Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

Size: px
Start display at page:

Download "Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform"

Transcription

1 Boy/DiPrima/Mad h d, Ch 6.: Diniion o apla Tranorm Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Many praial nginring problm involv mhanial or lrial ym ad upon by dioninuou or impuliv oring rm. For uh problm h mhod dribd in Chapr 3 ar diiul o apply. In hi hapr w u h apla ranorm o onvr a problm or an unknown union ino a implr problm or F, olv or F, and hn rovr rom i ranorm F. Givn a known union K,, an ingral ranorm o a union i a rlaion o h orm b F = ò K, d, - a <b a

2 Impropr Ingral Th apla ranorm will involv an ingral rom zro o ininiy. Suh an ingral i a yp o impropr ingral. An impropr ingral ovr an unboundd inrval i dind a h limi o an ingral ovr a ini inrval d lim a d A whr A i a poiiv ral numbr. I h ingral rom a o A xi or ah A > a and i h limi a A xi, hn h impropr ingral i aid o onvrg o ha limiing valu. Ohrwi, h ingral i aid o divrg or ail o xi. a A

3 Exampl Conidr h ollowing impropr ingral. d W an valua hi ingral a ollow: ò d Thror, h impropr ingral divrg. ò = lim A ò A d = lim ln A A

4 Exampl Conidr h ollowing impropr ingral. W an valua hi ingral a ollow: d A lim lim A d d A A No ha i =, hn =. Thu h ollowing wo a hold: d, i ; and d divrg, i.

5 Exampl 3 Conidr h ollowing impropr ingral. p From Exampl, hi ingral divrg a p = W an valua hi ingral or p a ollow: A p d lim p d lim A A A p Th impropr ingral divrg a p = and I p, I p, lim A lim A d p p A p p p A p

6 Piwi Coninuou Funion A union i piwi oninuou on an inrval [a, b] i hi inrval an b pariiond by a ini numbr o poin a = < < < n = b uh ha i oninuou on ah k, k+ lim k, k,, n 3 lim k, k,, n In ohr word, i piwi oninuou on [a, b] i i i oninuou hr xp or a ini numbr o jump dioninuii.

7 Thorm 6.. I i piwi oninuou or a, i g whn M or om poiiv M and i gd onvrg, hn ò M d alo onvrg. ò a On h ohr hand, i g or M, and i divrg, hn d alo divrg. ò a ò M gd

8 Th apla Tranorm b a union dind or >, and aii rain ondiion o b namd lar. Th apla Tranorm o i dind a an ingral ranorm: F d Th krnl union i K, =. Sin oluion o linar dirnial quaion wih onan oiin ar bad on h xponnial union, h apla ranorm i pariularly uul or uh quaion. No ha h apla Tranorm i dind by an impropr ingral, and hu mu b hkd or onvrgn. On h nx w lid, w rviw xampl o impropr ingral and piwi oninuou union.

9 Thorm 6.. Suppo ha i a union or whih h ollowing hold: i piwi oninuou on [, b] or all b >. K a whn M, or onan a, K, M, wih K, M >. Thn h apla Tranorm o xi or > a. F d ini No: A union ha aii h ondiion piid abov i aid o o hav xponnial ordr a.

10 Exampl = or. Thn h apla ranorm F o i: lim b b d lim b, d b

11 Exampl 5 = a or. Thn h apla ranorm F o i: a lim b b a d a a lim b a, a a d b

12 Exampl 6 Conidr h ollowing piwi-dind union, k, whr k i a onan. Thi rprn a uni impul. Noing ha i piwi oninuou, w an ompu i apla ranorm { } d, d Obrv ha hi rul do no dpnd on k, h union valu a h poin o dioninuiy.

13 Exampl 7 = ina or. Uing ingraion by par wi, h apla ranorm F o i ound a ollow: F a a in a F in ad b b lim o a / a b a b lim o a a a b b lim in a / a a a b a F a a lim b b, o a b in a in ad

14 inariy o h apla Tranorm Suppo and g ar union who apla ranorm xi or > a and > a, rpivly. Thn, or grar han h maximum o a and a, h apla ranorm o + g xi. Tha i, wih ini i d g g g d g d g

15 Exampl 8 = 5-3in or. Thn by linariy o h apla ranorm, and uing rul o prviou xampl, h apla ranorm F o i:, 6 5 in 3 5 3in 5 } { F

16 Boy/DiPrima/Mad h d, Ch 6.: Soluion o Iniial Valu Problm Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Th apla ranorm i namd or h Frnh mahmaiian apla, who udid hi ranorm in 78. Th hniqu dribd in hi hapr wr dvlopd primarily by Olivr Haviid 85-95, an Englih lrial nginr. In hi ion w how h apla ranorm an b ud o olv iniial valu problm or linar dirnial quaion wih onan oiin. Th apla ranorm i uul in olving h dirnial quaion bau h ranorm o ' i rlad in a impl way o h ranorm o, a ad in Thorm 6...

