x = x = x =.

32 > > wih plo : plo plo. in, =.. Pi, color = black : plo2 plo Pi in, = Pi..2 Pi, color = black : plo3 plo Pi, = Pi..2 Pi, color = black, lineyle = 2 : plo4 plo Pi, = Pi..2 Pi, color = black, lineyle = 2 : plo5 plo., =.. Pi, color = black, lineyle = 2 : plo6 plo., =.. Pi, color = black, lineyle = 2 : diplay plo, plo2, plo3, plo4, plo5, plo6, ile = `Wedneday advenure a he winge` ; 3 3 Wedneday advenure a he winge > impule oluion: five equal impule o ge ame final ampliude of meer - Exercie : > f.2 Pi um Heaviide k 2 Pi in k 2 Pi, k =..4 : > plo f, =..2 Pi, color = black, ile = `lazy paren on Friday` ; > Or, an impule a = and anoher one a =. > g.2 Pi 2 in 3 Heaviide Pi in Pi : > plo g, =..2 Pi, color = black, ile = `very lazy paren` ; > lazy paren on Friday very lazy paren

t )? How would you have tried to solve this problem in Chapter 3?

t )? How would you have tried to solve this problem in Chapter 3? Exercie 9) Ue Laplace ranform o wrie down he oluion o 2 x x = F in x = x x = v. wha phenomena do oluion o hi DE illurae (even hough we're forcing wih in co )? How would you have ried o olve hi problem

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Mon Apr 9 EP 7.6 Convolutions and Laplace transforms. Announcements: Warm-up Exercise:

Mon Apr 9 EP 7.6 Convolutions and Laplace transforms. Announcements: Warm-up Exercise: Mah 225-4 Week 3 April 9-3 EP 7.6 - convoluions; 6.-6.2 - eigenvalues, eigenvecors and diagonalizabiliy; 7. - sysems of differenial equaions. Mon Apr 9 EP 7.6 Convoluions and Laplace ransforms. Announcemens:

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition. CHAPTER 8 Forced Equaion and Syem 8 The aplace Tranform and I Invere Tranform from he Definiion 5 5 = b b {} 5 = 5e d = lim5 e = ( ) b {} = e d = lim e + e d b = (inegraion by par) = = = = b b ( ) ( )

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Exponential Sawtooth

Exponential Sawtooth ECPE 36 HOMEWORK 3: PROPERTIES OF THE FOURIER TRANSFORM SOLUTION. Exponenial Sawooh: The eaie way o do hi problem i o look a he Fourier ranform of a ingle exponenial funcion, () = exp( )u(). From he able

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14 Mh 225-4 Week 2 coninue.-.3; lo cover pr of.4-.5, EP 7.6 Mon Nov 4.-.3 Lplce rnform, nd pplicion o DE IVP, epecilly hoe in Chper 5. Tody we'll coninue (from l Wednedy) o fill in he Lplce rnform ble (on

More information

e a s a f t dt f t dt = p = p. t = a

e a s a f t dt f t dt = p = p. t = a Mah 225-4 Fri Apr 7 5, EP76 Today we finish discussing Laplace ransform echniques: Impulse forcing ("dela funcions")oday's noes Convoluion formulas o solve any inhomogeneous consan coefficien linear DE,

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

Hint: There's a table of particular solutions at the end of today's notes.

Hint: There's a table of particular solutions at the end of today's notes. Mah 8- Fri Apr 4, Finish Wednesday's noes firs Then 94 Forced oscillaion problems via Fourier Series Today we will revisi he forced oscillaion problems of las Friday, where we prediced wheher or no resonance

More information

EE202 Circuit Theory II

EE202 Circuit Theory II EE202 Circui Theory II 2017-2018, Spring Dr. Yılmaz KALKAN I. Inroducion & eview of Fir Order Circui (Chaper 7 of Nilon - 3 Hr. Inroducion, C and L Circui, Naural and Sep epone of Serie and Parallel L/C

More information

Announcements: Warm-up Exercise:

Announcements: Warm-up Exercise: Fri Apr 13 7.1 Sysems of differenial equaions - o model muli-componen sysems via comparmenal analysis hp//en.wikipedia.org/wiki/muli-comparmen_model Announcemens Warm-up Exercise Here's a relaively simple

More information

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı CONTROL SYSTEMS Chaper Mahemaical Modelling of Phyical Syem-Laplace Tranform Prof.Dr. Faih Mehme Boalı Definiion Tranform -- a mahemaical converion from one way of hinking o anoher o make a problem eaier