17 Thorm 6.. Suppo ha i a union or whih h ollowing hold: i oninuou and ' i piwi oninuou on [, b] or all b >. K a whn M, or onan a, K, M, wih K, M >. Thn h apla Tranorm o ' xi or > a, wih Proo oulin: For and ' oninuou on [, b], w hav lim b b d lim b lim b b b d d Similarly or ' piwi oninuou on [, b], x. b b b

18 Th apla Tranorm o ' Thu i and ' aiy h hypoh o Thorm 6.., hn Now uppo ' and '' aiy h ondiion piid or and ' o Thorm 6... W hn obain Similarly, w an driv an xprion or { n }, providd and i drivaiv aiy uiabl ondiion. Thi rul i givn in Corollary 6..

19 Corollary 6.. Suppo ha i a union or whih h ollowing hold:, ', '',, n- ar oninuou, and n piwi oninuou, on [, b] or all b >. K a, ' K a,, n K a or M, or onan a, K, M, wih K, M >. Thn h apla Tranorm o n xi or > a, wih n n n n n n

20 Exampl : Chapr 3 Mhod o Conidr h iniial valu problm y y y, y, y Rall rom Sion 3.: r y r r r r Thu r = and r = 3, and gnral oluion ha h orm y y Uing iniial ondiion: Thu y /3 /3 /3, /3 W now olv hi problm uing apla Tranorm. 5 5 y /3 /

21 y, y y y, y Exampl : apla Tranorm Mhod o Aum ha our IVP ha a oluion and aiy h ondiion o Corollary 6... Thn { y y y} { y } { y} { y} {} and hn { y} y y { y} y { y} ing Y = {y}, w hav Y y y Subiuing in h iniial ondiion, w obain Y Thu { y} Y ' and ''

22 Exampl : Parial Fraion 3 o Uing parial raion dompoiion, Y an b rwrin: Thu /3, /3, b a b a b a b a b a b a b a } { 3 / 3 / Y y

23 Exampl : Soluion o Rall rom Sion 6.: Thu Y a a a F d d, a / 3 / 3 /3 Ralling Y = {y}, w hav { } /3 { a }, and hn { y} {/3 /3 } y =

24 Gnral apla Tranorm Mhod Conidr h onan oiin quaion ay Aum ha h oluion y aii h ondiion o Corollary 6.. or n =. W an ak h ranorm o h abov quaion: whr F i h ranorm o. Solving or Y giv: by y a Y- y- y'+ by- y+ Y = F Y = a + by+ ay' a + b + + F a + b +

25 Algbrai Problm Thu h dirnial quaion ha bn ranormd ino h h algbrai quaion Y a b a y ay b F b or whih w k y = uh ha { } = Y. No ha w do no nd o olv h homognou and nonhomognou quaion paraly, nor do w hav a para p or uing h iniial ondiion o drmin h valu o h oiin in h gnral oluion. a

26 Chararii Polynomial Uing h apla ranorm, our iniial valu problm ay bom Y by y a b a y ay b y, y, y y F b Th polynomial in h dnominaor i h hararii polynomial aoiad wih h dirnial quaion. Th parial raion xpanion o Y ud o drmin rquir u o ind h roo o h hararii quaion. For highr ordr quaion, hi may b diiul, pially i h roo ar irraional or omplx. a

27 Invr Problm Th main diiuly in uing h apla ranorm mhod i drmining h union y = uh ha { } = Y. Thi i an invr problm, in whih w ry o ind uh ha = {Y}. Thr i a gnral ormula or, bu i rquir knowldg o h hory o union o a omplx variabl, and w do no onidr i hr. I an b hown ha i i oninuou wih {} = F, hn i h uniqu oninuou union wih = {F}. Tabl 6.. in h x li many o h union and hir ranorm ha ar nounrd in hi hapr.