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

CHAPTER 7. Definition and Properties. of Laplace Transforms

CHAPTER 7. Definition and Properties. of Laplace Transforms SERIES OF CLSS NOTES FOR 5-6 TO INTRODUCE LINER ND NONLINER PROBLEMS TO ENGINEERS, SCIENTISTS, ND PPLIED MTHEMTICINS DE CLSS NOTES COLLECTION OF HNDOUTS ON SCLR LINER ORDINRY DIFFERENTIL EQUTIONS (ODE")

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Chapter 9 - The Laplace Transform

Chapter 9 - The Laplace Transform Chaper 9 - The Laplace Tranform Selece Soluion. Skech he pole-zero plo an region of convergence (if i exi) for hee ignal. ω [] () 8 (a) x e u = 8 ROC σ ( ) 3 (b) x e co π u ω [] ( ) () (c) x e u e u ROC

More information

Piecewise-Defined Functions and Periodic Functions

Piecewise-Defined Functions and Periodic Functions 28 Piecewie-Defined Funcion and Periodic Funcion A he ar of our udy of he Laplace ranform, i wa claimed ha he Laplace ranform i paricularly ueful when dealing wih nonhomogeneou equaion in which he forcing

More information

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson 6.32 Feedback Syem Phae-locked loop are a foundaional building block for analog circui deign, paricularly for communicaion circui. They provide a good example yem for hi cla becaue hey are an excellen

More information

More on ODEs by Laplace Transforms October 30, 2017

More on ODEs by Laplace Transforms October 30, 2017 More on OE b Laplace Tranfor Ocober, 7 More on Ordinar ifferenial Equaion wih Laplace Tranfor Larr areo Mechanical Engineering 5 Seinar in Engineering nali Ocober, 7 Ouline Review la cla efiniion of Laplace

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

CONTROL SYSTEMS. Chapter 10 : State Space Response

CONTROL SYSTEMS. Chapter 10 : State Space Response CONTROL SYSTEMS Chaper : Sae Space Repone GATE Objecive & Numerical Type Soluion Queion 5 [GATE EE 99 IIT-Bombay : Mark] Conider a econd order yem whoe ae pace repreenaion i of he form A Bu. If () (),

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

Math Week 15: Section 7.4, mass-spring systems. These are notes for Monday. There will also be course review notes for Tuesday, posted later.

Math Week 15: Section 7.4, mass-spring systems. These are notes for Monday. There will also be course review notes for Tuesday, posted later. Mah 50-004 Week 5: Secion 7.4, mass-spring sysems. These are noes for Monday. There will also be course review noes for Tuesday, posed laer. Mon Apr 3 7.4 mass-spring sysems. Announcemens: Warm up exercise:

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP Mah 2280 Wednesda March 3, 200 4., 4.3: Firs order ssems of Differenial Equaions Wh ou should epec eisence and uniqueness for he IVP Eample: Consider he iniial value problem relaed o page 4 of his eserda

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

1 CHAPTER 14 LAPLACE TRANSFORMS

1 CHAPTER 14 LAPLACE TRANSFORMS CHAPTER 4 LAPLACE TRANSFORMS 4 nroducion f x) i a funcion of x, where x lie in he range o, hen he funcion p), defined by p) px e x) dx, 4 i called he Laplace ranform of x) However, in hi chaper, where

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

Angular Motion, Speed and Velocity

Angular Motion, Speed and Velocity Add Imporan Angular Moion, Speed and Velociy Page: 163 Noe/Cue Here Angular Moion, Speed and Velociy NGSS Sandard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objecive: 3.A.1.1, 3.A.1.3

More information

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff Laplace ransfom: -ranslaion rule 8.03, Haynes Miller and Jeremy Orloff Inroducory example Consider he sysem ẋ + 3x = f(, where f is he inpu and x he response. We know is uni impulse response is 0 for

More information

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13.

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13. Chaper 3 The Laplace Tranform in Circui Analyi 3. Circui Elemen in he Domain 3.-3 Circui Analyi in he Domain 3.4-5 The Tranfer Funcion and Naural Repone 3.6 The Tranfer Funcion and he Convoluion Inegral

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

Additional Methods for Solving DSGE Models

Additional Methods for Solving DSGE Models Addiional Mehod for Solving DSGE Model Karel Meren, Cornell Univeriy Reference King, R. G., Ploer, C. I. & Rebelo, S. T. (1988), Producion, growh and buine cycle: I. he baic neoclaical model, Journal of

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Math 2214 Solution Test 1A Spring 2016

Math 2214 Solution Test 1A Spring 2016 Mah 14 Soluion Tes 1A Spring 016 sec Problem 1: Wha is he larges -inerval for which ( 4) = has a guaraneed + unique soluion for iniial value (-1) = 3 according o he Exisence Uniqueness Theorem? Soluion

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Linear Algebra Primer

Linear Algebra Primer Linear Algebra rimer And a video dicuion of linear algebra from EE263 i here (lecure 3 and 4): hp://ee.anford.edu/coure/ee263 lide from Sanford CS3 Ouline Vecor and marice Baic Mari Operaion Deerminan,

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

) were both constant and we brought them from under the integral.