28 inariy o h Invr Tranorm Frqunly a apla ranorm F an b xprd a Thn h union ha h apla ranorm F, in i linar. By h uniqun rul o h prviou lid, no ohr oninuou union ha h am ranorm F. Thu i a linar opraor wih F F F F n,, F F n n n F F F n

29 Exampl : Nonhomognou Problm o Conidr h iniial valu problm y y in, y, y Taking h apla ranorm o h dirnial quaion, and auming h ondiion o Corollary 6.. ar m, w hav ing Y = {y}, w hav Subiuing in h iniial ondiion, w obain Y / Thu { y} y y { y} / Y y y / Y

30 Uing parial raion, Thn Solving, w obain A =, B = 5/3, C =, and D = -/3. Thu Hn Exampl : Soluion o D C B A Y D B C A D B C A D C B A / 3 5/ 3 Y y in 3 in 3 5 o

31 Exampl 3: Solving a h Ordr IVP o Conidr h iniial valu problm y y, y,, y'', y''' Taking h apla ranorm o h dirnial quaion, and auming h ondiion o Corollary 6.. ar m, w hav ing Y = {y} and ubiuing h iniial valu, w hav Y Uing parial raion a b d Y Thu a b d y' 3 { y} y y y'' y''' { y}

32 y y, y, y', y'', y''' Exampl 3: Solving a h Ordr IVP o In h xprion: Sing = and = nabl u o olv or a and b: a b and a b a, b / Sing =, b d =, o d = / Equaing h oiin o 3in h ir xprion giv a + =, o = Thu / / Y Uing Tabl 6.., h oluion i y inh in a b d y 5 5 inh in y

33 Boy/DiPrima/Mad h d, Ch 6.3: Sp Funion Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Som o h mo inring lmnary appliaion o h apla Tranorm mhod our in h oluion o linar quaion wih dioninuou or impuliv oring union. In hi ion, w will aum ha all union onidrd ar piwi oninuou and o xponnial ordr, o ha hir apla Tranorm all xi, or larg nough.

34 Sp Funion diniion >. Th uni p union, or Haviid union, i dind by A ngaiv p an b rprnd by u,, u y,,

35 Exampl Skh h graph o y = h, whr Soluion: Rall ha u i dind by Thu and hn h graph o h i a rangular pul., u u h u,, h,,

36 Exampl For h union, 5, h,, who graph i hown To wri h in rm o u, w will nd u, u 7, and u 9. W bgin wih h, hn add 3 o g 5, hn ubra 6 o g, and inally add o g ah quaniy i muliplid by h appropria u h 3u 6u7 u9,

37 apla Tranorm o Sp Funion Th apla Tranorm o u i u lim b b b lim u d b d b lim d b

38 Tranlad Funion Givn a union dind or, w will on wan o onidr h rlad union g = u - : g,, Thu g rprn a ranlaion o a dian in h poiiv dirion. In h igur blow, h graph o i givn on h l, and h graph o g on h righ.

39 Thorm 6.3. I F = { } xi or > a, and i >, hn Convrly, i = {F}, hn Thu h ranlaion o a dian in h poiiv dirion orrpond o a mulipliaion o F by. F u F u

40 Thorm 6.3.: Proo Oulin W nd o how Uing h diniion o h apla Tranorm, w hav F du u du u d d u u u u u F u

41 Exampl 3 Find { }, whr i dind by No ha = in + u / o /, and = in, < p in + o - p, ³ p ì í ï ï î ï ï o in / o in / / / / u p p

42 Exampl Find {F}, whr Soluion: Th union may alo b wrin a F u,,

43 Thorm 6.3. I F = { } xi or > a, and i i a onan, hn Convrly, i = - {F}, hn Thu mulipliaion by rul in ranlaing F a dian in h poiiv dirion, and onvrly. Proo Oulin: a F, F F d d

44 Exampl 5 To ind h invr ranorm o W ir ompl h quar: Sin i ollow ha 5 G 5 F G G g o and o F F

45 Boy/DiPrima/Mad h d, Ch 6.: Dirnial Equaion wih Dioninuou Foring Funion Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. In hi ion ou on xampl o nonhomognou iniial valu problm in whih h oring union i dioninuou. ay by y y, y g, y y

46 Exampl : Iniial Valu Problm o Find h oluion o h iniial valu problm whr y y y g, y y, 5 g u5 u, 5 and Suh an iniial valu problm migh modl h rpon o a dampd oillaor ubj o g, or urrn in a irui or a uni volag pul.,

47 Exampl : apla Tranorm o Aum h ondiion o Corollary 6.. ar m. Thn or ing Y = {y}, Subiuing in h iniial ondiion, w obain Thu } { } { } { } { } { 5 u u y y y y y y y y y 5 } { } { } { y y Y 5 Y 5 5 Y,, 5 y y u u y y y

48 Exampl : Faoring Y 3 o W hav whr I w l h = - {H}, hn by Thorm h u h u y 5 5 H Y H

49 Exampl : Parial Fraion o Thu w xamin H, a ollow. A B C H Thi parial raion xpanion yild h quaion A B A C A A /, B, C / Thu H / /

50 Exampl : Compling h Squar 5 o Compling h quar, 5/6 / / / / 5/6 / / / 5 /6 /6 / / / / / / / / H

51 Exampl : Soluion 6 o Thu and hn For h a givn abov, and ralling our prviou rul, h oluion o h iniial valu problm i hn 5/6 / 5 / 5 5/6 / / / 5/6 / / / / H H h 5 in 5 5 o } { / / 5 5 h u h u

52 Exampl : Soluion Graph 7 o Thu h oluion o h iniial valu problm i h u 5 h 5 u o h, 5 in 5 / / 5 Th graph o hi oluion i givn blow. whr

53 Exampl : Compoi IVP 8 o Th oluion o original IVP an b viwd a a ompoi o hr para oluion o hr para IVP: 5 : 5: : y y y 3 y y y y 3 y y 3,,, y y y, 3 5, y y y 5, y 3 y

54 Exampl : Fir IVP 9 o Conidr h ir iniial valu problm y y y, y, y ; 5 From a phyial poin o viw, h ym i iniially a r, and in hr i no xrnal oring, i rmain a r. Thu h oluion ovr [, 5 i y =, and hi an b vriid analyially a wll. S graph blow.

55 Exampl : Sond IVP o Conidr h ond iniial valu problm y y y, y5, y 5 ; 5 Uing mhod o Chapr 3, h oluion ha h orm / 5 / in 5 / / / y o Phyially, h ym rpond wih h um o a onan h rpon o h onan oring union and a dampd oillaion, ovr h im inrval 5,. S graph blow.

56 Exampl : Third IVP o Conidr h hird iniial valu problm y 3 y 3 y3, y3 y, y 3 y ; Uing mhod o Chapr 3, h oluion ha h orm 5 / in 5 / / / y3 o Phyially, in hr i no xrnal oring, h rpon i a dampd oillaion abou y =, or >. S graph blow.

57 Exampl : Soluion Smoohn o Our oluion i u I an b hown ha and ar oninuou a = 5 and =, and ha a jump o / a = 5 and a jump o / a = : 5 h 5 u h '' limj =, 5 - ' limj = / 5 + lim lim - + Thu jump in oring rm g a h poin i baland by a orrponding jump in high ordr rm y'' in ODE.

58 Smoohn o Soluion in Gnral Conidr a gnral ond ordr linar quaion y whr p and q ar oninuou on om inrval a, b bu g i only piwi oninuou hr. I y = i a oluion, hn and ar oninuou on a, b bu poin a g. p y q y g ' '' ha jump dioninuii a h am Similarly or highr ordr quaion, whr h high drivaiv o h oluion ha jump dioninuii a h am poin a h oring union, bu h oluion il and i lowr drivaiv ar oninuou ovr a, b.

59 Exampl : Iniial Valu Problm o Find h oluion o h iniial valu problm whr y + y = g, y =, y = g = u u - 5 Th graph o oring union g i givn on righ, and i known a ramp loading. ì ï = í ï î ï, < <, ³

60 y 5 u5 u, y, y 5 5 y Exampl : apla Tranorm o Aum ha hi ODE ha a oluion y = and ha ' '' and aiy h ondiion o Corollary 6... Thn { y } { y} { u5 5 } 5{ u } 5 or 5 5 { y} y y { y} ing Y = {y}, and ubiuing in iniial ondiion, Thu 5 Y 5 5 Y 5

61 Exampl : Faoring Y 3 o W hav whr I w l h = - {H}, hn by Thorm h u h u y H Y H

62 Exampl : Parial Fraion o Thu w xamin H, a ollow. A B C H Thi parial raion xpanion yild h quaion D A C 3 B D A, B /, A B C, D / Thu H / /

63 Exampl : Soluion 5 o Thu and hn For h a givn abov, and ralling our prviou rul, h oluion o h iniial valu problm i hn H h in 8 } { 8 / / H h u h u y

64 Exampl : Graph o Soluion 6 o Thu h oluion o h iniial valu problm i Th graph o hi oluion i givn blow. h h u h u in 8 whr, 5 5 5

65 Exampl : Compoi IVP 7 o Th oluion o original IVP an b viwd a a ompoi o hr para oluion o hr para IVP diu: 5: y y, y, y 5 : : y y 3 y y 3, 5 / 5, y y 3 5, y y 5, y 3 y

66 Exampl : Fir IVP 8 o Conidr h ir iniial valu problm y y, y, y ; 5 From a phyial poin o viw, h ym i iniially a r, and in hr i no xrnal oring, i rmain a r. Thu h oluion ovr [, 5 i y =, and hi an b vriid analyially a wll. S graph blow.