) were both constant and we brought them from under the integral. YIELD-PER-RECRUIT (coninued The yield-per-recrui model applies o a cohor, bu we saw in he Age Disribuions lecure ha he properies of a cohor do no apply in general o a collecion of cohors, which is wha

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Mah 6 Pracice for Exam Generaed Ocober 3, 7 Name: SOLUTIONS Insrucor: Secion Number:. This exam has 5 quesions. Noe ha he problems are no of equal difficuly, so you may wan o skip over and reurn o a problem

More information

PHYSICS 151 Notes for Online Lecture #4

PHYSICS 151 Notes for Online Lecture #4 PHYSICS 5 Noe for Online Lecure #4 Acceleraion The ga pedal in a car i alo called an acceleraor becaue preing i allow you o change your elociy. Acceleraion i how fa he elociy change. So if you ar fro re

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du. MATH 3B: MIDTERM REVIEW JOE HUGHES. Inegraion by Pars. Evaluae 3 e. Soluion: Firs make he subsiuion u =. Then =, hence 3 e = e = ue u Now inegrae by pars o ge ue u = ue u e u + C and subsiue he definiion

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

CHAPTER HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG. 7.1 SECOND-ORDER SYSTEM Transfer Function

CHAPTER HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG. 7.1 SECOND-ORDER SYSTEM Transfer Function CHAPTER 7 HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 7. SECOND-ORDER SYSTEM Tranfer Funcion Thi ecion inroduce a baic yem called a econd-order yem or a quadraic lag. Second-order yem are

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Math 2214 Solution Test 1 B Spring 2016

Math 2214 Solution Test 1 B Spring 2016 Mah 14 Soluion Te 1 B Spring 016 Problem 1: Ue eparaion of ariable o ole he Iniial alue DE Soluion (14p) e =, (0) = 0 d = e e d e d = o = ln e d uing u-du b leing u = e 1 e = + where C = for he iniial

More information

Math 115 Final Exam December 14, 2017

Math 115 Final Exam December 14, 2017 On my honor, as a suden, I have neiher given nor received unauhorized aid on his academic work. Your Iniials Only: Iniials: Do no wrie in his area Mah 5 Final Exam December, 07 Your U-M ID # (no uniqname):

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

From Complex Fourier Series to Fourier Transforms

From Complex Fourier Series to Fourier Transforms Topic From Complex Fourier Series o Fourier Transforms. Inroducion In he previous lecure you saw ha complex Fourier Series and is coeciens were dened by as f ( = n= C ne in! where C n = T T = T = f (e

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

Instrumentation & Process Control

Instrumentation & Process Control Chemical Engineering (GTE & PSU) Poal Correpondence GTE & Public Secor Inrumenaion & Proce Conrol To Buy Poal Correpondence Package call a -999657855 Poal Coure ( GTE & PSU) 5 ENGINEERS INSTITUTE OF INDI.

More information

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux Gues Lecures for Dr. MacFarlane s EE3350 Par Deux Michael Plane Mon., 08-30-2010 Wrie name in corner. Poin ou his is a review, so I will go faser. Remind hem o go lisen o online lecure abou geing an A

More information

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Notes on cointegration of real interest rates and real exchange rates. ρ (2) Noe on coinegraion of real inere rae and real exchange rae Charle ngel, Univeriy of Wiconin Le me ar wih he obervaion ha while he lieraure (mo prominenly Meee and Rogoff (988) and dion and Paul (993))

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Signal & Syem Prof. ark Fowler oe Se #34 C-T Tranfer Funcion and Frequency Repone /4 Finding he Tranfer Funcion from Differenial Eq. Recall: we found a DT yem Tranfer Funcion Hz y aking he ZT of

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

δ (τ )dτ denotes the unit step function, and

δ (τ )dτ denotes the unit step function, and ECE-202 Homework Problems (Se 1) Spring 18 TO THE STUDENT: ALWAYS CHECK THE ERRATA on he web. ANCIENT ASIAN/AFRICAN/NATIVE AMERICAN/SOUTH AMERICAN ETC. PROVERB: If you give someone a fish, you give hem

More information