67 Exampl : Sond IVP 9 o Conidr h ond iniial valu problm y y 5 /5, y5, y 5 ; 5 Uing mhod o Chapr 3, h oluion ha h orm in / / y o Thu h oluion i an oillaion abou h lin 5/, ovr h im inrval 5,. S graph blow.

68 Exampl : Third IVP o Conidr h hird iniial valu problm y 3 y3, y3 y, y 3 y ; Uing mhod o Chapr 3, h oluion ha h orm in / y3 o Thu h oluion i an oillaion abou y = /, or >. S graph blow.

69 Exampl : Ampliud o Rall ha h oluion o h iniial valu problm i y u h 5 u h, h in To ind h ampliud o h vnual ady oillaion, w loa on o h maximum or minimum poin or >. Solving y' =, h ir maximum i.6,.979. Thu h ampliud o h oillaion i abou.79.

70 Exampl : Soluion Smoohn o Our oluion i y u h 5 u h, h in In hi xampl, h oring union g i oninuou bu g' i dioninuou a = 5 and =. ''' I ollow ha and i ir wo drivaiv ar oninuou vrywhr, bu ha dioninuii a = 5 and = ha mah h dioninuii o g' a = 5 and =.

71 Boy/DiPrima/Mad h d, Ch 6.5: Impul Funion Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. In om appliaion, i i nary o dal wih phnomna o an impuliv naur. For xampl, an lrial irui or mhanial ym ubj o a uddn volag or or g o larg magniud ha a ovr a hor im inrval abou. Th dirnial quaion will hn hav h orm whr ay by y g, big, g, ohrwi and i mall.

72 Mauring Impul In a mhanial ym, whr g i a or, h oal impul o hi or i maurd by h ingral No ha i g ha h orm hn In pariular, i = /, hn I = indpndn o. d g d g I ohrwi,, g, d g d g I

73 Uni Impul Funion Suppo h oring union ha h orm Thn a w hav n, I =. W ar inrd aing ovr horr and horr im inrval i..,. S graph on righ. No ha g allr and narrowr a lim d d = ì ï í ï î d, - < <, ohrwi. Thu or, w hav, and d lim I d

74 Thu or, w hav Dira Dla Funion lim d and lim I Th uni impul union i dind o hav h propri or, and d Th uni impul union i an xampl o a gnralizd union and i uually alld h Dira dla union. In gnral, or a uni impul a an arbirary poin, d, or, and d

75 apla Tranorm o o Th apla Tranorm o i dind by and hu, lim d oh lim inh lim lim lim lim lim lim d d d d d

76 apla Tranorm o o d Thu h apla Tranorm o i, For apla Tranorm o a =, ak limi a ollow: lim d lim d For xampl, whn =, w hav { } =. d d

77 Produ o Coninuou Funion and Th produ o h dla union and a oninuou union an b ingrad, uing h man valu horm or ingral: Thu * lim * whr * lim lim lim d d d d d d

78 Exampl : Iniial Valu Problm o 3 Conidr h oluion o h iniial valu problm y y y 5, y, y Thn { y } { y} { y} { 5} ing Y = {y}, 5 Y y y Y y Y Subiuing in h iniial ondiion, w obain or 5 Y 5 Y 5

79 Exampl : Soluion o 3 W hav 5 Y Th parial raion xpanion o Y yild and hn 5 5 / Y 5 / 5/6 y.5. Plo o h Soluion y 5 u in 5 5/

80 Exampl : Soluion Bhavior 3 o 3 Wih homognou iniial ondiion a = and no xrnal xiaion unil = 5, hr i no rpon on, 5. Th impul a = 5 produ a daying oillaion ha pri indinily. Rpon i oninuou a = 5 dpi ingulariy in oring union. Sin y' ha a jump dioninuiy a = 5, y'' ha an inini dioninuiy hr. Thu a ingulariy in h oring union i baland by a orrponding ingulariy in y''. 5 y.5..3 Plo o h Soluion

81 Boy/DiPrima/Mad h d, Ch 6.6: Th Convoluion Ingral Elmnary Dirnial Equaion and Boundary Valu Problm, h diion, by William E. Boy, Rihard C. DiPrima, and Doug Mad 7 by John Wily & Son, In. Somim i i poibl o wri a apla ranorm H a H = FG, whr F and G ar h ranorm o known union and g, rpivly. In hi a w migh xp H o b h ranorm o h produ o and g. Tha i, do H = FG = { }{g} = { g}? On h nx lid w giv an xampl ha how ha hi qualiy do no hold, and hn h apla ranorm anno in gnral b ommud wih ordinary mulipliaion. In hi ion w xamin h onvoluion o and g, whih an b viwd a a gnralizd produ, and on or whih h apla ranorm do ommu.

82 Obrvaion = and g = in. Rall ha h apla Tranorm o and g ar Thu and Thror or h union i ollow ha in g in, g g g g

83 Thorm 6.6. Suppo F = { } and G = {g} boh xi or > a. Thn H = FG = {h} or > a, whr h g d g d Th union h i known a h onvoluion o and g and h ingral abov ar known a onvoluion ingral. No ha h qualiy o h wo onvoluion ingral an b n by making h ubiuion u = x. Th onvoluion ingral din a gnralizd produ and an b wrin a h = *g. S x or mor dail.

84 Thorm 6.6. Proo Oulin h d d g d d g dd g u d d g du u d g d g du u G F u u

85 Exampl : Find Invr Tranorm o Find h invr apla Tranorm o H, givn blow. Soluion: F = / and G = a/ + a, wih Thu by Thorm 6.6., in a G g F a a H d a h H in

86 Exampl : Soluion h o W an ingra o impliy h, a ollow. in in in ] [o o o o o in in in a a a a a a a a a a a a d a a a a a a d a d a d a h d a h H in

87 Exampl : Iniial Valu Problm o Find h oluion o h iniial valu problm Soluion: or ing Y = {y}, and ubiuing in iniial ondiion, Thu } { } { } { g y y } { } { G y y y y 3 G Y 3 G Y 3,, y y g y y

88 Exampl : Soluion o W hav Thu No ha i g i givn, hn h onvoluion ingral an b valuad. d g y in in 3o 3 3 G G Y

89 Exampl : apla Tranorm o Soluion 3 o Rall ha h apla Tranorm o h oluion y i 3 G Y Φ Ψ y y g, y 3, y No F dpnd only on ym oiin and iniial ondiion, whil Y dpnd only on ym oiin and oring union g. Furhr, = [ F ] olv h homognou IVP y y, y 3, y whil y = { } olv h nonhomognou IVP Y y y g, y, y

90 Exampl : Tranr Funion o Examining mor loly, Y G Ψ H G, whr H Th union H i known a h ranr union, and dpnd only on ym oiin. Th union G dpnd only on xrnal xiaion g applid o ym. I G =, hn g = d and hn h = {H} olv h nonhomognou iniial valu problm y y, y, y Thu h i rpon o ym o uni impul applid a =, and hn h i alld h impul rpon o ym.

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

THE LAPLACE TRANSFORM

THE LAPLACE TRANSFORM THE LAPLACE TRANSFORM LEARNING GOALS Diniion Th ranorm map a ncion o im ino a ncion o a complx variabl Two imporan inglariy ncion Th ni p and h ni impl Tranorm pair Baic abl wih commonly d ranorm Propri

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2 Mah 0 Homwork S 6 Soluions 0 oins. ( ps) I ll lav i o you o vrify ha y os sin = +. Th guss for h pariular soluion and is drivaivs is blow. Noi ha w ndd o add s ono h las wo rms sin hos ar xaly h omplimnary

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline. Dlin Curvs Dlin Curvs ha lo flow ra vs. im ar h mos ommon ools for forasing roduion and monioring wll rforman in h fild. Ths urvs uikly show by grahi mans whih wlls or filds ar roduing as xd or undr roduing.

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

( ) ( ) + = ( ) + ( )

( ) ( ) + = ( ) + ( ) Mah 0 Homwork S 6 Soluions 0 oins. ( ps I ll lav i o you vrify ha h omplimnary soluion is : y ( os( sin ( Th guss for h pariular soluion and is drivaivs ar, +. ( os( sin ( ( os( ( sin ( Y ( D 6B os( +

More information

Jonathan Turner Exam 2-12/4/03

Jonathan Turner Exam 2-12/4/03 CS 41 Algorim an Program Prolm Exam Soluion S Soluion Jonaan Turnr Exam -1/4/0 10/8/0 1. (10 poin) T igur low ow an implmnaion o ynami r aa ruur wi vral virual r. Sow orrponing o aual r (owing vrx o).

More information

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a Boye/DiPrima 9 h ed, Ch 6.: Definiion of Laplae Transform Elemenary Differenial Equaions and Boundary Value Problems, 9 h ediion, by William E. Boye and Rihard C. DiPrima, 2009 by John Wiley & Sons, In.

More information

Chapter 6. PID Control

Chapter 6. PID Control Char 6 PID Conrol PID Conrol Mo ommon onrollr in h CPI. Cam ino u in 930 wih h inroduion of numai onrollr. Exrmly flxibl and owrful onrol algorihm whn alid rorly. Gnral Fdbak Conrol Loo D G d Y E C U +

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

Why Laplace transforms?

Why Laplace transforms? MAE4 Linar ircui Why Lalac ranform? Firordr R cc v v v KVL S R inananou for ach Subiu lmn rlaion v S Ordinary diffrnial quaion in rm of caacior volag Lalac ranform Solv Invr LT V u, v Ri, i A R V A _ v

More information

Laplace Transforms recap for ccts

Laplace Transforms recap for ccts Lalac Tranform rca for cc Wha h big ida?. Loo a iniial condiion ron of cc du o caacior volag and inducor currn a im Mh or nodal analyi wih -domain imdanc rianc or admianc conducanc Soluion of ODE drivn

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Design and Analysis of Algorithms (Autumn 2017)

Design and Analysis of Algorithms (Autumn 2017) Din an Analyi o Alorim (Auumn 2017) Exri 3 Soluion 1. Sor pa Ain om poiiv an naiv o o ar o rap own low, o a Bllman-For in a or pa. Simula ir alorim a ru prolm o a layr DAG ( li), or on a an riv rom rurrn.

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

XV Exponential and Logarithmic Functions

XV Exponential and Logarithmic Functions MATHEMATICS 0-0-RE Dirnial Calculus Marin Huard Winr 08 XV Eponnial and Logarihmic Funcions. Skch h graph o h givn uncions and sa h domain and rang. d) ) ) log. Whn Sarah was born, hr parns placd $000

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

PERIODICAL SOLUTION OF SOME DIFFERENTIAL EQUATIONS UDC 517.9(045)=20. Julka Knežević-Miljanović

PERIODICAL SOLUTION OF SOME DIFFERENTIAL EQUATIONS UDC 517.9(045)=20. Julka Knežević-Miljanović FCT UNIVESITTIS Sri: chanic uomaic Conrol and oboic Vol. N o 7 5. 87-9 PEIODICL SOLUTION OF SOE DIFFEENTIL EQUTIONS UDC 57.95= Julka Knžvić-iljanović Facul o ahmaic Univri o lgrad E-mail: knzvic@oincar.ma.bg.ac.u

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa . ransfr funion Kanazawa Univrsiy Mirolronis Rsarh Lab. Akio Kiagawa . Wavforms in mix-signal iruis Configuraion of mix-signal sysm x Digial o Analog Analog o Digial Anialiasing Digial moohing Filr Prossor

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Partial Fraction Expansion

Partial Fraction Expansion Paial Facion Expanion Whn ying o find h inv Laplac anfom o inv z anfom i i hlpfl o b abl o bak a complicad aio of wo polynomial ino fom ha a on h Laplac Tanfom o z anfom abl. W will illa h ing Laplac anfom.

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

Effect of sampling on frequency domain analysis

Effect of sampling on frequency domain analysis LIGO-T666--R Ec sampling n rquncy dmain analysis David P. Nrwd W rviw h wll-knwn cs digial sampling n h rquncy dmain analysis an analg signal, wih mphasis n h cs upn ur masurmns. This discussin llws h

More information

Shortest Path With Negative Weights

Shortest Path With Negative Weights Shor Pah Wih Ngaiv Wigh 1 9 18-1 19 11 1-8 1 Conn Conn. Dird hor pah wih ngaiv wigh. Ngaiv yl dion. appliaion: urrny xhang arbirag Tramp amr problm. appliaion: opimal piplining of VLSI hip Shor Pah wih

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

Section 4.3 Logarithmic Functions

Section 4.3 Logarithmic Functions 48 Chapr 4 Sion 4.3 Logarihmi Funions populaion of 50 flis is pd o doul vry wk, lading o a funion of h form f ( ) 50(), whr rprsns h numr of wks ha hav passd. Whn will his populaion rah 500? Trying o solv

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

46. Let y = ln r. Then dy = dr, and so. = [ sin (ln r) cos (ln r)

46. Let y = ln r. Then dy = dr, and so. = [ sin (ln r) cos (ln r) 98 Scion 7.. L w. Thn dw d, so d dw w dw. sin d (sin w)( wdw) w sin w dw L u w dv sin w dw du dw v cos w w sin w dw w cos w + cos w dw w cos w+ sin w+ sin d wsin wdw w cos w+ sin w+ cos + sin +. L w +

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions EE 35 Signals an Sysms Spring 5 Sampl Exam # - Soluions. For h following signal x( cos( sin(3 - cos(5 - T, /T x( j j 3 j 3 j j 5 j 5 j a -, a a -, a a - ½, a 3 /j-j -j/, a -3 -/jj j/, a 5 -½, a -5 -½,

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information

Circuit Transients time

Circuit Transients time Circui Tranin A Solp 3/29/0, 9/29/04. Inroducion Tranin: A ranin i a raniion from on a o anohr. If h volag and currn in a circui do no chang wih im, w call ha a "ady a". In fac, a long a h volag and currn

More information

ANALOG COMMUNICATION (2)

ANALOG COMMUNICATION (2) DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING ANALOG COMMUNICATION () Fall 03 Oriinal slids by Yrd. Doç. Dr. Burak Klli Modiid by Yrd. Doç. Dr. Didm Kivan Turli OUTLINE Th Invrs Rlaionship bwn Tim

More information

Order of Accuracy of Spatial Discretization of Method of Characteristics. Jipu Wang and William Martin

Order of Accuracy of Spatial Discretization of Method of Characteristics. Jipu Wang and William Martin &C 7 - Inrnaional Confrn on ahai & Copuaional hod Applid o Nular Sin & nginring, Jju, Kora, April -, 7, on USB (7) Ordr of Auray of Spaial Diriaion of hod of Chararii Jipu Wang and Willia arin Dparn of

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Themes. Flexible exchange rates with inflation targeting. Expectations formation under flexible exchange rates

Themes. Flexible exchange rates with inflation targeting. Expectations formation under flexible exchange rates CHAPTER 25 THE OPEN ECONOMY WITH FLEXIBLE EXCHANGE RATES Thms Flxibl xchang ras wih inlaion arging Expcaions ormaion undr lxibl xchang ras Th AS-AD modl wih lxibl xchang ras Macroconomic adjusmn undr lxibl

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: work Thory Broadbad Circui Dig Fall 04 Lcur 6: PLL Trai Bhavior Sam Palrmo Aalog & Mixd-Sigal Cr Txa A&M Uivriy Aoucm, Agda, & Rfrc HW i du oday by 5PM PLL Trackig Rpo Pha Dcor Modl PLL Hold Rag

More information

Introduction to Fourier Transform

Introduction to Fourier Transform EE354 Signals and Sysms Inroducion o Fourir ransform Yao Wang Polychnic Univrsiy Som slids includd ar xracd from lcur prsnaions prpard y McClllan and Schafr Licns Info for SPFirs Slids his work rlasd undr

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Inroducion and Linar Sysms David Lvrmor Dparmn of Mahmaics Univrsiy of Maryland 9 Dcmbr 0 Bcaus h prsnaion of his marial in lcur will diffr from

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

Chapter 6 Differential Equations and Mathematical Modeling

Chapter 6 Differential Equations and Mathematical Modeling 6 Scion 6. hapr 6 Diffrnial Equaions and Mahmaical Modling Scion 6. Slop Filds and Eulr s Mhod (pp. ) Eploraion Sing h Slops. Sinc rprsns a lin wih a slop of, w should d pc o s inrvals wih no chang in.

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Chapter 13 Laplace Transform Analysis

Chapter 13 Laplace Transform Analysis Chapr aplac Tranorm naly Chapr : Ouln aplac ranorm aplac Tranorm -doman phaor analy: x X σ m co ω φ x X X m φ x aplac ranorm: [ o ] d o d < aplac Tranorm Thr condon Unlaral on-dd aplac ranorm: aplac ranorm

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8 CIVL 8/7111 -D Boundar Vau Prom - Quadriara Emn (Q) 1/8 ISOPARAMERIC ELEMENS h inar rianguar mn and h iinar rcanguar mn hav vra imporan diadvanag. 1. Boh mn ar una o accura rprn curvd oundari, and. h provid

More information